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Abstract
Background: While many bioinformatics tools currently exist for assembling and discovering variants from next-generation sequence 
data, there are very few tools available for performing evolutionary analyses from these data. Evolutionary and population genomics 
studies hold great promise for providing valuable insights into natural selection, the effect of mutations on phenotypes, and the origin of 
species. Thus, there is a need for an extensible and flexible computational tool that can function into a growing number of evolutionary 
bioinformatics pipelines.
Results: This paper describes the POPBAM software, which is a comprehensive set of computational tools for evolutionary analy-
sis of whole-genome alignments consisting of multiple individuals, from multiple populations or species. POPBAM works directly 
from BAM-formatted assembly files, calls variant sites, and calculates a variety of commonly used evolutionary sequence statistics. 
POPBAM is designed primarily to perform analyses in sliding windows across chromosomes or scaffolds. POPBAM accurately mea-
sures nucleotide diversity, population divergence, linkage disequilibrium, and the frequency spectrum of mutations from two or more 
populations. POPBAM can also produce phylogenetic trees of all samples in a BAM file. Finally, I demonstrate that the implementation 
of POPBAM is both fast and memory-efficient, and also can feasibly scale to the analysis of large BAM files with many individuals 
and populations.
Software: The POPBAM program is written in C/C++ and is available from http://dgarriga.github.io/POPBAM. The program has few 
dependencies and can be built on a variety of Linux platforms. The program is open-source and users are encouraged to participate in 
the development of this resource.
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Introduction
Evolutionary genetics research routinely capitalizes 
on the vast amount of data made available by next-
generation sequencing technologies. It is now possi-
ble to generate high-quality, high-coverage sequence 
of genomes from conspecific samples or samples from 
closely related species. These new whole-genome 
evolutionary analyses are yielding remarkable insights 
into the nature of adaptive evolution, the genetic basis 
of quantitative traits, and the origin of species.1–5 
Many of these new studies employ chromosome-
level spatial scans to identify regions of potential 
interest. For example, Ellegren et  al2 scanned the 
genomes of two closely related species of Ficedula 
flycatcher to identify genomic regions with elevated 
levels of sequence divergence to aid in the identifica-
tion of genomic regions involved in the evolution of 
reproductive isolation. Similarly, Jones et al4 scanned 
the genomes of freshwater and marine sticklebacks to 
identify the genetic basis for adaptation to freshwa-
ter and marine environments. Finally, Garrigan et al3 
used whole-genome scans to discover regions of gene 
flow between species of Drosophila that have already 
evolved post-zygotic reproductive isolation.

There is a rapidly increasing number of com-
putational tools for performing either reference-
based or de novo genome assembly from short-read 
next-generation sequence data. For reference-based 
assembly, much of the research has concentrated on 
developing efficient algorithms for indexing either 
the reference sequence, the short-read sequences, 
or both (see Li and Homer6 for a review). Similarly, 
the development of algorithms for de novo sequence 
assembly is also an active field of research and many 
methods seek to optimize the resolution of the large 
de Bruijn (or related) graphs into contigs and scaf-
folds (see Miller et al7 for a review). However, tools 
for sequence assembly are not the only areas of 
active research. Significant progress is being made on 
improving algorithms for many downstream tasks, 
such as improving scaffold construction,8 dealing with 
repetitive sequence,9 calling single nucleotide poly-
morphisms (SNPs),10 and phasing of haplotypes.11

Current research should be directed towards the 
development of computational tools for assem-
bling and refining high-quality alignments from 
next-generation sequence data. However, much less 
development has been directed towards downstream 

evolutionary-based analyses, such as measuring lev-
els of nucleotide diversity and linkage disequilib-
rium (LD), fitting models of population divergence, 
and testing for natural selection. It is evident that the 
analysis tools that evolutionary geneticists have relied 
on for so long do not feasibly scale to the level of 
whole-genome analysis.12 Most evolutionary investi-
gators working with large whole-genome alignments 
are forced to cobble together a custom bioinformat-
ics pipeline and develop their own tools to parse 
the needed information. In this paper, I describe an 
effort to provide a publicly available solution for the 
evolutionary analysis portion of a next-generation 
sequencing pipeline. The POPBAM program is a 
comprehensive suite of evolutionary genomics tools 
that can be used to analyze whole-genome alignments 
from multiple individuals, from multiple populations. 
POPBAM is ideally designed to work in sliding win-
dows across chromosomes or scaffolds. POPBAM 
has been in continuous development since 2010 and is 
currently in its third beta release. This paper describes 
the basic functionality, usage, and performance of the 
program. POPBAM is also open-source and the com-
munity is encouraged to request and help develop 
needed functionality.

Methods
Overview of the POPBAM program
The POPBAM program is written in a mixture of the 
C and C++ languages. POPBAM is provided as open-
source software under the MIT license. POPBAM is 
currently in its third beta release. The source code is 
freely available through the GitHub website (http://
dgarriga.github.io/POPBAM). The only dependency 
for compiling POPBAM is the zlib compression 
library (http://zlib.net). POPBAM successfully 
compiles with the GCC compiler (versions 4.4.6 up 
to 4.7.2 have been tested with the current POPBAM 
source) and was successfully built with the Microsoft 
Visual C++ compiler (version 11.0.60315). However, 
successful compilation requires the C++ 11 standard 
library.13 Currently, POPBAM comprises more than 
17,000 lines of source code. The majority of the source 
code for reading BAM files and constructing pileups 
was forked from SAMtools version 0.1.18 (https://
github.com/samtools/htslib), which also includes 
code for the klib library for constructing generic 
hash tables (https://github.com/attractivechaos/klib). 
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Furthermore, source code from the PHYLIP version 
3.6914 program was incorporated and modified to 
construct neighbor-joining trees.

Inputting data into POPBAM
The sequence alignment/map (SAM) format and the 
compressed version (BAM) are the de facto standard 
for storing reference-based next-generation sequence 
assemblies. BAM files include a header containing 
metadata, the sequence reads, mapping and base 
qualities, and alignment information in an efficiently 
compressed format.15 While POPBAM is capable 
of reading any BAM file, it is specifically designed 
to work with merged BAM files that contain reads 
from multiple samples (individuals). Furthermore, 
POPBAM is able to group the individual samples 
according to the population from which it was taken. 
How POPBAM deals with assigning reads to popu-
lations depends upon the information in the header 
of the BAM file itself. A BAM file header will typi-
cally include a sequence dictionary with informa-
tion about the reference sequence used to generate 
the assembly and additional information about each 
read group. A read group typically represents the set 
of short read sequences generated from a single lane 
in an Illumina sequencer. In the BAM header, indi-
vidual read groups can be annotated as coming from 
a particular sample, or individual (denoted with the 
standard tag “SM” in the “@RG” line in the BAM 
header). Therefore, individual samples can be rep-
resented by multiple lanes from a sequencer. As an 
additional layer of hierarchical grouping, POPBAM 
allows samples to be grouped according to popula-
tion; this is achieved by the user inserting a modi-
fied “@RG” header line that includes the new “PO” 
tag. The “PO” tag can be any string, as long as the 
string is identical between samples from the same 
population.

As an example of how POPBAM assigns reads to 
samples and populations, consider a BAM file that 
has three read groups, which are labeled R21, R22, 
and R25. In this hypothetical example, the R22 and 
R25 read groups are from two different individuals of 
the fruit fly species Drosophila melanogaster called 
“MEL001” and “MEL002”, respectively. The third 
read group, R21, is from a single individual of the 
related species D. mauritiana labeled “MAU001”. 
Thus, the above read group information from the 

header of this example BAM file would appear as the 
following three lines:

@RG	 ID:R21	 SM:MAU001	 PO:MAU
@RG	 ID:R22	 SM:MEL001	 PO:MEL
@RG	 ID:R25	 SM:MEL002	 PO:MEL

POPBAM will analyze the above example as two 
populations, “MAU” and “MEL”, with the “MEL” 
population having two samples, each represented by 
a single read group and the “MAU” population rep-
resented by only one sample and one read group. The 
non-standard “PO” tag has to be added manually by 
the user by editing the text of the BAM header and 
then re-headering the BAM file with programs such 
as SAMtools15 or PICARD (http://picard.sourceforge.
net). Alternatively, POPBAM has an option to allow 
the user to input the BAM header as a separate text 
file. When adding the “PO” tag, please be advised 
that the fields of the read group entry must be tab-
delimited.

SNP calling
POPBAM will call the consensus genotype for each 
individual included in a BAM file. POPBAM has the 
option of calling either a haploid or diploid genotype. 
The method that POPBAM uses for calling genotypes 
follows the method outlined in Section 3 of the Sup-
plementary Text of Li et  al.16 Briefly, let αnk be the 
probability that exactly k reads have errors out of a 
total of n reads covering a given genomic position. If 
the sequences of all reads are assumed to be gener-
ated independently, then we might expect that
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where εx is the probability that the base in read x is 
incorrectly called. Empirically, the values of ε are 
the error probabilities generated during sequencing. 
However, if errors can be correlated, then we can 
re-write αnk as
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in which cnk is the probability of k errors, given k - 1 
errors, and λ is a parameter that controls the error 
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dependency. POPBAM assumes that λ  =  0.85.16 
Furthermore, POPBAM improves the accuracy of the 
consensus genotype call by calculating the probabil-
ity in Equation 2 separately for reads coming from 
different strands since errors are expected to be inde-
pendent between reads for the forward and reverse 
strands.

POPBAM has a number of options for filtering 
sites based on different assessments of data quality. 
All POPBAM commands have global options for 
filtering reads on quality. For example, the user can 
set a minimum base quality score for POPBAM to 
consider individuals sites. Similarly, the user can set 
minimum mapping qualities for individual reads to 
be considered, a minimum root mean square map-
ping score for a consensus base to be called, or a 
minimum SNP quality score to consider a variant as 
valid. All quality scores are implemented as Phred 
scores.17 Quality scores are assumed to be on the 
Sanger scale; however, POPBAM can also con-
vert quality scores from the Illumina 1.3+ format.18 
Lastly, users may also exclude sites that either do 
not have a minimum number of reads aligned for 
an individual sample or exceed a maximum number 
of mapped reads. Sites with insertions or deletions 
are detected by POPBAM, but not considered for 
further analysis.

Evolutionary analyses
Table  1 lists the seven main command options for 
the POPBAM program. The first command is called 
snp and it is used to output the raw genotype calls 
to a formatted output file, as described above. The 
default output for SNP calls is native POPBAM for-
mat, which is a tab-delimited text file. However, the 
snp function will also output SNP calls to a format 
that can be read by the SweepFinder program19 and 
in the output format of the ms program,20 which can 
be post-processed by programs using the libsequence 
library.21

POPBAM provides a range of options for ana-
lyzing haplotype structure and diversity. Most hap-
lotype-based options are implemented in the haplo 
and ld commands and focus on statistics that are 
useful for detecting natural selection or popula-
tion structure. Please note that POPBAM does not 
have the functionality to reconstruct haplotypes 

from unphased diploid data. There are three analysis 
options accessible via the haplo command. The first 
option is simply calculating the number of distinct 
haplotypes spanning the entire length of a window 
and the corresponding haplotype diversity22 for each 
population. The second option calculates the site-
specific extended haplotype homozygosity (EHHS) 
statistic for detecting partial selective sweeps.23 The 
POPBAM implementation of the EHHS statistic 
works by first scanning each polymorphic site in a 
window and recording the partition induced by the 
site within each population (the site type). For a 
given variable site, if the ancestral allele is denoted 
as A and the derived allele as V, the site type at SNP 
i can be represented as the bit array Ti = {[Ti,1 = V], 
[Ti,2  =  V], …, [Ti,n  =  V]} (square brackets indicate 
Iverson bracket). Thus, an individual is represented 
by a zero at the site when the sample has a consensus 
base identical to the reference (or outgroup) allele 
and a one when that individual carries the derived 
allele. POPBAM then calculates EHHS using the 
vector Ti (and its complement T

i

′) that appears the 
most frequently in the window; this site is consid-
ered the “core SNP”. If all site types are singletons, 
then there is no strong LD and the statistic has neg-
ligible biological meaning; in this case POPBAM 

Table 1. A description of the seven analysis commands 
that are available in the current version of the POPBAM 
software.

Command Description of analysis
snp Generates consensus base calls for each 

sample in the alignment that passes user-
specified quality filters.

haplo Computes a variety of haplotype-based 
statistics.

diverge Calculates divergence of samples or 
populations from the reference sequence.

tree Outputs newick-formatted neighbor-
joining trees of all samples in the file.

nucdiv Estimates nucleotide diversity within each 
population and mean number of 
nucleotide differences between all pairs 
of populations.

ld Computes several measures of linkage 
disequilibrium.

sfs Calculates the site frequency spectrum 
statistics Tajima’s D and the standardized 
Fay and Wu’s H for each population.
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will simply use the last site type that it recorded. Let 
hs be the unbiased estimate of homozygosity at the 
core SNP,
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where j is the count of the derived allele and n is the 
total sample size.24 Similarly, define hk as an unbiased 
estimate of extended haplotype homozygosity over 
the entire genomic interval,
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in which ki is the count of extended haplotype i and 
K is the total number of unique extended haplotypes. 
Then,
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It is expected that EHHS = 0 when each individ-
ual in the sample carries a unique haplotype, while 
EHHS  =  1 when the haplotype homozygosity is 
identical to the site homozygosity at the core SNP. 
The POPBAM haplo command also implements a 
measure of relative between-population haplotype 
sequence identity
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(see below for definitions of dxy
 and dxy), which is par-

ticularly sensitive to the effects of recent gene flow.25

The POPBAM ld command includes options to 
calculate Kelly’s ZnS statistic,26 the ωmax statistic for 
detecting recent selective sweeps,27 and two site con-
gruency statistics, Wall’s B and Q.28 The ZnS statistic 
is simply defined as the average pairwise r2 value,
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in which rij is the correlation coefficient of allele fre-
quencies at SNPs i and j and S is the number of segre-
gating sites in a window.26 POPBAM has the option of 
excluding singleton sites when calculating the pairwise 
values of r2. Similarly, for each segregating site, LD can 
be partitioned on either side of the site to calculate ω:
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Then, ωmax is derived from the site in the window 
that yields the maximum value of ω.27 Lastly, Wall’s 
B and Q statistics focus on runs of segregating sites 
that partition the data in an identical pattern. If site 
type Ti = Ti+1 or T Ti i= +1

′  (its complement), then one is 
added to variable B′. Wall’s B statistic is then,
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and similarly, for Wall’s Q,
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in which |M | is the number of distinct partitions 
induced by congruent pairs of segregating sites.28

In addition to the haplotype-based statistics, POP-
BAM provides functionality for calculating nucle-
otide diversity within populations and the average 
number of nucleotide differences between popula-
tions. The POPBAM nucdiv command will produce 
unbiased estimates of nucleotide diversity (π) within 
each population as
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in which dij is the Hamming distance between 
sequences i and j, as well as the average number of 
nucleotide differences between populations,
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in which dxy is the Hamming distance between all 
sequences from population x with sample size nx and 
population y with sample size ny.

29 POPBAM reports 
both π and dxy per aligned nucleotide site. From these 
two quantities, it is straightforward to calculate a 
widely-used formulation of FST

30 in a post-processing 
step as,

	
F x y
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x y

xy
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The nucdiv command also allows the user to 
specify the minimum number of samples required to 
calculate the diversity statistics, thus not requiring 
complete coverage across all samples.

The diverge command allows the user to calcu-
late the divergence of the samples with either the ref-
erence sequence, or a specified outgroup sequence, 
using either a Hamming distance or a Jukes-Cantor 
corrected distance.31 The diverge command can out-
put either the divergence of each sample from the 
outgroup/reference genome or the mean divergence 
of each population. Since the diverge command is 
intended for calculating local substitution rates, the 
user may also specify whether only sites that are fixed 
substitutions should be used in the calculation. The 
output of the diverge command also outputs informa-
tion that can be used to perform the HKA test32 in a 
post-processing step.

The POPBAM tree command builds neighbor-
joining33 (NJ) trees of all samples present in the BAM 
file and outputs the newick-formatted trees for each 
genomic window. The NJ algorithm was selected over 
other tree-building methods to avoid the computa-
tional cost of using a heuristic tree-building algorithm 
on a potentially large number of genomic intervals. 
The tree command will only consider sites for which 
every individual is represented in the alignment. NJ 
trees can be calculated using either a Hamming dis-
tance or the Jukes-Cantor sequence distance.31

Finally, the sfs command calculates statistics  that 
summarize the site frequency spectrum within popula-
tions. For each window in each population the count 
of mutations with frequency  i  in  the sample is given 
by ξi, for which the total number of segregating sites 
is S i

n
i= ∑ =

−
1
1ξ . The first site frequency spectrum mea-

sure output by POPBAM is Tajima’s D statistic.34 

Tajima’s D contrasts low- and intermediate-frequency 
variants and can be calculated as:
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in which a ii
n
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− /  and e1 and e2 are given by 
Tajima.34,35 The second site frequency spectrum mea-
sure is a standardized analog of Fay and Wu’s H 
statistic.36,37 The H statistic contrasts high- and inter-
mediate-frequency variants and can be calculated as:
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in which g1 and g2 are given in Zeng et al37 and POP-
BAM estimates θ as Watterson’s moment estimator 
of the population mutation rate.38 Tajima’s D and 
Fay and Wu’s H were chosen because they consider 
both the folded and unfolded site frequency spectra, 
respectively. For the unfolded site frequency spec-
trum, POPBAM assigns ancestral and derived alleles 
using the reference sequence; however, the user can 
also manually specify which sequence should be used 
as an outgroup to polarize the directionality of a given 
mutation. The raw count of derived mutation frequen-
cies can be obtained using the snp command with 
SweepFinder formatted output.

Output and post-processing
POPBAM is designed to calculate a variety of evolu-
tionary-based statistics in non-overlapping genomic 
windows. The windows are uniformly sized relative 
to the reference genome coordinates and the size of 
the windows can be specified by the user at run time. 
All POPBAM output is formatted as text and is tab-
delimited. The output of POPBAM is specifically 
tailored to be input seamlessly into the R statistical 
environment.39 Each of the POPBAM commands pro-
duces differing output fields; however, the first four 
fields are identical across commands: the first col-
umn always prints the scaffold/chromosome name, 
the second column prints the position in the reference 
sequence where a window starts, the third column 
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prints the reference position of the end of the window, 
and the fourth column is the total number of aligned 
sites in the window that was used in the analysis (this 
includes invariant sites). The columns that follow 
the fourth column depend upon the POPBAM com-
mand and the output options being used. Typically, 
statistics will be output grouped by populations in 
the order in which the populations are defined in the 
BAM header. Exceptions to this output format are 
limited to the snp function, which generates output 
formatted as input for a different program or as a list 
of consensus genotype calls, which also give the SNP 
quality score and the read depth for each individual 
in the BAM file. If a particular calculation is not pos-
sible in a given window, POPBAM will output the 
string “NA”, which will be read by the R statistical 
environment as a missing value.

I provide an example case of using POPBAM 
to scan the major chromosome arms of ten lines 
of Drosophila melanogaster40 and a single line of 
D. mauritiana3 for the signature of recent positive 
natural selection. The D. melanogaster sample com-
prises nine lines from sub-Saharan Africa and a single 
line from France. Furthermore, each D. melanogaster 
individual is represented by a single read group of 
paired-end 76 bp Illumina reads. The D. mauritiana 
outgroup is from a single individual with a single 
read group of paired-end 86 bp Illumina reads. First, 
the POPBAM nucdiv command was run in 10 kb 
windows on all major chromosome arms to identify 
regions of low nucleotide diversity. Genomic windows 
appearing the the lowest 1% quantile were consid-
ered candidates for recent positive natural selection. 
The POPBAM ld command in 10 kb windows with 
the ωmax option was then run on chromosome 3R to 
identify patterns of linkage disequilibrium that are 
consistent with a model of a recent selective sweep. 
Lastly, the POPBAM tree command was used in 1 kb 
windows in candidate sweep regions to visualize the 
patterns of polymorphism.

Assessing performance
The performance of the POPBAM program was 
assessed using a BAM file created from the Droso-
phila melanogaster short read data described in 
the previous subsection. However, only the X 
chromosome was considered for the purposes of 

measuring the execution time and memory usage of 
the POPBAM program. The length of the reference 
sequence for chromosome X is 22,422,827  bp and 
the input BAM file is 6.8 Gb consisting of a total of 
103,464,508 mapped reads. The POPBAM program 
was tested on server running the Red Hat® Enterprise 
Linux® 6.4 operating system with dual Intel® Xeon® 
L5630 processors running at 2.13 GHz with 144 Gb 
of RAM. POPBAM was compiled using GCC version 
4.4.7-3.

Program execution time was assessed using the 
GNU time program (version 1.7) for the seven dif-
ferent POPBAM commands. Additionally, program 
execution time as a function of the total alignment 
length, number of individuals, and the window size 
was also measured. Furthermore, a profile of POP-
BAM was created using the GNU profiling tool gprof 
and the memory heap was profiled using the massif 
module of the program valgrind.

Results
Performance
Table 2 shows the execution time and peak memory 
usage trials for each of the major evolutionary analy-
ses performed by POPBAM. In this case, the window 
size is 10 kb and there is a small amount of varia-
tion in both execution time and peak memory usage 
among the different POPBAM functions. The snp and 
sfs commands tend to have longer execution times, 
while the tree function tends to have the shortest 
execution times. Figure 1 shows execution times and 
peak memory usage for different window sizes, dif-
ferent total alignment lengths, and different numbers 
of individual samples in the BAM file. The execution 
time of POPBAM increases linearly with the total 
alignment length and the number of individuals. The 
execution time is greater for small windows compared 
to large windows because of the increased number of 
disk input/output operations and the number of times 
memory blocks are allocated and freed from the heap. 
Peak memory usage increases with larger window 
sizes because there are more SNPs to be retained in 
memory with larger windows. This increase in peak 
memory usage is greater than linear for POPBAM 
functions that perform pairwise calculations between 
sites (ie, functions in the ld command). Finally, the 
peak memory usage is not strongly influenced by the 
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Table 2. Time and memory trials reported separately for the main components of POPBAM functionality. The circumstances 
of the trials are provided in the text.

Command Analysis Time (seconds) Memory (Mb)
snp Call and output SNPs 5074.14 65.546
haplo Calculate number of haplotypes 4998.22 65.386

Site-specific extended haplotype homozygosity 4727.29 65.386
Minimum between-population distance 4592.35 65.386

diverge Calculate number of substitutions 4587.08 65.567
tree Compute neighbor-joining trees 4497.68 65.388
nucdiv Within and between population differences 4762.05 65.546
Ld Calculate mean r2 4553.11 65.385

Calculate ωmax 4763.04 66.095
Calculate Wall’s congruency statistics 4902.55 65.386

sfs Tajima’s D and Fay and Wu’s H 5024.26 65.386
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Figure 1. Time and memory trials for the nucdiv command (top row) and the ld command using the ωmax option (bottom row). In all graphs, the filled 
bars show the execution time (in seconds) and the line shows the peak memory usage in megabytes (note that megabytes are shown on the secondary 
vertical axis, while megabases are shown on the horizontal axis). The first column of graphs shows results for various window sizes. The second column 
shows results for different total alignment length. Finally, the third column of graphs shows the results for BAM files consisting of either five or ten ingroup 
individuals (not including one outgroup individual).

total alignment length and it increases linearly with 
the number of samples in a merged BAM file.

The profiling of POPBAM indicates that the 
program spends nearly two-thirds of its execution 
time parsing the auxiliary data associated with each 
read and assigning individual reads to samples and 
populations. Over 15% of POPBAM execution time 
is spent generating consensus genotypes. Slightly 
less than 10% of the execution time is spend process-
ing the pileup from the BAM file. Approximately 
8% of the total time is spent implementing the error 
model. All other functions take less than 1.5% of 
POPBAM’s total execution time. This suggests that 
POPBAM’s run time could be shortened consider-
ably by allowing the program to operate on an input 

file that consists only of previously called consensus 
genotypes, such as the VCF format.41 However, most 
analyses performed by POPBAM would require a 
VCF file that also includes all invariant sites as well 
as variant sites.

Example output
Figure 2A plots the output of the POPBAM nucdiv 
command over all major chromosome arms of 
Drosophila melanogaster in non-overlapping 10 kb 
windows. The reduced levels of nucleotide diversity 
in regions extending away from centromeres and 
telomeres accords well with the known reduction in 
crossing-over rates in these regions.5 However, unlike 
non-African D. melanogaster, the POPBAM analysis 
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Figure 2. Panel (A) shows the spatial distribution of nucleotide diversity (π) in 10 kb windows across each of the major chromosome arms in ten lines 
of Drosophila melanogaster. Panel (B) shows the distribution of 10 kb windows on chromosome 3R for the linkage disequilibrium statistic, ωmax, which is 
sensitive to patterns caused by recent selective sweeps. The window beginning at position 17,250,000 has a significant outlier for ωmax (see text). Panel (C) 
shows 1 kb windows of ωmax (top) and π (bottom) in the outlier region of chromosome 3R. Finally, panel (D) shows the neighbor-joining tree for the 1 kb 
window spanning positions 17,250,000–17,251,000 on chromosome 3R with the highest ωmax statistic. D. melanogaster sequences are labeled with the 
prefix “Dmel” and the D. mauritiana sequence is labeled with the prefix “Dmau”.

shows that, for the autosomes, the mean πA = 0.0064, 
while for the X chromosome, the mean πX = 0.0060. 
The ratio of πX/πA = 0.934, which is much less that 
the value of 3/4 expected under an equal breeding 
sex-ratio.40 Figure 2B shows the distribution of the 
ωmax statistic in 10 kb intervals across chromosome 
3R. POPBAM identifies an outlier window that spans 
positions 17,250,000–17,260,000 and has a pattern 
of linkage disequilibrium consistent with the recent 
action of positive natural selection (ωmax  =  9.55; 

P  ,  0.05 of randomly selecting a window with a 
higher, or equal, value of ωmax). POPBAM was then 
used to examine more fine-scale patterns of nucle-
otide diversity and linkage disequilibrium in between 
genome coordinates 17,240,000 and 17,260,000 to 
attempt to localize a putative signal of positive selec-
tion (Fig.  2C). This fine-scale scan shows a 1 kb 
window with elevated ωmax and depressed π between 
positions 17,250,000 and 17,251,000. POPBAM 
was then used to build neighbor-joining trees in 1 kb 
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windows across the candidate region. Figure  2D 
shows the shape of the putatively selected genealogy 
for the 17,250,000–17,251,000  interval. The above 
example is intended to illustrate the use of POPBAM 
to scan for and explore regions of genomes that 
have putatively experienced recent positive natural 
selection.

It is worth noting that, during its years of develop-
ment, the numerical accuracy of the statistics calcu-
lated by POPBAM have been verified by comparing 
them with calculations from other programs, such as 
those built with the libsequence package21 and the 
DnaSP program.42

Conclusions
The POPBAM program is a flexible and extensible 
tool for conducting studies of population and evolu-
tionary genomics. Although the current beta release 
of POPBAM has some necessary limitations, goals 
for the release candidate version of POPBAM include 
the ability to read and write VCF files and to incor-
porate genome features, such as those stored in GFF3 
files (http://www.sequenceontology.org/resources/
gff3.html), to measure levels of nonsynonymous and 
synonymous polymorphism and divergence, and to 
analyze polymorphism and divergence by site type 
(eg, exon, intron, 5′ untranslated regions, etc.). It is 
important to note that POPBAM is not intended to 
perform higher-order functions, such as multi-locus 
or composite likelihood types of analyses. Rather, 
POPBAM is intended to be used as the penultimate 
step in any evolutionary bioinformatics pipeline, 
to fill the void between the genome assembly steps 
and the final, integrative whole-genome statistical 
analyses. It fulfills this role by providing an efficient 
means to measure many aspects of genome poly-
morphism and divergence. By making POPBAM 
open-source, I hope that additional functionality and 
improvements will be suggested by the community of 
evolutionary investigators working with large next-
generation sequence data sets.
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