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Abstract: Essential proteins include the minimum required set of proteins to support cell life. Identifying essential proteins is important 
for understanding the cellular processes of an organism. However, identifying essential proteins experimentally is extremely time-
consuming and labor-intensive. Alternative methods must be developed to examine essential proteins. There were two goals in this 
study: identifying the important features and building learning machines for discriminating essential proteins. Data for Saccharomy-
ces cerevisiae and Escherichia coli were used. We first collected information from a variety of sources. We next proposed a modified 
backward feature selection method and build support vector machines (SVM) predictors based on the selected features. To evaluate 
the performance, we conducted cross-validations for the originally imbalanced data set and the down-sampling balanced data set. The 
statistical tests were applied on the performance associated with obtained feature subsets to confirm their significance. In the first data 
set, our best values of F-measure and Matthews correlation coefficient (MCC) were 0.549 and 0.495 in the imbalanced experiments. 
For the balanced experiment, the best values of F-measure and MCC were 0.770 and 0.545, respectively. In the second data set, our 
best values of F-measure and MCC were 0.421 and 0.407 in the imbalanced experiments. For the balanced experiment, the best values 
of F-measure and MCC were 0.718 and 0.448, respectively. The experimental results show that our selected features are compact and 
the performance improved. Prediction can also be conducted by users at the following internet address: http://bio2.cse.nsysu.edu.tw/
esspredict.aspx.
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Introduction
Identifying essential proteins is important for under-
standing the cellular processes in an organism because 
no other proteins can perform the functions of essen-
tial proteins. Once an essential protein is removed, 
dysfunction or cell death results. Thus, several stud-
ies have been conducted to identify essential proteins. 
Experimental approaches for identifying essential 
proteins include gene deletion,1 RNA interference,2 
and conditional knockouts.3 However, these meth-
ods are labor-intensive and time-consuming. Hence, 
alternative methods for identifying essential proteins 
are necessary.

The essential protein classification problem 
involves determining the necessity of a protein for sus-
taining cellular function or life. Among the methods 
available for identifying essential proteins, machine-
learning based methods are promising approaches. 
Therefore, several studies have been conducted to 
examine the effectiveness of this technique. Chin4 
proposed a double-screening scheme and constructed 
a framework known as the hub analyzer (http://hub.iis.
sinica.edu.tw/Hubba/index.php) to rank the proteins. 
Acencio and Lemke5 used Waikato Environment for 
Knowledge Analysis (WEKA)6 to predict the essen-
tial proteins. Hwang et  al7 applied a support vector 
machine (SVM) to classify the proteins.

Protein-protein interactions (PPIs) are well-known 
to be significant characteristics of protein function. 
Several studies have attempted to predict and classify 
protein function8 as well as analyze protein pheno-
type9 by studying interactions. A previous study10 fur-
ther suggested that essential proteins and nonessential 
proteins can be discriminated by means of topological 
properties derived from the PPI network. In spite of 
the above superior properties, however, analyzing PPI 
experimentally is time-consuming. With the advent of 
yeast two-hybrid11 high-throughput techniques, which 
can be used to identify several PPIs in one experi-
ment, obtaining PPI information has become easier. 
Since a PPI network is similar to a social network 
in many aspects, some researchers apply social net-
work techniques for analyzing PPI networks. Thus, 
several topological properties have been extensively 
explored and studied in recent years.

Fundamental properties, such as sequence or 
protein physiochemical ones, are not subjected to 
detailed examination in previous studies. This may 

be because each of these preliminary properties alone 
is somewhat less relevant to essentiality. However, 
this information is highly accessible because only 
sequence information is required to derive these 
properties. Hence, we included these properties in our 
study. For topological properties, in addition to physi-
cal interactions, we incorporated a variety of interac-
tion information, including metabolic, transcriptional 
regulation, integrated functional, and genomic con-
text interactions. Our experimental results revealed 
that these features provide either complement infor-
mation for essentiality identification or provide other 
biological justification.

To identify the reduced feature subset, which is 
crucial for biological processes, previous studies 
have used feature selection techniques. The advan-
tages of this method include storage reduction, 
performance improvement or data interpretation.12 
In accordance with whether the feature selection 
procedure is bound with the predictor, the method 
is roughly classified into three categories: filter, 
wrapper, and embedded. Filter methods often pro-
vide a complete order of available features in terms 
of relevance measures. Methods such as Fisher 
score,12 mutual information, minimal redundancy 
and maximal relevance (mRMR),13 conditional 
mutual information maximization (CMIM),14 and 
minimal relevant redundancy (mRR)15 belong to 
this category. Both wrapper and embedded methods 
involve the selection process as a part of the learning 
algorithm. The former utilizes a learning machine to 
evaluate subsets of features according to some per-
formance measurements. For example, sequential 
backward and forward feature selection12 falls into 
this category. Embedded methods directly perform 
feature selection in the learning process and they are 
usually specific to given learning machines. Example 
include C4.5,16 Classification and Regression Trees 
(CART),17 and ID3.18 Additionally, some research-
ers proposed an information-gain based the feature 
selection method,19 which examines the effective-
ness of classifier combination.

In this paper, we used two datasets. The first one was 
from Saccharomyces cerevisiae. The corresponding 
PPI data set was Scere20070107, which was obtained 
from the DIP database. The data set totally contains 
4873 proteins and 17,166 interactions. Our feature set 
consisted of the features obtained or extracted from 
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the methods proposed by Acencio and Lemke,5 Chin,4 
Hwang et  al,7 and Lin et  al.20 The second data set 
was from Escherichia coli, which was first compiled 
by Gustafson et  al.21 The data set totally contained 
3569 proteins. The associated network information 
included physical, integrated functional, and genomic 
context interactions and is collected from Hu et al.22 
For both data sets, we propose a modified sequen-
tial backward feature selection method for selecting 
important features.

Next, SVM models were built using the selected 
feature subsets. In this study, the SVM software LIB-
SVM23 was adopted for classification models. Each 
model was applied to both imbalanced and balanced 
data sets. The results were compared with those of 
previous studies and statistical tests were conducted to 
examine significance. For the imbalanced S. cerevisiae 
data, our best results for F-measure and MCC were 
0.549 and 0.495, respectively, which outperform the 
best previous method7 with results of 0.354 and 0.36, 
respectively. We obtained values of 0.770 and 0.545 for 
F-measure and MCC in the balanced data experiment, 
which was superior to the best previous method7 with 
0.737 and 0.492, respectively. For experiments exam-
ining the E. coli data set, our best values for F-measure 
and MCC were 0.421 and 0.407, respectively, in the 
imbalanced data set. In the balanced experiment, the 
best values for F-measure and MCC were 0.718 and 
0.448, respectively. The results are similar to those of 
Gustafson et  al,21 who examined 29 features, but in 
our method, only five or seven features were used for 
prediction. To verify whether our improvement was 
statistically significant, we performed bootstrap cross-
validation24 on performance measures.

Background
The data set
In this paper, we used two data sets for experiments: 
S. cerevisiae and E. coli. The former included PPI 
network data. We downloaded the data set from the 
DIP (http://dip.doe-mbi.ucla.edu/) website.25 The 
original data set contained 4873 proteins and 17166 
interactions. To comply with previous studies, we 
also adopted the largest connected component of the 
network data. There were a total of 4815 proteins, 
including 975 essential proteins and 3840 nonessen-
tial proteins. The information of protein essential-
ity was obtained from the Saccharomyces Genome 

Database (SGD), which is located at http://www.
yeastgenome.org/. Since this data set has been used in 
several previous studies, we thus obtained and incor-
porated various related features for experiments.

The E. coli data set was obtained from Gustafson 
et al.21 It contained 3569 proteins, among which 611 
are essential. Due to availability and coverage issues, 
we used another information from three additional 
networks: physical interaction (PI), integrated func-
tional interaction, and integrated PI and genomic 
context (GC) network. The information was collected 
from Hu et al.22

In the above two data sets, the ratio of nonessential 
proteins to essential proteins was approximately 4:1 
and 5:1, respectively. The data imbalance will inevi-
tably led to biased fitting to nonessential proteins 
during the learning processes. Thus, we constructed 
another balanced data set. Taking the first data set, for 
example, we randomly selected 975 nonessential pro-
teins and mixed them with essential proteins to form 
a balanced data set. In the new data set, the number 
of nonessential data elements against that of essential 
elements was equal.

Bootstrap cross-validation
We used bootstrap cross-validation (BCV) to compare the 
performance of the two classifiers using the k-fold cross-
validation. Assume that a sample S = {(x1, y1), (x2, y2), …, 
(xn, yn)} is composed of n observations, where xi represents 
the feature vector of the ith observation and yi denotes 
the class label associated with xi. A bootstrap sample 
S y y yb n

* * * * * * *, , , , , ,= ( ) ( ) ( ){ }x x xn1 1 2 2 …  consists of n 
observations that are sampled from S with replacement, 
where 1 # b # B, and B is a constant between 50 and 
200. For each sample Sb

*, a k-fold cross-validation was 
carried out. The performance measure cb, such as error 
rate, was calculated with Sb

*. The procedure was repeated  
B times and then the average performance measure 
CB  =  ∑B

b=1 cb/B was evaluated over the B bootstrap 
samples. Since the distribution of the bootstrap per-
formance measures was approximately normal, the 
confidence interval and significance were estimated 
accordingly.

Performance measures
In this study, the performance measures included 
precision, recall, F-measure (F1), Matthews cor-
relation coefficient (MCC), and top percentage 
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of essential proteins. Their formulas are given as 
follows:

1.	 Precision: TP / TP + FP
2.	 Recall: TP / TP + FN
3.	 F-measure: 2 × precision × recall /( precision + recall)

4.	 MCC: 
TP TN FP FN

TP FN TP FP TN FP TN FN
× − ×

+( ) +( ) +( ) +( )
5.	 Top percentage of essential protein: 

Number of real essential proteins in top n

n

.

Here, an essential protein is represented by the 
positive observation. True positive (TP), true neg-
ative (TN), false positive (FP), and false negative 
(FN) represent the numbers of true positive, true 
negative, false positive, and false negative proteins, 
respectively. The value n denotes the total num-
ber of predictions. In addition, receiver operating 
characteristic (ROC) curve18 and area under curve 
(AUC) were used to evaluate the classification 
performance.

Feature extraction
The feature set we used included sequence properties 
(S), such as amino acid occurrence and average amino 
acid PSSM; protein properties (P), such as cell cycle 
and metabolic process; topological properties (T), such 
as bit string of double screening scheme and between-
ness centrality related to physical interactions; and other 
properties (O), such as phyletic retention and essential 
index. There were a total of 45 groups and 90 features 
in the S. cerevisiae data set. For the E. coli data set, 
there were 35 groups and 80 features. All names and 
sources are shown in Table 1. Only Bit string of double 
screening scheme is presented.

The remaining features are detailed in the 
Appendix.

Lin et al26 and Chin4 proposed the double screen-
ing scheme. They used multiple ranking scores to sort 
essential proteins. The drawback is that each protein 
does not have a unique score. Thus, we propose a bit 
string implementation to incorporate these two prop-
erties into a single score.

An example of our bit string implementation is 
shown in Tables 2 and 3. Suppose that four proteins, 
W, X, Y, and Z, are to be ranked. In the first itera-

tion, we desire to find the top one protein. We first 
select the top 2 proteins using the ranking method A, 
which are W and X. Next, we use method B to rank 
these two proteins. The ranks of W and X are 2 
and 1, respectively. Hence, in the first iteration, X 
is finally selected. It follows the bit M [X, 1] is set 
to 1, and others, M [W, 1], M [Y, 1] and M [Z, 1], 
are set to 0. In the second iteration, 2 top-ranking 
proteins are to be found. First, four proteins W, X, 
Y and Z are selected, because they are the top 4 
proteins by ranking method A. Next, with ranking 
method B, we select the top 2 proteins from them, 
which are X and Y. Hence, the bits corresponding 
to M [X, 2] and M [Y, 2] are set to 1, and the others 
are set to 0 in this iteration. Finally, we sum up the 
bits of each protein, as shown in the fourth column 
of Table 3.

There is still an issue in the bit string implemen-
tation, that is, M may be too sparse to be handled 
by classifiers. Since the number of proteins being 
selected is around n/2, the sum of about n/2 bits is 
close to 0. In our experience, this makes it difficult 
to distinguish between proteins. To overcome this 
problem, for each protein, we added another score 
n – r to the sum of the bit string, where r is the rank 
of the protein by the ranking method B. In this study, 
we used DMNC to rank A and MNC to rank B. In 
this example, n = 4, so the values n – r of W, X, Y 
and Z are 0, 2, 3, and 1, respectively. We summed the 
values with the bit string; hence, the final scores are 
0, 4, 4, and 1. The overall procedure is given in the 
Procedure bit string implementation of DSS.

Sequential backward feature  
selection method
SVM is a well-established tool for data analysis which 
has been shown to be useful in various fields, such as 
text summarization,27 intrusion detection,28 and image 
coding.29 In this study, we utilized the SVM software 
developed by Chang and Lin, called LIBSVM.23 To 
address the data imbalance, we propose the modified 
sequential backward feature selection method.

Since most data were nonessential, choosing only 
accuracy as an objective or adopting conventional fea-
ture ranking schemes favored negative data. As more 
and more features were excluded, overall accuracy 
declined. Since the number of negative data elements 
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Table 1. Protein features.

ID Property name Type Size Sub-names S. cere E. coli

1 Amino acid occurrence20 S 20 A … Y • •
2 Average amino acid PSSM20 S 20 A … Y • •
3 Average cysteine position20 S 1 • •
4 Average distance of every two cysteines20 S 1 • •
5 Average hydrophobic20 S 1 • •
6 Average hydrophobicity around cysteine20 S 4 1 … 4 • •
7 Cysteine count20 S 1 • •
8 Cysteine location20 S 5 1 … 5 • •
9 Cysteine odd-even index20 S 1 • •
10 Protein length20 S 1 • •
11 Cell cycle5 P 1 •
12 Cytoplasm5 P 1 •
13 Endoplasmic reticulum5 P 1 •
14 Metabolic process5 P 1 •
15 Mitochondrion5 P 1 •
16 Nucleus5 P 1 •
17 Other process5 P 1 •
18 Other localization5 P 1 •
19 Signal transduction5 P 1 •
20 Transport5 P 1 •
21 Transcription5 P 1 •
22 Betweenness centrality related to all interactions41 T 1 • •
23 Betweenness centrality related to metabolic interactions5 T 1 •
24 Betweenness centrality related to physical interactions5 T 1 • •
25 Betweenness centrality transcriptional regulation interactions5 T 1 •
26 Bit string of double screening scheme [this paper] T 1 • •
27 Bottleneck8,41 T 1 • •
28 Clique level7 T 1 • •
29 Closeness centrality42 T 1 • •
30 Clustering coefficient7 T 1 • •
31 Degree related to all interactions43 T 1 • •
32 Degree related to physical interactions5 T 1 • •
33 Density of maximum neighborhood component4 T 1 • •
34 Edge percolated component9 T 1 • •
35 Indegree related to metabolic interaction5 T 1 •
36 Indegree related to transcriptional regulation5 T 1 •
37 Maximum neighborhood component4 T 1 • •
38 Neighbors’ intra-degree7 T 1 • •
39 Outdegree related to metabolic interaction5 T 1 •
40 Outdegree related to transcriptional regulation interaction5 T 1 •
41 Betweenness centrality related to integrated functional interaction22 T 1 •
42 Betweenness centrality related to integrated PI and GC network22 T 1 •
43 Degree related to integrated functional interaction22 T 1 •
44 Degree related to integrated PI and GC network22 T 1 •
45 Common function degree7 O 1 •
46 Essential index7 O 1 •
47 Identicalness5 O 1 •
48 Open reading frame length7 O 1 • •
49 Phyletic retention21 O 1 • •
50 Number of paralagous genes21 O 1 •
51 Codon Adaptation Index (CAI)21,44 O 1 •
52 Codon Bias Index (CBI)21,44 O 1 •

(Continued)
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Table 2. Ranking by two different methods, where smaller 
numbers indicate higher ranks.

Protein name Ranking method
A (DMNC) B (MNC)

W 1 4
X 2 2
Y 3 1
Z 4 3

Table 1. (Continued)

ID Property name Type Size Sub-names S. cere E. coli

53 Frequency of optimal codons21,44 O 1 •
54 Aromaticity score21,44 O 1 •
55 Leading strand of the circular chromosome21 O 1 •

Total 100 90 80

Notes: S. cere and E. coli mean Saccharomyces cerevisiae and Escherichia coli datasets, respectively. For topological features, if not particularly 
mentioned, they are related to physical interactions. Due to coverage or availability issue, we adopt different features for S. cere and E. coli datasets. 
For example, interactions in E. coli data set contain integrated functional, PI, and GC network information while those in S. cere include metabolic, 
transcriptional regulation and PI network information.
Abbreviations: GC, genomic context; PI, physical interactions.

Procedure: Bit String Implementation of DSS
input: P: proteins for ranking, where |P| = n
         A: ranking methods, where |A| = m = 2
       M: bit matrix of n n× 2 , initialized by 0
output: Protein ranking scores R
begin
  for i = 1 to n do R[i] = 0;
  for i = 1 to n/2 do
    T1 = top 2i proteins ranked by A(1) in P;
    T2 = top i proteins ranked by A(2) in T1;
    foreach x ∈ T2 do M [x, i] = 1;
  end
  for i = 1 to n do
  �  foreach j = 1 to n/2 do R[i] = R[i]  

+ M [i, j];
  end
  T = protein orders ranked by A(m) ;
  foreach i = 1 to n do R[i] = R[i] + (n – T [i])
end

was higher than that of positive factors, the true-
positive rate thus decreased more than the true-nega-
tive rate. Thus, features should be selected that most 
positive samples are  correctly classified while not dete-
riorating the overall accuracy too much. In this sense, 
rather than using only accuracy to guide the feature 
selection, we used a composite score C as the objec-
tive function. The composite score was represented in 
terms of precision (P), recall (R), F-measure (F), and 
MCC (M) and was given as C = wP * P + wR * R + wF 
* F + wM * M. The four adjustable weights, wP, wR, wF, 
and wM, were used, leading to compromise among the 
associated performance measures. An additional pun-
ishment was imposed to C to allow scores associated 

with fewer features could compete with those with 
more features. That is,

C(S) = �wP * P(S) + wR * R(S) + wF * F (S) + wM  
* M(S) × (|S| - t) * u(|S| - t) * e,

where S denotes the selected feature subset. |S| and t 
denote the size of S and the goal number of features 
specified by a user, respectively. The unit step func-
tion u(|S| – t) = 0 as |S| – t # 0, otherwise u(|S| – t) = 1. 
Finally, a threshold ρ was adopted to make ensure 
that the improvement over feature changes was not 
a random process. The value of ρ was estimated by 
comparing average score difference among feature 
subsets of sizes p and p + 1  in the preliminary run 
for given several different values of p. The value e 
denotes the penalty score when an additional fea-
ture is selected. The score is also specified by the 
user and should be slightly larger than ρ to encour-
age feature subsets of smaller sizes. The procedure 
for feature selection is described in Procedure back-
ward feature selection.

Experimental procedure and results
For comparison purposes, we used two feature selec-
tion methods: mRMR and CMIM. In the S. cerevisiae 
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Determining
benchmark feature sets

Tuning SVM
parameters to get best

performances

Adopting best
performances as
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Performing feature
selections

Performing
conventional and

bootstraping
cross-validations

Performing
significance tests

Figure 1. Flowchart for the construction of SVM models and performance 
comparison.

Table 3. Bit strings by the double screening method.

Protein  
name

i th iteration Sum of bit  
string

n - r Sum
1st 2nd

W 0 0 0 0 0
X 1 1 2 2 4
Y 0 1 1 3 4
Z 0 0 0 1 1

Procedure: Backward Feature Selection
input : e: penalty score
	 k: number of folds for cross-validation
	 r: maximal number of rounds to retry
	� S0: set of all available features, where 

|S0| = n
	 t: goal number of selected features
	� wP, wR, wF and wM: weights of perfor-

mance measures
	 ρ: minimal improvement to proceed
output: Selected feature subset S
data: 50% of all available data elements
begin
  S = S0;
  if t $ n then stop else m = n – t;
  for p = 1 to m do
	 improved = False ;
	 for i = 1 to r do
	   Conduct k-fold CV and calculate C (S);
	   foreach s ∈ S do
	  �   Conduct k-fold CV and calculate C 

(S – {s});
	   end
	   q = argmaxs ∈ S {C (S – {s}) – C (S)};
	   if C (S - {q}) – C (S) $ ρ then
	     S = S - {q};
	     improved = True;
	     break;
	   end

    end
    if not improved then stop and output S

  end
end

used Gustafson’s feature set as the benchmark. These 
two feature sets are considerably effective for various 
performance measures.

Stage 2: Tune SVM parameters  
for best performance
For the above two feature sets, we first ran the SVM 
software using the feature sets of Hwang or Gustafson 
and tuned the SVM parameters to achieve the highest 
average performances.

Stage 3: Adopt best performances  
as reference performances
After determining the best SVM parameters for the 
feature sets of Hwang and Gustafson, we recorded the 
SVM parameters and results. To compare our results 
with other models, such as those obtained using our 
methods, mRMR and CMIM, we used the same SVM 
software and adjust the cost parameters of SVM in 
order to achieve similar levels of precision.

Stage 4: Perform feature selection
We randomly chose 50% of available data. Next, the 
backward feature selection procedure was applied to 
these selected data. In the beginning of our feature selec-
tion procedure, we imposed no penalty on the score cal-
culation. Hence, the procedure attempts to achieve the 
highest score. In the subsequent runs, we added penal-
ties for feature sizes to the score calculation. Subsets 
with smaller feature size but only slightly inferior in 

data set, our results were also compared to those of 
Acencio and Lemke5 and Hwang et al.7 For the E. coli 
data set, we also compared our results with those of 
Gustafson et al.21

Experimental procedure
The overall procedure of our experiments is illus-
trated in Figure 1 and is described as follows.

Stage 1: Determine benchmark feature set
For the S. cerevisiae data set, we used Hwang’s fea-
ture set as the benchmark. For the E. coli data set, we 
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performance were selected. To compare our results 
with those of other methods, we also used the mRMR 
and CMIM feature ranking methods and chose subsets 
as in Procedure backward feature selection.

Stage 5: Perform 10-fold and bootstrap  
cross-validations
The data were prepared in both balanced and imbal-
anced manners. For each data set, we randomly 
partitioned all data into 10 disjoint groups and used 
the feature subsets selected in the previous stage to 
calculate various performance measures. The data 
were prepared in both balanced and imbalanced 
manners. The 10-fold cross validation was repeated 
10 times and average performance measures were 
computed. Next, a bootstrap sampling procedure was 
conducted and 200 bootstrap samples were produced, 
including both balanced and imbalanced samples. 
Each bootstrap sample was also partitioned for 
10-fold cross validations and performance measures 
were calculated. Note that all models were examined 
by the same sets of data partitions for conventional 
and bootstraping cross-validations.

Stage 6: Perform significance tests
Once bootstrap cross validations were carried out, 
the significance tests were adopted accordingly. In 
addition to the average values of AUC, precision, 
recall, F-measure, and MCC, we conducted a statisti-
cal significance test for these performance measures. 
Additionally, we calculated ROC curves and top per-
centage values for imbalanced experiments.

Backward feature selection  
and mRMR/CMIM feature ranking
We used 50% of available data elements for fea-
ture selection. Taking the S. cerevisiae data set as an 
example, only (3840 + 975) × 50% observations were 
randomly chosen for the Backward feature selec-
tion procedure. During the procedure, several per-
formance scores were calculated by means of k-fold 
cross-validations. In the first run, the parameters 
were set as follows: k = 2, wP = 1, wR = 1, wF = 1, 
wM = 1, ρ = 0.005, e = 0, t = 0, and r = 5. Since all 
associated weights were equal, the procedure sought 
the best compromise among all performance mea-
sures. t  =  e  =  0, meaning that no goal number of 
selected features was imposed, giving the procedure 

opportunities to exploit all available feature combina-
tions to achieve the best performance. In this initial 
run, we obtained a feature subset of 18 in size.

For the subsequent runs, the value of t was 
decreased starting from 17 (=  18 - 1) until perfor-
mances were significantly worse than those of Hwang 
et  al.7 In order to obtain feature subsets of reduced 
sizes, parameters were set: k = 2, wP = 1.03, wR = 1, 
wF = 1, wM = 1, ρ = 0.005, e = 0.01, and r = 5. The rea-
son for setting wP = 1.03 was to prevent the true posi-
tive rate from decreasing too much. In addition, e . ρ 
was to allow the procedure to be proceeded to fewer 
features. The above settings were used to encourage 
selection of reduced feature subsets.

For each setting of t, we executed the procedure 
10 times with different k-fold partitions and obtained 
10 feature subsets of the same size. Since these 10 
resultant feature subsets were slightly different, we 
performed another 5-fold cross-validation with these 
feature subsets and compared their performance 
scores. The one with the highest score were finally 
preserved as our feature subset.

In addition to the methods of Hwang et  al or 
Gustafson et al,21 we also used mRMR13 and CMIM14 
feature selection methods for comparison. Using 
mRMR as an example, the data used in our feature 
selection procedure were input into the mRMR pro-
gram, which produced the ranking score of each fea-
ture. The feature with the least score was removed 
first and a subsequent 5-fold cross-validation with 
the preserved features is performed to calculate the 
composite score C (S). That is, in the ith iteration, 
the features with the lowest i ranking scores were 
removed and C (S) was calculated. The removal and 
cross-validation procedure was repeated until no fea-
ture was preserved. The entire process (including ran-
dom choice of 50% data and feature removal) was 
executed 10 times and the feature subset of the same 
size with the highest score was recorded.

Table 4 shows the selected feature subsets of dif-
ferent sizes for S. cerevisiae data. The second column 
of the table lists all selected features. Each Ni in the 
first row represents the feature subset of size i, 4 # 
i # 18, which was found using our backward feature 
selection procedure. For each feature subset Ni, a 
bullet (•) mark below in the same column was used 
to indicate which feature was included. The most 
competent feature subsets selected by CMIM and 
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mRMR were denoted by C32 and m31, which means 
that 32 and 31 features were selected, respectively. 
It is observed that a total of 60 features have been 
selected, which represent the prominent proteins used 
to identify essential proteins.

After the feature subsets were selected, to conduct 
performance comparison as well as to cope with the 
randomness, we used Hwang’s method to perform 
10 10-fold cross-validations. Here, the true positive 
rates and false positive rates were input into a diferent 
software program to calculate ROC curves and AUC 
values. In this study, the software package we used 
is ROCR, which was developed by Tobias et al.30,31 
Thus, the reported performance measures, includ-
ing AUC, F1, MCC, precision, and recall values and 
ROC curves, were averaged over 10 10-fold cross-
validations.

For the S. cerevisiae data set, the predictor with 
Hwang’s 10 features served as a benchmark because 
it yielded distinguished results in terms of feature size 
and performance. Additionally, mRMR or CMIM 
were adopted for comparison.

We appled the same procedure for the E. coli data 
set. The selected features are shown in Table 5, with 
a total of 43 features selected. In the table, feature 
subsets selected by CMIM and mRMR are denoted 
by C9 and m13, meaning that 9 and 13 features were 
selected, respectively.

Bootstrap cross validations
During the bootstrapping stage, for each bootstrap 
sample, an identical 10-fold partition was employed 
for all feature subsets to carry out cross-validations 
and compute various average performance measures. 
The procedure was repeated for 200 distinct boot-
strap samples. In order to perform parametric signifi-
cance tests, we evaluated whether the distribution of 
the resultant performance measures was normal and 
the variances obtained from different feature sub-
sets were similar. Consequently, 200 results of each 
performance measure for each feature subset were 
subjected to the Kolmogorov-Smirno test.31 This test 
examines the null hypothesis that no systematic differ-
ence exists between the standard normal distribution 
and the underlying distribution against the alterna-
tive one that asserts a systematic difference. The 
threshold was set to 0.05. If the P-value was less than 
0.05, we rejected the null hypothesis. For CMIM and 
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Table 5. Selected features for E. coli data set.

Feature N4 N5 N6 N7 N8 N9 N10 N11 N12 N13 C9 m13 TOT
1 PR (phyletic retention) • • • • • • • • • • • • 12
2 Open reading frame length • • • • • • • • 8
3 Average PSSM of A.A. C • • • • • • 6
4 Degree related to F.I. • • • • • • 6
5 Degree related to A.I. • • • • • 5
6 Degree related to PI • • • • • 5
7 Average PSSM of A.A. A • • • • 4
8 Average PSSM of A.A. R • • • • 4
9 Average hydrophobic • • • • 4
10 Bit string of DSS for PI • • • • 4
11 Paralog count • • • • 4
12 Occurrence of A.A. M • • • 3
13 Occurrence of A.A. W • • • 3
14 Occurrence of A.A. E • • 2
15 Occurrence of A.A. F • • 2
16 Occurrence of A.A. G • • 2
17 Occurrence of A.A. I • • 2
18 Average PSSM of A.A. Y • • 2
19 Cysteine location-4 • • 2
20 KLV (clique level) for PI • • 2
21 Degree related to PI and GC • • 2
22 Strand bias • • 2
23 Occurrence of A.A. A • 1
24 Occurrence of A.A. C • 1
25 Occurrence of A.A. H • 1
26 Occurrence of A.A. P • 1
27 Occurrence of A.A. S • 1
28 Average PSSM of A.A. N • 1
29 Average PSSM of A.A. G • 1
30 Average PSSM of A.A. K • 1
31 Average PSSM of A.A. F • 1
32 Average PSSM of A.A. T • 1
33 Average PSSM of A.A. V • 1
34 Average distance of every two Cs • 1
35 Average HYD around C-2 • 1
36 Cysteine location-1 • 1
37 Cysteine location-5 • 1
38 Cysteine odd-even index • 1
39 Protein length • 1
40 Bottleneck for PI • 1
41 CC (closeness centrality) for PI • 1
42 MNC for PI • 1
43 B.C. related to all F.I. • 1

Abbreviations: C9, CMIM09; m13, mRMR13; TOT, total; DSS, double screening scheme; F.I., integrated functional interaction; A.I., all interactions. 
PI, physical interaction; HYD, hydrophobicity; A.A., amino acid; A … Y, amino acid abbreviation.

mRMR, only the most prominent values are shown. 
Figures 2 and 3 illustrate the results for S. cerevisiae 
and E. coli data sets, respectively, in which the test 
values were recorded according to the feature subsets, 
performance measures, and experiment types. For the 
S. cerevisiae data set, the lowest P-value, 0.186, was 

observed for AUC of the N8-imbalanced experiment. 
Therefore, it is likely that there was no significant 
difference between the normal distribution and the 
distribution of every performance measure of each 
feature subset. For the E. coli data set, most perfor-
mance measures were normal with the exception of 
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Figure 2. The P-value of the normality test in S. cerevisiae data set.

the recall values associated with N12-balanced (with 
P-value = 0.035), for which comparing results were 
not reliable. For the performance measures associated 
with each model, we also listed their confidence inter-
val and information odds ratios,32 which are shown in 
the Appendix.

For a certain performance measure, since the vari-
ances obtained by various feature subsets were quite 
similar, we used an analysis of variance33 (ANOVA) 
test to examine whether differences existed among 
performance measures of different feature subsets. 
Here, one variance can be obtained from the multiple 
experiments with a feature subset. Differences existed 
according to the ANOVA. Next, all of these measures 
were compared with their associated benchmark to 
calculate performance deviations. The average devia-
tion corresponding to each type of performance mea-
sure was evaluated using the 95% confidence interval 
covering 0 to determine significance.

Performance comparison  
and significance tests
In this section, we compared our experimental results 
with those associated with other feature selection 
methods and previous studies. For conciseness, we 
only show the most prominent results associated with 
mRMR and CMIM. We observed that feature sizes 
identified by these two methods were relatively large. 
To compare the feature subsets of smaller sizes, their 
comparison and their working principles are detailed 
in the Appendix.

S. cerevisiae
Table 6 lists the average values of five performance 
measures associated with a variety of feature subsets, 
which were obtained by 10 10-fold cross-validations 
for imbalanced data. We adjusted the SVM cost param-
eters in order to achieve similar levels of precision. The 
first four rows show results of CMIM32 (32 features), 
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Figure 3. The P-value of the normality test in S. cerevisiae data set.

mRMR31 (31 features), Hwang’s (10 features), and 
Acencio’s (23 features). Values following these items 
are enclosed by parentheses and represent the numbers 
of features. Results produced by our method are listed 
in the subsequent rows of the table. Significance tests 
were carried out with the bootstrap cross-validations 
over 200 bootstrap samples. The first three symbols, 
which can be plus (+) or minus (-), following each 
numerical value represents significantly higher or 
lower than benchmark results. For those which serve 
as benchmarks are marked by star (*) symbols for 
clarity. For example, the recall of N6 was significantly 
higher than that of Hwang, while its AUC was sig-
nificantly lower than those of mRMR31 and Hwang. 
For the feature subsets with a prefix name ‘N’, their 
fourth symbols behind numerical values are used to 
indicate the significance between two neighboring 
rows. For example, for N7, its AUC was significantly 
higher than that of N6 and its recall value was also 

significantly higher than that of N8. For values of the 
same performance measure in each column, the best 
is underlined. Values in the last row show the results 
with the full set of 90 features.

Based on Table  6, CMIM32, mRMR31 and 
Hwang’s predictors outperformed Acencio’s in all 
performance measures. For our feature subsets, the 
performance measures were slightly higher than 
Hwang’s. For those of N8, there was no perfor-
mance difference from Hwang’s in AUC, while the 
remaining measure values were higher than Hwang’s. 
When the feature size exceeded 8, except for preci-
sion values, improvement over Hwang’s was con-
sistently significant in most cases. For comparison 
with mRMR, our method performed nearly as well as 
mRMR31 when the feature size was between 9 and 
13 with the exception of AUC values. When the fea-
ture size ranged from 14 to 18, there was no perfor-
mance difference between our model and mRMR31. 
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The most prominent predictor was CMIM32. Except 
for AUC values, our results achieved similar levels of 
performance when the size of features exceeded 14. 
Note that the number of features in CMIM32 and 
mRMR31 were 32 and 31, which was much higher 
than ours.

Table  7  shows the average performance mea-
sures in balanced experiments of the S. cerevisiae 
data set, which were also obtained via 10 10-fold 
cross-validations. For those of our feature subsets 
with size ranging from 5 to 18, nearly all performance 
measures were the same as or higher than those of 
Hwang’s. This shows that the feature subsets with 
sizes exceeding 5 are at least as good as Hwang’s. 
Additionally, those with 12 or more features achieved 
significant improvement. Compared with CMIM32 
and mRMR31, our results showed similar levels of 
performance when the size of features exceeded 15. 
The results with the full set of 90 features are shown 
in the last row, whose performance measures were 
similar to those from N14 to N18.

In Table  6, we can observe that feature subsets 
N5, N7, N9, N13, N15, and N16 showed significant 
improvement in performance but were smaller in fea-
ture sizes when compared with neighboring rows. In 
Table 7, the significant subsets were N5, N6, and N9. 
In addition, as shown in Tables 6 and 7, our models 
performed equally well as CMIM32 and mRMR31 
when the feature size was 16 or 17. We used N5, N9, 
and N16 to draw ROC curves.

E. coli
Tables  8 and 9  shows the average values of five 
performance measures associated with a variety of 
feature subsets, which were obtained by 10 10-fold 
cross-validations for imbalanced and balanced experi-
ments, respectively. The first two rows show results of 
CMIM09 (9 features) and Gustafson’s (29 features).

Table  8  shows that Gustafson’s predictors out-
performed CMIM09  in most performance measures 
in imbalanced experiments. For our feature sub-
sets, the performance measures were slightly higher 
than CMIM09. When the feature size exceeded 
6, the improvement over CMIM09 was consis-
tently significant. To compare Gustafson’s method 
with our method, ours almost performed as well as 
Gustafson’s when the feature size was over 11. Note 
that the number of features in Gustafson’s was 29, 

which was higher than ours. Table 9, except for the 
least effective predictor mRMR13, shows almost no 
performance difference among most feature subsets 
in balanced experiments. For further ROC analysis, 
in addition to CMIM09, mRMR13, and Gustafson’s, 
we further used N4, N8, N11 and N80 to draw ROC 
curves. This is because we observed performances of 
insufficient, middle and full feature sets.

ROC analysis
S. cerevisiae
Figure  4 illustrates the average ROC curves and 
AUCs of various feature subsets for the imbalanced 
data experiments. Apart from the most competent 
predictor CMIM32, although the AUC of N5 is 
higher than that of Acencio’s, an intersection can be 
observed at 0.5 on the horizontal axis. This indicates 
that N5 was a better predictor when the allowed 
maximal false positive rate was below 0.5. In con-
trast, when the allowed false positive rate exceeded 
0.5, Acencio’s was better than N5. Comparing 
N9 and Hwang’s method, both AUC values were 
similar. For the feature subsets with sizes exceed-
ing 8 (not all shown in this figure), all true positive 
rates were either higher or at least close to Hwang’s. 
This was also supported by the significance tests in 
Table  6 and suggests that the feature subsets with 
sizes exceeding 8 achieved higher performance in 
AUC than Hwang’s predictor.

Figure 5 illustrates the average ROC curves and 
AUCs of various feature subsets for the balanced 
data experiments. CMIM32 again was the most com-
petent predictor. Additionally, N16 also achieved 
the same level of AUC. For the feature subsets of 
sizes ranging from 5 to 18 (not all shown), their true 
positive rates were either higher or at least close to 
Hwang’s level. Thus, N5, N6, …, N18 outperformed 
or performed equally well for various combina-
tions of true and false positive rates in the balanced 
experiments. Similarly to the imbalanced data set, the 
more features, the higher the AUC values. However, 
the improvement in AUC over the feature addition 
was not as significant as those in the imbalanced 
experiments. It should be noted that both the ROC 
curve and AUC of Acencio’s predictor were repro-
duced by our experiments and thus they were slightly 
different from the original values reported by Acencio 
and Lemke.5
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E. coli
For imbalanced data set, Figure 6 illustrates the aver-
age ROC curves and AUCs of various feature subsets. 
It shows that all curves were similar below the 10% 
horizontal range. This indicates that there was little 
difference when the allowable false positive rate was 
less than 10%. For the horizontal range above 10%, 
N80 was the highest performer, Gustafson and N11 
were secondary, and N4 was the worst. In contrast to 
the imbalanced data set, for Figure 7 corresponding 
to the balanced data set, N4 and N8 were the best 
performers. The remaining predictors showed few 
differences.

Top percentage analysis
S. cerevisiae
Table  10  shows the average top percentage infor-
mation for the imbalanced data set. The top θ prob-
ability is defined as the ratio of the number of truly 
predicted essential proteins over the top-ranked θ × 
975 proteins, where the total number of true essen-
tial proteins is 975. The top θ probability shows the 
likelihood that the proteins are essential if the user 
decides to choose a specific number of top-ranked 
candidates. It is slightly different from precision 
because the top-ranked candidates (or denomina-
tor) are not necessary to be classified as essential. 
CMIM32, mRMR31 and Hwang’s results again 
served as benchmarks and they are denoted by star 
‘*’ symbols in the table. The minus symbol follow-
ing each value represents that the value was lower 
than the benchmark results.

Both mRMR31 and Hwang’s predictor were 
extremely effective within the 10% range. This 
indicates that these predictors were quite preferable 
when the total number of true essential proteins was 
known and the allowable top-ranked candidates were 
within 10%. Most of our predictors outperformed 
them beyond 10%. For CMIM32, our predictors out-
performed it beyond 30%. Thus, N14 may be a bet-
ter choice because it is relatively effective beyond 
10%. Figure  8 depicts the average top percentage 
curves.

E. coli
Table 11 shows the average top percentage informa-
tion for the imbalanced data set. CMIM09, mRMR13, 
and Gustafson’s results serve as benchmarks. Ta
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Table 9. Performance comparison for balanced E. coli data set.

AUC Precision Recall F1 MCC
CMIM09 0.767  *    (+) 0.720  * 0.700  *    (+) 0.710  *    (+) 0.421  *
mRMR13 0.762  (-)   *   (-) 0.728        * 0.654  (-)   *   (-) 0.689  (-)   *   (-) 0.396    *   (-)
Gustafson(29) 0.777      (+)   * 0.722            * 0.715      (+)   * 0.719      (+)   * 0.440  (+)   *
N4 0.780      (+) 0.733 0.701      (+) 0.717      (+) 0.446  (+)
N5 0.779      (+) 0.730 0.706      (+) 0.718      (+) 0.445  (+)
N6 0.762        (-) (-) 0.735 0.663        (-) (-) 0.696 0.425
N7 0.783      (+)       (+) 0.737 0.696      (+) 0.716      (+)      (+) 0.448  (+)
N8 0.781      (+) 0.723 0.711      (+) 0.717      (+) 0.439  (+)
N9 0.782      (+) 0.715 0.703      (+) 0.709      (+) 0.423
N10 0.781      (+) 0.725 0.702      (+) 0.713      (+) 0.436  (+)
N11 0.777      (+) 0.719 0.700      (+) 0.709      (+) 0.426
N12 0.776      (+) 0.715 0.695      (+) 0.705      (+) 0.418
N13 0.776      (+) 0.731 0.695      (+) 0.712      (+) 0.439  (+)
N80 0.769 0.711 0.715      (+)       (+) 0.713      (+) 0.424
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Figure 5. The average ROC curves and AUCs for the balanced 
S. cerevisiae data set.
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Figure 4. The average ROC curves and AUCs for the imbalanced 
S. cerevisiae data set.

The CMIM09 predictor was the most effective 
over the entire range. Most of our predictors outper-
formed these predictors beyond 15%. N9 was the 
most prominent since it was relatively effective over 
the entire range. Figure 9 depicts the average top per-
centage curves.

Discussion
By inspecting the S. cerevisiae feature subsets listed 
in Table 4, we observed that the most prominent fea-
tures indeed come from diverse sources. This includes 
sequence, protein, topology and other properties. 
Among these features, amino acid occurrence I, 

amino acid occurrence W, bit string of double screen-
ing scheme, cytoplasm, endoplasmic reticulum, EI 
(essentiality index), nucleus, and PR (phyletic reten-
tion) were selected more than 10 times. Two among 
the above features, EI and PR, were included in all 
feature subsets and thus they are regarded as the most 
important factors for identifying essential proteins. 
N9 and N8 were the feature subsets that cover most of 
the above 8 features. Their prediction capability asso-
ciated with these two feature subsets outperformed 
Hwang’s results in all performance measures, except 
for AUC and the top percentage probability at a very 
low value. Furthermore, two amino acids, which 
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Figure 6. The average ROC curves and AUCs for the imbalanced E. coli 
data set.
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Figure 7. The average ROC curves and AUCs for the balanced E. coli 
data set.

were relatively easy to extract, were included in these 
two feature subsets. For predictors that were built by 
the feature subsets of 10 or more features, they were 
consistently superior to Hwang’s in nearly all perfor-
mance measures. Interestingly, mRMR and CMIM 
selected several sequence-derived features, such as 
PSSM and amino acid occurrence. It thus seems these 
features are good for essentiality prediction in terms 
of relevance and feature independence. By analyzing 
Tables 6 and 7, we recommend using N16, N9, and 
N6. N16 performed nearly as well as CMIM32 (or 
mRMR31) and was more compact in feature size. For 

N9 and N6, by choosing one additional feature, they 
were significant higher than N8 and N5 in some per-
formance measures.

For the E. coli features listed in Table 5, the most 
and second important features were PR (phyletic 
retention) and open reading frame length. The rest 
of important features which were selected more 
than five times included: average PSSM of amino 
acid C and degree related to integrated functional 
interactions. N5, N7, N8, and N13 covered most 
of these features. Among the 43 listed features, 
21  sequence-related features, such as amino acid 
occurrence and average PSSM, were selected. In 
this data set, we recommend feature subsets of sizes 
exceeding 11 because of their effectiveness and 
compactness in feature size.

With experimental results for the two data sets, we 
conclude that phyletic retention is the most important 
feature for identifying essential proteins. It is defined as 
the number of present ortholog organisms. Gustafson 
et  al study21 analyzed different organisms to calcu-
late phyletic retention for E. coli and S. cerevisiae 
data sets. This is sensible because different species 
may be associated with different organisms. From 
the biological view, the retention process over long 
evolutionary periods suggests that some organisms 
are crucial for certain cell functionality. By inspect-
ing the top 5 occurrences of amino acids in Tables 4 
and 5, we find Tryptophan (W) and Glycine (G) were 
two top-ranking features. Since both these two amino 
acids are non-polar and hydrophobic, we may hypoth-
esize that either essentiality is related to these physi-
cochemical properties or that the features possessing 
discrimination information is not captured by other 
top-ranking features.

In this study, we compiled various interaction 
information including physical, metabolic, tran-
scriptional regulation, and integrated functional 
and genomic context interactions. The experimen-
tal results revealed that various properties, such 
as degrees, were more or less identified as impor-
tant features. This implies that the interaction 
information, not limited to physical interactions, 
may also be closely related to essential properties. 
According to the literature, hubs of the networks, 
possessing abundance of interaction partners, are 
important due to the fact that they play central 
roles in mediating interactions among numerous 

http://www.la-press.com


Hor et al

406	 Evolutionary Bioinformatics 2013:9

Table 10. Percentage of essential proteins in the imbalanced S. cerevisiae data.

Top 5% Top 10% Top 15% Top 20% Top 25% Top 30% Top 50% Top 75% Top 100%
CMIM32 0.939*- - 0.918* 0.910* 0.892* 0.870* 0.839* 0.743* 0.645* 0.582*
mRMR31 0.955  * - 0.905- *  - 0.884-* 0.862-* 0.834-* - 0.820-* 0.740-* 0.641-* 0.572-*
Hwang(10) 0.959     * 0.918     * 0.871- - * 0.853- -* 0.843-   * 0.816- -* 0.720- - * 0.637- - * 0.563- - *
Acencio(23) 0.800- - - 0.741- - - 0.693- - - 0.661- - - 0.646- - - 0.625- - - 0.578- - - 0.519- - - 0.457- - -
N4 0.980 0.930 0.905- 0.877- 0.865- 0.850 0.727- - 0.632- - - 0.559- - -
N5 0.843- - - 0.861- - - 0.859- - - 0.852- - - 0.841-     - 0.827- 0.751 0.641- 0.530- - -
N6 0.908- - - 0.894- - - 0.875- - 0.857- - 0.850- 0.834- 0.763 0.635- - - 0.526- - -
N7 0.861- - - 0.892- - - 0.897- 0.885- 0.854- 0.832- 0.770 0.645- 0.570- -
N8 0.892- - - 0.904- - - 0.895- 0.877- 0.868- 0.850 0.751 0.657 0.574-
N9 0.880- - - 0.911-     - 0.895- 0.875- 0.860- 0.832- 0.753 0.665 0.585
N10 0.882- - - 0.896- - - 0.893- 0.882- 0.858- 0.846 0.762 0.665 0.581-
N11 0.900- - - 0.900- - - 0.888- 0.875- 0.861- 0.856 0.769 0.667 0.580-
N12 0.941   - - 0.924 0.899- 0.872- 0.866- 0.854 0.776 0.664 0.588
N13 0.941   - - 0.910-     - 0.886- 0.870- 0.853- 0.840 0.781 0.672 0.578-
N14 0.949   - - 0.932 0.916 0.897 0.867- 0.845 0.759 0.667 0.587
N15 0.906- - - 0.894- - - 0.897- 0.884- 0.866- 0.851 0.776 0.672 0.584
N16 0.933- - - 0.901- - - 0.895- 0.886- 0.864- 0.851 0.771 0.677 0.599
N17 0.943   - - 0.903- - - 0.879- - 0.871- 0.866- 0.856 0.777 0.679 0.595
N18 0.937- - - 0.892- - - 0.880- - 0.870- 0.864- 0.854 0.778 0.683 0.595
N90 0.939   - - 0.911-     - 0.884- 0.869- 0.856- 0.835- 0.728- - 0.639- - 0.572-
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Figure 8. The average top percentage curves for the imbalanced 
S. cerevisiae data set.

less-connected proteins. Thus, proteins involved in 
the complex mediation processes are more likely to 
be crucial for cellular activity or survival.

For the feature selection proposed in this study, let 
the size of all available and target selected features be 
m and t, and the maximal retry times be r. The num-
ber of SVM cross-validation times is between 1/2 
(m + t + 1) × (m - t) and 1/2 (m + t + 1) × (m – t) × r. 

It takes approximately 1 minute for the LIBSVM soft-
ware to perform a 2-fold cross-validation on one 
Power5+ processor of IBM P595 computer. Assuming 
m =  90, t =  10 and r =  5, the total running time is 
between 4,000 and 20,000 minutes. The IBM P595 
allows users to manually submit several processes into 
the computer in order to speed up the execution. For 
example, we can invoke at most 10 SVM processes 
simultaneously. Consequently, a maximal 10-time 
speed-up can be achieved and the total running time 
can thus be reduced.

If we inspect Tables  4 and 5, we can find that 
more than one-third of the features were not signifi-
cantly relevant and thus were not selected. These 
features are relatively easy to remove during back-
ward feature selection procedure at the beginning 
stage. According to the authors’ experience, the 
rounds of retry r are not critical in this stage. With an 
increasing number of features removed, the required 
number of retry must be increased as identifying 
relatively less competent features becomes increas-
ingly difficult. The number of retry r accompanied 
by the rest of user-specified parameters (such as the 
minimal improvement ρ et al) was set appropriately 
to ensure that the feature selection procedure could 
proceed.
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Table 11. Percentage of essential proteins in the imbalanced E. coli experiment.

Top 5% Top 10% Top 15% Top 20% Top 25% Top 30% Top 50% Top 75% Top 100%
CMIM09 0.745* 0.775* 0.730* 0.730* 0.737* 0.727* 0.644* 0.542* 0.440* -
mRMR13 0.719-* 0.725-* 0.714-* 0.701-* - 0.690-* - 0.679-* - 0.614-* - 0.531-* 0.446 *
Gustafson(29) 0.706- -* 0.692- -* 0.705- -* 0.707-   * 0.695-   * 0.685-   * 0.624-   * 0.522- -* 0.436- -*
N4 0.610- - - 0.689- - - 0.765 0.760 0.749 0.752 0.649 0.534- 0.449
N5 0.655- - - 0.705- - 0.747 0.747 0.745 0.743 0.653 0.535- 0.443    -
N6 0.719- 0.723- - 0.717- 0.736 0.744 0.748 0.658 0.525- - 0.435- - -
N7 0.568- - - 0.700- - 0.713- - 0.730 0.748 0.762 0.655 0.540- 0.464
N8 0.671- - - 0.703- - 0.723- 0.736 0.728- 0.731 0.652 0.535- 0.449
N9 0.813 0.785 0.766 0.754 0.734- 0.726- 0.685 0.548 0.459
N10 0.794 0.751- 0.728- 0.732 0.741 0.745 0.668 0.550 0.463
N11 0.719- 0.721- - 0.734 0.742 0.748 0.748 0.668 0.539- 0.457
N12 0.735- 0.738- 0.745 0.750 0.743 0.740 0.667 0.548 0.458
N13 0.655- - - 0.672- - - 0.713- - 0.739 0.736- 0.732 0.668 0.548 0.457
N80 0.674- - - 0.690- - - 0.703- - - 0.705-   - 0.703- 0.691- 0.632- 0.529- - 0.452
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Figure 9. The average top percentage curves for the imbalanced E. coli 
data set.

Conclusion and Future Work
In this study, we incorporated several protein proper-
ties, including sequence, protein, topology, and other 
properties. There was a total of 55  groups and 96 
features. The features were included in two data sets 
for experiments: S. cerevisiae and E. coli. We used a 
modified sequential backward feature selection to iden-
tify good feature subsets and used the SVM software 
tools for classifying essential proteins. In addition, we 
built several SVM models for both imbalanced and 
balanced data sets. As our experimental results illus-
trate, some features were indeed shown to be effective 
for essentiality prediction. Feature subsets selected by 

our method were effective in term of feature size and 
performance. This is because our method took both 
feature size and performance into consideration and 
consequently the resultant feature subset was consider-
ably compact. We compared our experimental results 
by carrying out significance tests for several types of 
performance measures. Hence, this provides the poten-
tial researcher of essential proteins a practical guide to 
which feature or method is more prominent.

In the imbalanced S. cerevisiae data experiment, 
our best results for F-measure and MCC were 0.549 
and 0.495, respectively, which was associated with the 
N13 predictor. In contrast, for the same performance 
measures, we achieved 0.77 and 0.545 in the balanced 
data experiment, which were associated with the N17 
predictor. The experimental results showed that the 
performance of our models was better than Hwang’s 
when we selected more than 9 features. If achieving 
higher accuracy is the main issue, we recommend the 
N16 model (16 features). When one prefers a compact 
feature set of small size, we suggest using the N9 model 
(9 features). We also list important features. These fea-
tures may be crucial for identifying essential proteins.

For E. coli data set, our best values of F-measure 
and MCC were 0.421 and 0.407  in the imbalanced 
experiments. In the balanced experiment, the best 
values of F-measure and MCC were 0.718 and 0.448, 
respectively. Both of the best results were associated 
with the N5 predictor. For the data set, we found that 
predictors associated with the feature size above 11 
were indeed comparable to Gustafsons’.
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There several possible methods for further 
improving the prediction capability. Features related 
to the protein sequence properties may also be use-
ful for identifying essentiality. Furthermore, since 
proteins with similar primary structures may pos-
sess similar functions, thus the essentiality may be 
addressed from the sequence motif perspective.34 
In addition to the above approaches, performance 
can be improved by incorporating other tools or 
constructing hybrid predictors. Among these, the 
majority vote35 is a strategy for combining classi-
fiers. This method represents the simplest method 
for categorical data fusion. According to the litera-
ture,36 the prerequisite for improvement arises from 
the fact that each individual classifier must contain 
distinct information for discrimination. Otherwise, 
some negative effects may be imposed on the con-
structed ensemble.

Appendix
Feature extraction
a.	 Outdegree and indegree related to transcriptional 

regulation interaction: The feature represents 
the number of outgoing (or incoming) links to 
the gene g corresponding to a protein. Links are 
represented in terms of transcriptional regulation 
interactions.

b.	 Betweenness centrality transcriptional regulation 
interactions: Let σgi gj denote the number of short-
est paths between gi and gj. The value σgi gj (g) is 
defined as the number of shortest paths between gi 
and gj passing through g. Paths are represented in 
terms of transcriptional regulation interactions.

c.	 Betweenness centrality related to physical inter-
actions: The value τgi gj (g) is defined as the num-
ber of shortest paths between gi and gj passing 
through g. The definition is similar to the previous 
one. However, the paths here are represented in 
terms of protein physical interactions.

d.	 Protein properties: Acencio and Lemke5 discov-
ered that the integration of topological properties, 
cellular components, and biological processes 
possess good capability for predicting essential 
proteins. Hence, our features also contained cel-
lular components (cytoplasm, endoplasmic reticu-
lum, mitochondrion, nucleus or other localization) 
and biological processes (cell cycle, metabolic 

process, signal transduction, transcription, trans-
port or other process).
The above four feature sets were obtained from 

Acencio and Lemke.5

e.	 Betweenness centrality related to integrated func-
tional, PI and GC network: The values are defined 
identically as those mentioned above while the 
paths here are represented in terms of integrated 
functional, PI and GC network interactions.

f.	 Degree related to integrated functional, PI and GC 
network: The values were defined identically to 
those mentioned above, while the paths here are 
represented in terms of integrated functional, PI, 
and GC network interactions.

For the above two feature sets, we first collected 
network information from Hu et  al22 and then con-
ducted calculations using iGraph software.37

g.	 Maximum neighborhood component and density 
of maximum neighborhood component: The maxi-
mum neighborhood component (MNC) and density 
of maximum neigh-borhood component (DMNC) 
properties were proposed by Lin et al26 and Chin.4 
For a protein i, let N(i) be the set of neighbors of i. 
The MNC of i is the connected component of N(i) 
with maximum size, and it is denoted as M N(i).

For a protein i, the number of proteins and the 
number of edges in M N (i) are denoted as ni and 
di, respectively. DMNC of i is d ni i/ α  for some 1 # 
α # 2. In their system, they set α to 1.7.

h.	 Sequence features: We used ten feature sets from 
Lin et al.20 Let L be the protein length, Fi be the 
occurrence number of amino acid i in the protein, 
H (i) be the hydrophobic coefficient38 of amino acid 
i, Pi,j be the position of the jth occurrence of amino 
acid i, A(j) be the amino acid of position j and Sm,n 
be the score of row m and column n in PSSM.39 
The sequence features are listed as follows.

	 1.  Protein length: L
	 2.  Cysteine count: FC
	 3. � Amino acid occurrence: The composition of 

amino acid i is F Li / , where 1 # i # 20.
	 4.  Average cysteine position: P FC jj

F
C

C
, /=∑ 1 .

	 5. � Average distance of every two cysteines: 
P P

L F
C x C yy

F
x
F

C

CC
, ,−∑∑

×
== 11
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	   6.  Cysteine odd-even index: FC mod 2.
	   7.  Average hydrophobicity: F H i Lii × ( )∑ =1

20 /
	   8. � Average hydrophobicity around cysteine: 

The kth values of average hydrophobic-
ity around all cysteines were defined as 

H A P k FC jj
F

C
C ( ) / ., +( )∑ =1  Here we set k = -2, 

-1, +1, +2.
	   9. � Cysteine position distribution: For 1 # d # ρ, 

the dth cysteine position distribution was

	 α α
ρ

α
ρj j

C j
j C

c

P
L

d d j F

F

= , , ,−










1 1     

		  We set ρ = 5
	 10. � Average PSSM of amino acid: The average 

PSSM of residue i is S Lm im
L

, /=∑ 1 .
i.	 Phyletic retention: Gustafson et  al21 discovered 

that the essential proteins are generally more con-
served than nonessential proteins. Phyletic reten-
tion of protein i is the number of organisms in 
which an ortholog is present. The ortholog of each 
protein was obtained from Hwang et al.7

j.	 Essential index:7 Essential index measures the ratio 
of essential proteins in the neighbors N(i) of node i. 
Essential index of node i is defined as p i di( )/ , 
where p(i) is the number of essential proteins in 
N(i) and di is the degree of node i.

k.	 Clique level:7 The clique level of protein i is defined as 
the maximal clique containing i. Here, only cliques with 
sizes between 3 and 10 were taken into consideration.

l.	 Number of paralagous genes: It is shown that genes 
are more likely to be essential if there no dupli-
cate existed in the same genome.21 This feature 
is defined as the number of genes that are present 
in the same genome. In addition, their BLASTP 
E-values must be less than 10−20 and the ratios of 
the larger gene to the smaller do not exceed 1.33.

m.	Open reading frame length: Gustafson et  al21 
observed that ancestral genes are more likely to be 
essential and that proteins generally become larger 
throughout evolution. Consequently, The open 
reading frame length may indicate essentiality.

Confidence intervals of performance 
measures and informational odds ratios
All performance measures were multiplied by 
100. The confidence intervals were set at 95%. 

We used the informational odds ratios (IOR)32 to 
represent the association between the essentiality 
and predictions. IOR measures how much more 
likely a protein is to be essential when one learn-
ing machine outputs essentiality rather than non-
essentiality. A value of 1.0 indicates no association 
between the essentiality and predictions produced 
by learning machines. All confidence intervals of 
performance measures and informational odds 
ratios corresponding to each prediction models are 
shown in Tables 12–15.

Comparison with other feature  
selection methods
We first introduced two feature selection meth-
ods that served as benchmarks, mRMR13 and 
CMIM,14 both of which are theoretical methods. 
Next, we compared them with our feature selection 
method when the feature subsets of equal size were 
selected.

Unlike other methods that select top-ranking fea-
tures based on F-score or mutual information without 
considering relationships among features, mRMR 
accommodates both feature relevance with respect to 
class label and dependency among selected features. 
The strategy combines both the maximal relevance 
and the minimal redundancy criteria. In order to take 
the above two criteria into consideration and to avoid 
an exhaustive search, mRMR adopts an incremen-
tal search approach. That is, the rth selected feature 
should satisfy

X I X Y
r

I X Xr
X X X

j j i
X Xj r i r

= -
-











∈ - ∈- -

∑arg max ( , ) ( , )
1 1

1
1

	 (1)

where X is the full feature set. Xi is a feature within 
Xr-1 and r - 1 is the number of selected features con-
tained in Xr-1. Xj is any feature that is not yet selected. 
I (Xj, Y) is mutual information and it quantifies the 
dependence (or relevance) between the feature Xj and 
class label Y. This means that the rth selected feature 
should be as relevant to the class label as possible 
while possesses least dependency averagely to the 
selected features.

For CMIM, a feature Xj is good if I (Y, Xj|Xi) 
is large for every selected feature Xi. I (Y, Xj|Xi) is 
conditional mutual information and it quantifies 
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Table 13. Confidence intervals of performance measures (×100) and informational odds ratios for models produced by the 
balanced S. cerevisiae data set.

AUC Precision Recall F1 MCC IOR
CMIM32 84.2 ± 1.5 77.2 ± 2.2 76.6 ± 2.9 76.9 ± 2.1 54.0 ± 3.9 3.3 ± 0.4
mRMR31 83.6 ± 1.6 76.5 ± 2.4 74.1 ± 3.0 75.2 ± 2.1 51.3 ± 4.1 3.0 ± 0.3
Hwang 82.2 ± 1.7 77.8 ± 2.6 72.0 ± 3.7 74.8 ± 2.3 51.6 ± 3.9 3.0 ± 0.3
Acencio 76.8 ± 2.2 69.6 ± 2.4 73.4 ± 4.0 71.4 ± 2.3 41.4 ± 4.3 2.5 ± 0.3
N4 81.1 ± 1.8 77.7 ± 2.5 71.6 ± 3.6 74.5 ± 2.3 51.2 ± 3.9 3.0 ± 0.3
N5 82.4 ± 1.8 77.8 ± 2.6 73.5 ± 3.5 75.6 ± 2.2 52.7 ± 4.1 3.1 ± 0.3
N6 82.7 ± 1.8 77.8 ± 2.6 73.9 ± 3.6 75.8 ± 2.3 53.0 ± 4.1 3.1 ± 0.3
N7 83.1 ± 1.8 77.9 ± 2.5 73.3 ± 3.5 75.5 ± 2.2 52.6 ± 4.0 3.1 ± 0.3
N8 82.6 ± 1.8 78.6 ± 2.5 72.1 ± 3.5 75.2 ± 2.3 52.7 ± 4.0 3.1 ± 0.3
N9 83.3 ± 1.8 79.1 ± 2.4 73.5 ± 3.4 76.2 ± 2.2 54.1 ± 3.8 3.2 ± 0.3
N10 83.4 ± 1.7 78.9 ± 2.4 73.6 ± 3.3 76.1 ± 2.1 54.0 ± 3.8 3.2 ± 0.3
N11 83.1 ± 1.7 78.4 ± 2.4 73.7 ± 3.5 76.0 ± 2.2 53.5 ± 3.8 3.2 ± 0.3
N12 82.9 ± 1.8 77.9 ± 2.5 73.2 ± 3.1 75.5 ± 2.2 52.6 ± 4.2 3.1 ± 0.3
N13 83.4 ± 1.7 78.8 ± 2.4 73.0 ± 3.5 75.8 ± 2.2 53.5 ± 3.9 3.1 ± 0.3
N14 83.6 ± 1.6 77.7 ± 2.3 74.3 ± 3.4 75.9 ± 2.1 53.0 ± 3.8 3.2 ± 0.3
N15 84.3 ± 1.7 78.4 ± 2.4 74.8 ± 3.3 76.6 ± 2.1 54.2 ± 3.9 3.3 ± 0.4
N16 84.2 ± 1.6 77.7 ± 2.2 75.6 ± 3.1 76.7 ± 2.0 54.0 ± 3.7 3.3 ± 0.4
N17 84.7 ± 1.6 77.8 ± 2.3 76.3 ± 3.0 77.0 ± 2.0 54.5 ± 3.8 3.3 ± 0.4
N18 84.0 ± 1.6 77.9 ± 2.4 74.0 ± 3.3 75.9 ± 2.0 53.1 ± 3.8 3.1 ± 0.3
N90 83.9 ± 1.4 76.0 ± 2.0 75.3 ± 2.7 75.7 ± 1.8 51.6 ± 3.5 3.1 ± 0.3

Table 12. Confidence intervals of performance measures (×100) and informational odds ratios for models produced by the 
imbalanced S. cerevisiae data set.

AUC Precision Recall F1 MCC IOR
CMIM32 82.5 ± 1.2 74.4 ± 3.1 36.9 ± 4.5 49.3 ± 3.8 45.0 ± 3.6 5.2 ± 0.5
mRMR31 82.1 ± 1.6 73.8 ± 3.2 37.2 ± 4.3 49.5 ± 3.6 44.9 ± 3.4 5.2 ± 0.5
Hwang 77.5 ± 2.2 74.3 ± 3.7 34.3 ± 4.3 46.9 ± 4.0 43.2 ± 3.6 5.1 ± 0.4
Acencio 70.7 ± 3.4 67.5 ± 6.3 12.1 ± 5.5 20.4 ± 7.6 22.8 ± 6.0 3.7 ± 0.4
N4 74.4 ± 2.7 78.2 ± 3.7 32.7 ± 4.1 46.1 ± 4.1 43.9 ± 3.5 5.3 ± 0.4
N5 72.7 ± 3.6 74.1 ± 4.1 38.7 ± 4.7 50.9 ± 4.1 46.1 ± 3.8 5.3 ± 0.5
N6 73.0 ± 3.2 75.2 ± 4.2 39.5 ± 4.4 51.8 ± 3.8 47.2 ± 3.6 5.5 ± 0.5
N7 76.1 ± 2.4 76.7 ± 3.7 38.6 ± 4.4 51.3 ± 3.9 47.3 ± 3.6 5.5 ± 0.5
N8 77.2 ± 2.4 75.5 ± 3.4 37.1 ± 4.9 49.8 ± 4.3 45.7 ± 3.9 5.3 ± 0.5
N9 78.2 ± 2.4 74.9 ± 3.4 38.2 ± 4.5 50.6 ± 3.9 46.2 ± 3.6 5.4 ± 0.5
N10 78.1 ± 2.2 75.1 ± 3.5 39.9 ± 4.1 52.1 ± 3.6 47.4 ± 3.5 5.5 ± 0.5
N11 78.6 ± 2.1 75.2 ± 3.2 40.2 ± 4.2 52.4 ± 3.6 47.6 ± 3.4 5.5 ± 0.5
N12 79.8 ± 2.0 75.9 ± 3.2 40.9 ± 4.2 53.2 ± 3.6 48.5 ± 3.4 5.7 ± 0.5
N13 78.9 ± 1.9 74.8 ± 3.2 43.3 ± 4.3 54.9 ± 3.4 49.5 ± 3.4 5.8 ± 0.5
N14 80.2 ± 1.8 74.9 ± 3.2 39.7 ± 4.3 51.9 ± 3.5 47.1 ± 3.4 5.5 ± 0.5
N15 80.1 ± 1.9 76.3 ± 3.3 40.6 ± 4.2 53.0 ± 3.5 48.5 ± 3.5 5.7 ± 0.5
N16 81.4 ± 1.7 76.2 ± 3.2 40.1 ± 4.6 52.5 ± 3.8 48.0 ± 3.6 5.6 ± 0.5
N17 81.4 ± 1.7 76.1 ± 3.3 40.7 ± 4.5 53.0 ± 3.8 48.4 ± 3.6 5.7 ± 0.5
N18 81.1 ± 1.8 75.1 ± 3.2 41.1 ± 4.3 53.1 ± 3.6 48.2 ± 3.5 5.6 ± 0.5
N90 82.9 ± 1.0 73.8 ± 2.8 35.5 ± 4.5 47.9 ± 3.6 43.8 ± 3.4 5.1 ± 0.4
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Table 14. Confidence intervals of performance measures (×100) and informational odds ratios for models produced by the 
imbalanced E. coli data set.

AUC Precision Recall F1 MCC IOR
CMIM09 70.1 ± 0.9 72.0 ± 1.4 27.1 ± 0.7 39.4 ± 0.9 38.2 ± 0.9 5.2 ± 0.6
mRMR13 71.5 ± 2.4 71.3 ± 5.4 25.0 ± 5.8 37.0 ± 6.8 36.0 ± 5.8 4.7 ± 0.6
Gustafson 71.1 ± 2.3 66.5 ± 4.6 25.5 ± 5.0 36.8 ± 5.2 34.7 ± 4.8 4.9 ± 0.6
N4 69.1 ± 1.8 72.5 ± 1.0 28.0 ± 0.6 40.4 ± 0.7 39.1 ± 0.7 5.5 ± 0.6
N5 69.0 ± 2.0 73.7 ± 1.4 29.5 ± 0.8 42.1 ± 0.9 40.7 ± 1.0 5.7 ± 0.6
N6 70.1 ± 1.7 74.2 ± 1.4 28.7 ± 0.9 41.4 ± 1.1 40.3 ± 1.0 5.7 ± 0.6
N7 71.4 ± 1.4 73.5 ± 1.3 27.5 ± 0.7 40.0 ± 0.9 39.2 ± 0.9 5.5 ± 0.6
N8 70.5 ± 1.3 74.2 ± 1.1 28.8 ± 0.8 41.5 ± 0.9 40.5 ± 0.9 5.7 ± 0.6
N9 70.7 ± 1.5 72.6 ± 1.4 29.3 ± 1.0 41.7 ± 1.2 40.1 ± 1.2 5.6 ± 0.6
N10 71.1 ± 1.5 72.4 ± 1.6 29.4 ± 1.0 41.8 ± 1.1 40.1 ± 1.2 5.6 ± 0.6
N11 71.4 ± 1.4 73.2 ± 1.3 27.8 ± 0.8 40.3 ± 1.0 39.3 ± 1.0 5.5 ± 0.6
N12 71.2 ± 1.4 72.5 ± 1.9 29.2 ± 1.1 41.6 ± 1.2 40.0 ± 1.3 5.6 ± 0.6
N13 71.4 ± 1.3 73.3 ± 1.8 28.7 ± 1.2 41.3 ± 1.4 40.0 ± 1.4 5.6 ± 0.6
N80 71.6 ± 0.9 67.7 ± 2.1 23.7 ± 1.3 35.2 ± 1.6 33.9 ± 1.6 4.9 ± 0.6

Table 15. Confidence intervals of performance measures (×100) and informational odds ratios for models produced by bal-
anced E. coli data set.

AUC Precision Recall F1 MCC IOR
CMIM09 76.7 ± 1.7 72.0 ± 2.4 70.0 ± 3.7 71.0 ± 2.2 42.1 ± 4.0 2.4 ± 0.3
mRMR13 76.2 ± 2.0 72.8 ± 3.1 65.4 ± 6.4 68.9 ± 3.3 39.6 ± 3.9 2.2 ± 0.2
Gustafson 77.7 ± 2.6 72.2 ± 3.3 71.5 ± 4.0 71.9 ± 2.8 44.0 ± 5.5 2.6 ± 0.3
N4 78.0 ± 1.6 73.3 ± 2.5 70.1 ± 2.7 71.7 ± 1.9 44.6 ± 3.8 2.6 ± 0.3
N5 77.9 ± 1.7 73.0 ± 2.5 70.6 ± 2.8 71.8 ± 1.8 44.5 ± 3.8 2.6 ± 0.3
N6 76.2 ± 1.7 73.5 ± 2.6 66.3 ± 4.3 69.6 ± 2.6 42.5 ± 4.1 2.4 ± 0.3
N7 78.3 ± 1.7 73.7 ± 2.5 69.6 ± 2.7 71.6 ± 1.8 44.8 ± 3.6 2.6 ± 0.3
N8 78.1 ± 1.7 72.3 ± 2.3 71.1 ± 3.3 71.7 ± 2.1 43.9 ± 3.8 2.5 ± 0.3
N9 78.2 ± 1.6 71.5 ± 2.2 70.3 ± 4.1 70.9 ± 2.3 42.3 ± 3.8 2.4 ± 0.3
N10 78.1 ± 1.6 72.5 ± 2.4 70.2 ± 3.3 71.3 ± 2.1 43.6 ± 3.9 2.5 ± 0.3
N11 77.7 ± 1.7 71.9 ± 2.2 70.0 ± 3.3 70.9 ± 2.0 42.6 ± 3.6 2.5 ± 0.3
N12 77.6 ± 1.9 71.5 ± 2.3 69.5 ± 4.5 70.5 ± 2.5 41.8 ± 4.0 2.4 ± 0.3
N13 77.6 ± 1.7 73.1 ± 2.4 69.5 ± 3.0 71.2 ± 2.1 43.9 ± 3.9 2.5 ± 0.3
N80 76.9 ± 1.8 71.1 ± 2.4 71.5 ± 2.4 71.3 ± 1.8 42.4 ± 3.8 2.5 ± 0.3

Table 16. Performance comparison of our method vs. mRMR for the imbalanced S. cerevisiae data set with the same sizes 
of feature subsets, where the . symbol represents that the values are significantly higher.

AUC Precision Recall F-measure MCC
N4 0.744     0.762 0.782     0.756 0.327     0.331 0.461     0.461 0.439     0.430
N5 0.727     0.718 0.741     0.740 0.387     0.359 0.509     0.484 0.461     0.442
N6 0.730     0.753 0.752     0.753 0.395 . 0.333 0.518 . 0.462 0.472 . 0.430
N7 0.761     0.763 0.767     0.761 0.386 . 0.330 0.513 . 0.460 0.473 . 0.431
N8 0.772 . 0.771 0.755     0.757 0.371 . 0.326 0.498 . 0.456 0.457 . 0.427
N9 0.782     0.776 0.749     0.749 0.382 . 0.341 0.506 . 0.469 0.462 . 0.434
N10 0.781 . 0.778 0.751     0.752 0.399 . 0.340 0.521 . 0.469 0.474 . 0.434
N11 0.786 . 0.774 0.752     0.750 0.402 . 0.341 0.524 . 0.469 0.476 . 0.434
N12 0.798 . 0.781 0.759     0.757 0.409 . 0.334 0.532 . 0.463 0.485 . 0.432
N13 0.789 . 0.774 0.748     0.746 0.433 . 0.342 0.549 . 0.469 0.495 . 0.432
N14 0.802 . 0.775 0.749     0.750 0.397 . 0.340 0.519 . 0.468 0.471 . 0.433
N15 0.801 . 0.798 0.763     0.764 0.406 . 0.318 0.530 . 0.449 0.485 . 0.424
N16 0.814 . 0.799 0.762     0.762 0.401 . 0.318 0.525 . 0.449 0.480 . 0.423
N17 0.814 . 0.799 0.761     0.759 0.407 . 0.326 0.530 . 0.456 0.484 . 0.427
N18 0.811 . 0.797 0.751     0.749 0.411 . 0.342 0.531 . 0.469 0.482 . 0.434
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Table 17. Performance comparison of our new method vs. CMIM for the imbalanced S. cerevisiae data set when identical 
number of features are selected.

AUC Precision Recall F1 MCC
N4 0.744     0.761 0.782     0.762 0.327     0.344 0.461     0.474 0.439     0.442
N5 0.727     0.735 0.741     0.738 0.387     0.371 0.509     0.494 0.461     0.449
N6 0.730     0.757 0.752     0.749 0.395     0.359 0.518     0.485 0.472     0.446
N7 0.761     0.779 0.767     0.763 0.386 . 0.339 0.513 . 0.470 0.473 . 0.439
N8 0.772     0.779 0.755     0.754 0.371 . 0.350 0.498 . 0.478 0.457 . 0.442
N9 0.782     0.776 0.749     0.750 0.382 . 0.357 0.506 . 0.483 0.462 . 0.445
N10 0.781     0.782 0.751     0.751 0.399 . 0.353 0.521 . 0.480 0.474 . 0.443
N11 0.786     0.786 0.752     0.752 0.402 . 0.363 0.524 . 0.490 0.476 . 0.450
N12 0.798     0.799 0.759     0.758 0.409 . 0.354 0.532 . 0.483 0.485 . 0.447
N13 0.789     0.797 0.748     0.750 0.433 . 0.360 0.549 . 0.487 0.495 . 0.447
N14 0.802 . 0.801 0.749     0.749 0.397 . 0.348 0.519 . 0.475 0.471 . 0.438
N15 0.801 . 0.797 0.763     0.760 0.406 . 0.330 0.530 . 0.460 0.485 . 0.430
N16 0.814 . 0.796 0.762     0.759 0.401 . 0.338 0.525 . 0.468 0.480 . 0.436
N17 0.814 . 0.795 0.761     0.756 0.407 . 0.339 0.530 . 0.469 0.484 . 0.435
N18 0.811     0.799 0.751     0.756 0.411 . 0.338 0.531 . 0.467 0.482 . 0.435

Table 18. Performance comparison of our method vs. mRMR for the balanced S. cerevisiae data set with the same sizes 
of feature subsets, where the . symbol indicates that the values are significantly higher.

AUC Precision Recall F-measure MCC
N4 0.811     0.815 0.777     0.770 0.716     0.725 0.745     0.747 0.512     0.510
N5 0.824     0.818 0.778     0.771 0.735     0.722 0.756     0.745 0.527     0.508
N6 0.827     0.814 0.778     0.775 0.739     0.709 0.758     0.740 0.530     0.504
N7 0.831     0.824 0.779     0.779 0.733     0.718 0.755     0.747 0.526     0.516
N8 0.826     0.827 0.786     0.781 0.721     0.721 0.752     0.750 0.527     0.521
N9 0.833     0.834 0.791     0.783 0.735     0.734 0.762     0.758 0.541     0.531
N10 0.834     0.835 0.789     0.783 0.736     0.733 0.761     0.757 0.540     0.531
N11 0.831     0.834 0.784     0.780 0.737     0.730 0.760     0.754 0.535     0.525
N12 0.829     0.834 0.779     0.778 0.732     0.734 0.755     0.755 0.526 . 0.525
N13 0.834     0.834 0.788     0.779 0.730     0.732 0.758     0.754 0.535     0.525
N14 0.836     0.832 0.777     0.777 0.743     0.731 0.759     0.753 0.530     0.522
N15 0.843     0.835 0.784     0.778 0.748     0.734 0.766     0.756 0.542     0.526
N16 0.842 . 0.836 0.777     0.777 0.756 . 0.735 0.767 . 0.755 0.540 . 0.525
N17 0.847 . 0.834 0.778     0.777 0.763     0.733 0.770 . 0.754 0.545 . 0.523
N18 0.840     0.835 0.779     0.778 0.740     0.735 0.759     0.756 0.531     0.526

discrepancy between features Xj and Xi for given the 
class label Y. Consequently, the feature selection pro-
cedure was also carried out in an incremental manner 
as follows:

	
υ ( ) max ( , )1 = arg

X j
j

I X Y 	 (2)

	
υ υ( ) max min ( , | ) .r I Y X X

X k r j k
j

= { }≤ - ( )arg
1

	 (3)

where v(k) denotes the kth selected feature.

In the following paragraph, we compare our 
method with the above two feature selection methods 
when the feature subsets of equal size were selected. 
We first ran the SVM software with Hwang’s or 
Gustafson feature sets and tune the SVM param-
eters to achieve the highest average performances. 
To fairly compare the methods given feature subsets 
with same sizes obtained by our methods, mRMR 
and CMIM, we used the same SVM software and 
adjust the cost parameters in order to achieve simi-
lar levels of precision. For S. cerevisiae and E. coli 
data set, the feature numbers k are 4 # k # 18 and 
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Table 19. Performance comparison of our method vs. CMIM for the balanced S. cerevisiae data set when identical number 
of features are selected.

AUC Precision Recall F1 MCC
N4 0.811     0.813 0.777     0.777 0.716     0.724 0.745     0.749 0.512     0.517
N5 0.824     0.817 0.778     0.775 0.735     0.740 0.756     0.757 0.527     0.526
N6 0.827     0.821 0.778     0.777 0.739     0.742 0.758     0.759 0.530     0.529
N7 0.831     0.830 0.779     0.772 0.733     0.744 0.755     0.758 0.526     0.524
N8 0.826     0.833 0.786     0.776 0.721     0.738 0.752     0.756 0.527     0.525
N9 0.833     0.834 0.791     0.775 0.735     0.740 0.762     0.757 0.541     0.526
N10 0.834     0.835 0.789     0.776 0.736     0.739 0.761     0.757 0.540     0.527
N11 0.831     0.836 0.784     0.778 0.737     0.739 0.760     0.758 0.535     0.528
N12 0.829     0.838 0.779     0.779 0.732     0.742 0.755     0.760 0.526     0.532
N13 0.834     0.837 0.788     0.778 0.730     0.741 0.758     0.759 0.535     0.530
N14 0.836     0.836 0.777     0.777 0.743     0.743 0.759     0.759 0.530     0.530
N15 0.843     0.836 0.784     0.777 0.748     0.739 0.766     0.758 0.542     0.528
N16 0.842 . 0.837 0.777     0.776 0.756     0.741 0.767 . 0.758 0.540 . 0.528
N17 0.847 . 0.838 0.778     0.777 0.763 . 0.744 0.770 . 0.760 0.545 . 0.531
N18 0.840     0.837 0.779     0.778 0.740     0.746 0.759     0.762 0.531     0.533

Table 20. Performance comparison of our method vs. mRMR for the imbalanced E. coli data set when identical numbers 
of features are selected.

AUC Precision Recall F1 MCC
N4 0.691     0.651 0.725     0.678 0.280     0.269 0.404     0.385 0.391     0.363
N5 0.690     0.675 0.737     0.687 0.295     0.254 0.421     0.371 0.407     0.356
N6 0.701     0.681 0.742     0.708 0.287     0.220 0.414     0.336 0.403     0.338
N7 0.714     0.686 0.735     0.712 0.275     0.212 0.400     0.326 0.392     0.333
N8 0.705     0.692 0.742     0.713 0.288     0.209 0.415     0.323 0.405     0.330
N9 0.707     0.692 0.726     0.713 0.293 . 0.199 0.417 . 0.312 0.401     0.322
N10 0.711     0.697 0.724     0.703 0.294 . 0.193 0.418 . 0.302 0.401     0.313
N11 0.714 , 0.702 0.732     0.697 0.278 . 0.187 0.403     0.295 0.393     0.306
N12 0.712 , 0.704 0.725     0.683 0.292     0.192 0.416     0.300 0.400     0.305
N13 0.714 , 0.715 0.733     0.713 0.287     0.250 0.413     0.370 0.400     0.360

Table 21. Performance comparison of our method vs. CMIM for the imbalanced E. coli data set when identical numbers of 
features are selected.

AUC Precision Recall F1 MCC
N4 0.691 . 0.663 0.725     0.717 0.280     0.271 0.404     0.393 0.391     0.381
N5 0.690     0.686 0.737     0.710 0.295 . 0.264 0.421 . 0.385 0.407 . 0.373
N6 0.701     0.697 0.742     0.715 0.287 . 0.265 0.414 . 0.387 0.403 . 0.376
N7 0.714     0.693 0.735     0.711 0.275 . 0.261 0.400 . 0.382 0.392 . 0.371
N8 0.705     0.690 0.742     0.709 0.288 . 0.254 0.415 . 0.373 0.405 . 0.364
N9 0.707     0.701 0.726     0.720 0.293 . 0.271 0.417 . 0.394 0.401 . 0.382
N10 0.711     0.702 0.724     0.692 0.294 . 0.248 0.418 . 0.364 0.401 . 0.353
N11 0.714     0.698 0.732     0.690 0.278 . 0.247 0.403 . 0.363 0.393 . 0.351
N12 0.712     0.690 0.725     0.683 0.292 . 0.239 0.416 . 0.353 0.400 . 0.342
N13 0.714     0.688 0.733     0.678 0.287 . 0.236 0.413 . 0.349 0.400 . 0.337
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Table 22. Performance comparison of our method vs. mRMR for the balanced E. coli data set when identical numbers of 
features are selected.

AUC Precision Recall F1 MCC
N4 0.780 . 0.773 0.733     0.726 0.701 . 0.651 0.717 . 0.686 0.446 . 0.407
N5 0.779     0.772 0.730     0.720 0.706 . 0.654 0.718 . 0.684 0.445 . 0.401
N6 0.762     0.771 0.735     0.717 0.663     0.649 0.696     0.680 0.425     0.394
N7 0.783 . 0.768 0.737     0.716 0.696     0.649 0.716 . 0.680 0.448 . 0.394
N8 0.781 . 0.764 0.723     0.715 0.711 . 0.641 0.717 . 0.675 0.439 . 0.387
N9 0.782 . 0.764 0.715     0.713 0.703     0.643 0.709 . 0.675 0.423 . 0.386
N10 0.781 . 0.765 0.725     0.716 0.702 . 0.636 0.713 . 0.673 0.436 . 0.386
N11 0.777 . 0.766 0.719     0.720 0.700     0.643 0.709 . 0.678 0.426     0.394
N12 0.776     0.765 0.715     0.714 0.695     0.643 0.705     0.676 0.418     0.388
N13 0.776 . 0.762 0.731     0.728 0.695 . 0.654 0.712 . 0.689 0.439 . 0.396

Table 23. Performance comparison of our method vs. CMIM for the balanced E. coli data set when identical numbers of 
features are selected.

AUC Precision Recall F1 MCC
N4 0.780     0.769 0.733     0.719 0.701     0.696 0.717     0.707 0.446     0.424
N5 0.779     0.771 0.730     0.715 0.706     0.696 0.718     0.705 0.445     0.419
N6 0.762 , 0.771 0.735     0.716 0.663     0.684 0.696     0.699 0.425     0.413
N7 0.783     0.769 0.737     0.711 0.696     0.696 0.716     0.703 0.448     0.413
N8 0.781     0.767 0.723     0.709 0.711     0.697 0.717     0.703 0.439     0.412
N9 0.782     0.767 0.715     0.720 0.703     0.700 0.709     0.710 0.423     0.421
N10 0.781     0.767 0.725     0.705 0.702     0.702 0.713     0.704 0.436     0.409
N11 0.777     0.765 0.719     0.706 0.700     0.700 0.709     0.703 0.426     0.408
N12 0.776     0.764 0.715     0.703 0.695     0.698 0.705     0.700 0.418     0.404
N13 0.776     0.765 0.731     0.704 0.695     0.700 0.712     0.702 0.439     0.406

4 # k #13, respectively, to be compliant with those 
in Section V.

For the S. cerevisiae data set in the imbalanced exper-
iment, Tables 16 and 17 show the performance com-
parison of our method versus mRMR and CMIM. Our 
method performed significantly better when the size of 
a feature subset exceeded 7. For the balanced experi-
ment, as illustrated in Tables 18 and 19, our method was 
significantly better only when the number of selected 
features exceeded 16.

For the E. coli data set in the imbalanced experi-
ment, Tables 20 and 21 show the performance com-
parison of our method versus mRMR and CMIM 
with configurations similar to the S. cerevisiae 
data set. Our method performed significantly better 
when the size of a feature subset exceeded 9. For 
the balanced experiment, as illustrated in Table  22 

and 23, our method performed significantly better 
than mRMR when the numbers of selected features 
exceeded 7. The experimental results showed almost 
no difference between our method and CMIM except 
for N6 AUC.

For methods such as mRMR and CMIM, both 
relevance and information redundancy are taken 
into consideration. Therefore, the obtained feature 
subsets were quite compact as well as effective. 
However, the relevance may only be appropriate 
for some performance measures, such as classifica-
tion accuracy or precision. Our method took both 
the performance and feature size into consideration. 
Consequently, the resultant feature subsets were 
more effective in some other performance measures 
for given equal number of features and precision 
values.
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