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Abstract: We present SBEToolbox (Systems Biology and Evolution Toolbox), an open-source Matlab toolbox for biological network 
analysis. It takes a network file as input, calculates a variety of centralities and topological metrics, clusters nodes into modules, and 
displays the network using different graph layout algorithms. Straightforward implementation and the inclusion of high-level functions 
allow the functionality to be easily extended or tailored through developing custom plugins. SBEGUI, a menu-driven graphical user 
interface (GUI) of SBEToolbox, enables easy access to various network and graph algorithms for programmers and non-programmers 
alike. All source code and sample data are freely available at https://github.com/biocoder/SBEToolbox/releases.
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Introduction
The complexity of biological systems represents an 
enormous intellectual challenge to researchers who 
mostly remain reliant on correlative approaches to 
biology. The volumes of biological network data gath-
ered in systems biology have outpaced their ability to 
assimilate them into real knowledge and the require-
ment of software tools for analyzing network data is 
continually growing. Network analysis software usu-
ally transforms the network data into a graph frame-
work in order to take distinct advantages of being 
able to adopt techniques developed in graph theory, 
engineering, and computer science. In our opinion, 
good network analysis software should include a suf-
ficient number of graph algorithms being efficiently 
implemented as functions, which are flexible enough 
to be extended easily, and accessible through easy-
to-use user interfaces (UIs). With such software, it is 
possible for users without programming expertise to 
directly relate specific biological interactions with the 
network properties and dynamics.

In the following sections, we describe how we 
designed Systems Biology and Evolution Tool-
box (SBEToolbox), subsequently discuss various 
algorithms implemented for network analysis, and 
finally mention the advantages as well as potential 
drawbacks of our software and point out our future 
research roadmap.

Implementation
SBEToolbox is implemented using a combination of 
native Matlab code and MEX/C functions based on 
the Boost Graph Library (Fig. 1).1 Functions devel-
oped in native code can be classified into: (1) core 
functions that execute the tasks organized under 
SBEToolbox’s menu; and (2) helper functions that 
automate repetitive tasks and assist core functions. 
SBEToolbox can read and write network informa-
tion in three commonly used network file formats: 
tab-delimited, SIF, and Pajek. It saves the network 

information on disk in a Matlab MAT-file for each 
working session as an n × n sparse adjacency matrix 
representing the network of n nodes. The adjacency 
matrix is loaded into the variable named sbeG, and 
the node information is stored in a cell string vec-
tor sbeNode. SBEGUI is a figure window to which 
user-operated controls are organized as a drop-down 
menu to access core functions of the SBEToolbox 
(Fig. 2). All major functions can be accessed from 
the menu and it is easy and simple for the end-users 
to load a network file, compute statistic measures for 
the network and its nodes, detect highly connected 
node clusters (or modules) using graph cluster-
ing algorithms, and evolve the networks. Different 
graph layout algorithms were either implemented 
natively (Random, Circle, and Tree Ring) or incor-
porated from Matlab BGL (Kamada-Kawai Spring, 
Gürsoy Atun, and Fruchterman-Reingold) so that 
small- to medium-sized networks can be plotted 
and manipulated as standard figures using Matlab’s 
built-in figure controls. Additionally, graphs can be 
exported to external network analysis tools such 
as Cytoscape2 and Pajek3 for further analysis, and 
visualization libraries such as Protovis and Sigm-
ajs for further illustration. Since network informa-
tion is written to disk and network variables remain 
unchanged between sessions, SBEToolbox is highly 
customizable through the use of SBE-plugins. New 
functions can be developed from built in template 
code as SBE-plugins. We define SBE-plugins as cus-
tom functions, which can easily access the network 
information for current working session that will 
work on the command line, and can also be easily 
incorporated into SBEGUI by using built-in plugin 
management tools. Links to screencasts on: (1) how 
to install SBEToolbox; (2) how to detect, visualize 
and export the network modules, as well as links to 
WIKI pages describing SBE-plugin development 
are provided in the README file with the software 
download.

Results
Our main strategy for developing this new network 
analysis tool is to use Matlab, which has been one 
of the default choices of programming language for 
efficiently dealing with matrix manipulations. Mat-
lab itself is a “merging” language that can seam-
lessly integrate with many other languages such as 

Boost graph library

MatlabBGL Native matlab
code

Third-party
applications

SBEToolbox

SBEGUI SBE-plugins

Figure 1. Structure and organization of SBEToolbox and related software 
components.
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C and Java, and functions written in Matlab have 
features that stay on the continuum between low- 
and high-level languages. In addition, Matlab has a 
sophisticated plotting library, and the software tools 
developed in Matlab inherit these distinct character-
istics; however, to our knowledge, a Matlab toolbox 
specifically designed for biologists with graphical 
user interfaces to conduct comprehensive network 
analyses is still missing. SBEToolbox intends to fill 
this gap.

Main functions
SBEToolbox covers a wide range of algorithms for 
computing network statistics. These algorithms 
include commonly used ones, such as betweenness 
centrality, clustering coefficient, and closeness cen-
trality, as well as newly developed ones, such as 
bridging centrality,4 Soffer’s clustering coefficient,5 
and brokering coefficient.6 Statistics that can be com-
puted using the SBEToolbox also include local aver-
age connectivity, core number, graph mean distance, 
graph diameter, graph efficiency, current information 
flow,7 neighborhood connectivity,8 participation coef-
ficient,9 rich-club coefficient,10 and so on. Random 
networks can be generated using Erdös-Réyni, small-
world, and ring lattice algorithms. SBEToolbox’s 
module-detecting functions clusters nodes into highly 
connected subnetworks or modules using three differ-

ent algorithms: MCODE;11 ClusterOne;12 and MCL.13 
MCODE is based on vertex weighting by local neigh-
borhood density and outward traversal from a locally 
dense seed node to isolate the dense regions, whereas 
MCL is based on the simulation of stochastic flow 
in a graph. ClusterOne generates overlapping clus-
ters and has been shown to outperform MCODE and 
MCL in predicting members in protein complexes.12 
Our toolbox includes all three algorithms to facilitate 
the users who intend to compare predictions with dif-
ferent algorithms. Cluster membership information of 
nodes is displayed in the output window and detected 
modules can be plotted.

SBEToolbox contains a collection of general-
 purpose functions that can facilitate applications of 
specific methods to real datasets. For example, input 
and output functions allow file conversion between 
different formats, and plot functions allow network 
visualization using interfaces to external programs 
such as Cytoscope2 and Pajek3 (http://pajek.imfm.si). It 
also uses Java Script libraries, Protovis (http://mbostock.
github.com/protovis), and Sigmajs (http://sigmajs.org) 
to render scalable vector graphic (SVG) plots that 
can be displayed in web browsers. These third-party 
applications are sandboxed with the software to main-
tain integrity and minimalize failure. All functions 
are linearly implemented to solve a particular task, 
and the links between functions are through input 

Figure 2. SBEGUi—the main interface of SBEToolbox (left) and an overview visualization of detected network modules (ie, clusters of highly connected 
nodes) (right). The modules were detected by using the MCL algorithm.
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and output variables. This simple design allows users 
to extend the functionality, as well as to implement 
and integrate their own functions into the software as 
SBE-plugins more easily. For example, we developed 
a plugin for a network motif detection tool, mfinder 
using built-in plugin management tools. Helper func-
tions of the software that communicate to different 
external programs can be customized and reused to 
incorporate other external programs according to 
each user’s necessity.

Network evolution
Using SBEToolbox, users can simulate the evolution 
of a network as a stochastic process involving node 
duplication, node loss, and edge rewiring (Fig. 3). 
The users control the simulated evolutionary process 
with three parameters: (1) the number of generations, 
g, which is the number of nonoverlapping steps for 
which the simulation should run; (2) evolutionary 
rate, r, which is the rate of node duplication (or node 
loss), where r is the total number of nodes – or in case 
of edge rewiring, it is the total number of edges; and 
(3) fixation probability, pfix, which is the likelihood of 
a designated evolutionary event (for example, node 
duplication, node loss, or edge rewiring) becoming 
fixed per generation.

Feature comparison between network 
analysis toolboxes
Many valuable software tools have been developed 
both within and outside the discipline of systems 
biology. Some of the similar toolboxes to SBEToolbox 
that have been developed in Matlab are: Functional 
Genomics Assistant (FUGA),14 Brain Connectivity 
Toolbox (BCT),15 and Mathworks Bioinformatics 
Toolbox (MBT). The current version of MBT has a 
few basic graph theory algorithms, but it does not 
have functions for any kind of statistical analysis. 
BCT and FUGA have a good number of statisti-
cal analysis functions, and the latter infers network 
through expression analysis and provides annotation. 
However, both of these toolboxes lack a unified solu-
tion for integrating graphic user interfaces, network 
evolution, and the ability for users to prototype and 
share custom functions through plugin distribution. 
A major feature comparison between these toolboxes 
is given in Table 1. Several non-Matlab-based tools 
also exist for network analysis and visualization. 
We believe that Matlab’s built-in functions allow for 
rapid prototyping of new algorithms, and its efficient 
handling of data manipulation characteristics can be 
easily leveraged and extended using SBEToolbox. 
A feature comparison between SBEToolbox and other 

Preferential 

attachment

Node loss

Node 

duplication

Re-wiring

Figure 3. Four modes of network evolution implemented in the SBEToolbox: (1) preferential attachment; (2) node loss; (3) node duplication; and 
(4) edge-rewiring.
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non-Matlab-based network analysis tools is provided 
in Supplementary Table 1.

Scalability and performance  
of SBEToolbox
Efficient implementation of SBEToolbox’s functions 
results in minimal usage of memory and disk space 
when working with a network file, which allows 
users to handle moderately large-scale network data 
on a standard desktop computer. To analyze a global 
human physical protein interaction network16 con-
taining about 10,000 nodes and more than 80,000 
edges, about 850 MB of memory was required and 
network file stored for the working session occupied 
about 300 bytes of disk space; conversely, for a ran-
dom Erdös-Réyni network containing 10,000 nodes 
and more than 450,000 edges, about 2 GB memory 
was required to complete all the analyses, while the 
actual network file stored on the disk for the session 
occupied approximately 1 MB of disk space. For both 
the networks, all of the core functions finished in less 
than 10 minutes. For even larger networks, the parallel 
computing ability of Matlab can be easily leveraged 
to solve the problems caused by the high requirement 
of computational resources.

We set out to compare SBEToolbox with similar 
Matlab toolboxes mentioned in Table 1 in terms of 
scalability and performance. Since these toolboxes 
have different profiles, a couple of common and 
important network topological metrics, betweenness 
centrality and clustering coefficient, were chosen to 
test memory usage and computation times on net-

works of varying node and edge sizes. MBT was 
excluded from the test as it does not have functions 
for computing the considered statistics. We noticed 
that SBEToolbox, FUGA, and BCT used similar 
amounts of memory for computing these two statis-
tics, which varied approximately from a minimum of 
40 MB to a maximum of 200 MB. With the help of 
built-in Matlab time functions, we saw a major differ-
ence in computation times between these toolboxes. 
In both these tests, SBEToolbox’s computation time 
was much faster than FUGA and BCT (Supplemen-
tary Fig. 1). BCT was not even able to finish com-
puting betweenness centrality for a small network of 
about 1,000 nodes in reasonable time. All of the anal-
yses and tests were run on a Macintosh OS X (10.7 
Lion) laptop computer with 4 GB of RAM and a 1.7 
GHz Intel 64-bit processor.

Numerical validation of native Matlab 
code for the MCL algorithm
Taking advantage of built-in matrix functions avail-
able in Matlab, we were able to implement the MCL 
algorithm13 natively in less than 50 lines of code. 
To validate our implementation, we compared the 
clustering results obtained by native code with those 
obtained by using the mcl program (based on C) 
available in the MCL-edge software (http://micans.
org/mcl/index.html). The comparison was performed 
with a network of 330 nodes obtained from the 
study of Ideker et al.17 (This dataset is available in 
the example_dataset folder provided with SBETool-
box as a .sif format file, galFiltered_330_nodes.sif). 
First, the MCL-edge source code was downloaded 
and compiled on a Mac OSX with i64 architecture. 
The mcxload binary was used to convert the .sif for-
mat file to .mci format file to run mcl with default 
options, which resulted in a total of 97 clusters. Next, 
MCL was executed from SBEGUI, which also found 
exactly 97 clusters with a minor difference. The dif-
ference in the number of n-node clusters identified 
between the two versions of MCL algorithm imple-
mentation is indicated in Supplementary Table 2. 
Two implementations produced nearly identical 
results: SBEToolbox’s mcl.m resulted in 38 two-
node clusters and 28 three-node clusters, whereas 
MCL-edge’s mcl resulted in 39 two-node clusters 
and 27 two-node clusters. SBEToolbox’s mcl.m 
found an extra three-node cluster consisting of 

Table 1. Feature comparison between SBEToolbox and 
relevant Matlab-based toolboxes FUGA (Functional 
Genomics Assistant), BCT (Brain Connectivity Toolbox), 
and MBT (Mathworks Bioinformatics Toolbox).

sBeToolbox FUGA BcT MBT
Centrality  
calculation

   

Module detection    
Node (gene)  
annotation

   

Network evolution    
GUi    
Programmable  
plugins

   

Plugin  
management tools

   
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nodes YER079W, YKL204W, and YNL154C. Node 
YER079W is also shared with another three-node 
cluster, which contains nodes YER079W, YHR135C, 
and YNL116W, which was also identified by MCL-
edge’s mcl (Supplementary Fig. 2). The two-node 
cluster (YNL154C, YKL204W) identified by MCL-
edge’s mcl was absent from SBEToolbox’s mcl.m 
results. Apart from this minor difference, the number 
of n-node clusters and all the nodes participating in 
each cluster were exactly identified in both cases.

Example application of SBEToolbox  
in characterizing disease genes
Genes that underlie human inherited diseases are 
important subjects in systems biology research. 
We have previously demonstrated in detail, using 
SBEToolbox in analyzing the human protein–protein 
interaction data,16 that in order to reveal impor-
tant network properties of disease genes, providing 
new insights to the origin and etiology of disease is 
necessary.6 Here, we briefly summarize the key points 
of our discoveries. We introduced a new statistical 
measure named the brokering coefficient and used 
this statistic to discern between disease and nondis-
ease genes based on their distinct network properties. 
The brokering coefficient is a composite metric (ie, 
for each node, it is calculated as log(d) − log(c), 
which is the difference between the log-transformed 
degree, d, and the clustering coefficient, c). In a net-
work, a node (or gene) with a large brokering coef-
ficient tends to have more neighbor nodes, while the 
number of connections between these neighbor nodes 
themselves tends to be small. Based on our analy-
sis, disease genes have unusually higher degrees and 
lower clustering coefficients (ie, larger brokering 
coefficient) than nondisease genes.6 Thus, disease 
genes are more likely to be broker genes in networks, 
in that they connect many other proteins that would 
not be connected otherwise.

Availability and system Requirements
All versions of SBEToolbox can be freely down-
loaded from https://github.com/biocoder/SBEToolbox/
releases. Users can submit bugs and follow the devel-
opment cycle of our toolbox at https://github.com/
biocoder/SBEToolbox/issues. The minimum require-
ments for the software are:

• Matlab: The SBEToolbox has been devel-
oped in Matlab version R2012b and makes 
use of all the improvements made to the core 
Matlab. Although, the codebase works in previ-
ous versions as well, some new features may be 
incompatible.

• Disk space: Approximately 200 MB of disk space 
is needed for installation, most of which is due to 
sandboxed third-party applications and annotation 
databases.

• Memory: We recommend a minimum of 4 GB of 
random-access memory for faster computations, 
although this is not mandatory.

• Central processing unit: 1.5 GHz processor or 
better.

• Windows XP or newer, Mac OS X 10.6 or newer 
with i64 architecture, Linux.

conclusion
SBEToolbox is flexible, easy-to-use, and highly cus-
tomizable from our point of view, and it provides 
researchers with an interactive tool to explore bio-
logical networks, as well as to compute centralities 
and topological statistics for the networks. The out-
put of a function is displayed in the output window 
and can be saved as a file, copied to clipboard, or 
exported as a variable to the Matlab workspace. The 
extensive plotting ability of Matlab allows users to 
create publication-quality plots. We strongly believe 
that the extensibility of the software through a stan-
dardized SBE-plugin protocol will increase the func-
tionality of the toolbox and will be a great resource 
for the systems biology research community using 
the Matlab system to develop new algorithms and 
generate hypotheses from network datasets. While 
currently SBEToolbox only supports undirected net-
works, in an ongoing effort, we plan to add support 
for weighted networks.
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