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Abstract: Curcumin, a phytochemical isolated from curcuma plants which are used as coloring ingredient for the preparation of curry 
powder, has several activities which suggest that it might be an interesting drug for the treatment or prevention of cancer. Curcumin 
targets different pathways which are involved in the malignant phenotype of tumor cells, including the nuclear factor kappa B (NFKB) 
pathway. This pathway is deregulated in multiple tumor entities, including Hodgkin’s lymphoma (HL). Indeed, curcumin can inhibit 
growth of HL cell lines and increases the sensitivity of these cells for cisplatin. In this review we summarize curcumin activities with 
special focus on possible activities against HL cells.
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Introduction
The name curcumin has been used for different unre-
lated dyestuffs. Today, the name is used more or less 
exclusively for 1,7-bis(4-hydroxy-3-methoxyphenyl)-
1,6-heptadiene-3,5-dione, the yellow dye from Cur-
cuma longa (turmeric) and other curcuma plants.1,2 
The name curcuma is based on the oriental name of 
the plant, which refers to its similarity with saffron 
(see the Hebrew word for saffron: כּרכּם).3 Approxi-
mately 2000 years ago, Plinius described a plant with 
similar features which is considered to be turmeric 
(est et per se Indica herba, quae cypira vocatur, 
zingiberis effigie; commanducata croci vim reddit.4 
[furthermore, an Indian plant exists which is called 
cypira and which has a similar appearance as ginger; 
while chewing it constitutes the effect of saffron]). 
Hybridization of C. longa with other species results in 
marked differences in the curcumin content between 
different plants.5 C. longa is a member of the family 
Zingiberaceae (ginger family). This family contains 
several plants which are widely used as spices and/or 
officinal plants, for example Aframomum spec. (alli-
gator pepper, false cardamom), Alpinia officinarum 
(Chinese ginger), Amomum subulatum (hill carda-
mom), Boesenbergia rotunda (Chinese keys), C. aro-
matica (wild turmeric), C. xanthorrhiza (temulawak), 
C. zedoaria (zedoary), Eletteria cardamomum (car-
damom), Kaempferia galangal (galangal), Zingiber 
officinale (ginger), and Z. mioga (Japanese ginger).

Recently, the complete transcriptome of C. longa 
rhizomes was analyzed.6 For a long time, the lipid-
soluble yellow compound which can be isolated from 
the curcuma plants was used for cooking, cosmetics, 
and textile dying.7 In the 13th century, turmeric was 
introduced into Europe by Arab traders.8 Today, tur-
meric and the isolated curcumin are used as colorant 
in many food products. Turmeric is one of the impor-
tant ingredients of curry powder. The color of cur-
cumin depends on the pH and the presence or absence 
of other substances like boron (Fig. 1). With boron, 
curcumin forms rosocyanine, a reddish color (Fig. 1) 
which can be used for the detection and colorimetric 
quantification of boron.9

Multiple biological effects have been documented 
for curcumin. Curcumin has direct antibacterial10 and 
anti-inflammatory11 activity. The anti-inflammatory 
activity might be mediated in part by the strong anti-
oxidant activity of its caffeic acid moiety.12  Curcumin 

influences multiple signaling pathways.13,14 In addition 
to the anti-cancer related activities described below, 
curcumin is used for the treatment of a plethora of 
other diseases including pulmonary, neurological, 
liver, metabolic, and autoimmune diseases.15

Anti-cancer Related Activities 
of curcumin
In the last decades, there has been growing interest 
in curcumin and curcumin derivatives for treatment 
or prevention of cancer as indicated by the increasing 
number of curcumin-related publications in the last 
years (Fig. 2). The basic biological activities of cur-
cumin has been summarized in an excellent review.16

Early observations suggested that curcumin can 
inhibit growth of tumor cells,17 can inhibit chemical 
carcinogenesis,18,19 and can be used for the treatment 
of patients with cancer.20 Since then, few clinical tri-
als suggest that curcumin might be a drug of inter-
est for treatment of cancer21,22 or for the prevention of 
different forms of cancer.23,24

It has been shown that curcurmin and curcumin 
derivatives alone or in combination with other drugs 
increase cell death in a wide variety of tumor cells, 
including brain tumors,25–28 sarcoma,29–35 breast can-
cer,40–46 ovarian cancer,47–49 testicular cancer,50 prostate 
cancer,51–53 pancreatic cancer,54,55 liver cancer,56 bil-
iary cancer,57 gastric cancer,58,59 colorectal cancer,60,61 
lung cancer,62–65 mesothelioma,66 renal cancer,37 blad-
der cancer,67 esophageal cancer,68–71 head and neck 
cancer,72–75 and lymphoma/leukemia76–86 (Table 1). 
Curcumin induces death of cancer cells by activation 
of extrinsic and intrinsic apoptosis pathways. Acti-
vation of apoptosis by curcumin is accompanied by 
modulation of multiple signaling pathways (hedge-
hog pathway, extracellular signal-regulated kinase 
(ERK) pathway, wingless (WNT) pathway, Janus 
kinase/signal transducer and activator of transcrip-
tion (JAK/STAT) pathway, Notch pathway, nuclear 
factor of kappa light polypeptide gene enhancer 
in B-cells (NFKB) pathway; Table 1). Depending 
on the cell type investigated, activation or inhibi-
tion of certain signaling pathways can occur. The 
ERK pathway, for example, is activated by cur-
cumin in monocytic leukemia cells77 whereas cur-
cumin down-regulates ERK in breast cancer cells.43 
In both cases, deregulation of this signaling path-
way promotes cell death. Curcumin can up-regulate  
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Figure 1. curcumin and curcuma. A) Curcumin is the yellow dyestuff from turmeric (the structure of curcumin was drawn with C-Design 3.0f; http://
www.ch.tum.de/oc1/eFontain/C-Design/). B) Curcumin forms colored complexes with boron. Turmeric powder (1 g) was extracted with 96% ethanol  
(10 mL, 37oC, 2 h), centrifuged and steril filtered. In the presence of 0.1 M NaOH, a 1:20 dilution of this extract in water is colored orange. After adition of 
0.05 M boric acid the colore turns into deep red. c) Turmeric powder (1.3 g) was extracted with 96% ethanol (18 mL, 37oC, 4 h) in the absence or presence 
of boric acid (1 g), centrifuged, steril filtered, and dried on filter paper circles. In the presence of boron, the yellow color changed into red.

pro-apoptotic components of the extrinsic apoptosis 
pathway (FAS, FAS ligand, Tumor necrosis factor 
(TFR) receptors or TNF-related apoptosis inducing 
ligand (TRAIL) receptors).30,31 On the other hand, 
curcumin down-regulates anti-apoptotic factors  
(B cell leukemia/lymphoma 2 (BCL2), BCL2 like 1 
(BCL2L1), X-linked inhibitor of apoptosis (XIAP), 
survivin).25,27,33,41,56,57,58,67,79 In addition, curcumin has 
been shown to inhibit telomerase which reverses 
immortalization of cancer cells.25 It seems that cur-
cumin is able to induce apoptosis in cancer cells with-
out pronounced cytotoxic effects on healthy cells. 
By inhibition of multi-drug resistance transporters, 
curcumin can overcome chemotherapy resistance 
of tumor cells.64,87 The inhibition of these transport-
ers can explain the depletion of side populations in 
tumor cells after treatment with curcumin.88 If cur-
cumin increases the chemotherapy sensitivity of this 

putative stem cell population, a combination with 
conventional chemotherapy might be able to kill the 
stem cell population. Antagonistic effects of curcumin 
and cytotoxic drugs have been observed, however.89–91 
These observations indicate that the combination of 
curcumin with other drugs should be carefully evalu-
ated in appropriate models in vitro or in vivo before 
these combinations are tested in patients.

Another interesting activity of curcumin is the 
inhibition of tumor cell motility, invasion, and 
metastasis.26,42,92–100 This activity is mediated in part 
by the down-regulation of matrix- metalloproteinases.  
A key step in tumor metastasis is the process of 
epithelial mesenchymal transition (EMT) usually 
accompanied by loss of epithelial cadherin (CDH1) 
expression. Inhibition of EMT and up- regulation 
of CDH1 in tumor cells by curcumin has been 
described.101,102 One inductor of cell motility in cancer 
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Figure 2. Increasing number of publications about curcumin and cancer. The PubMed database (http://www.ncbi.nlm.nih.gov/pubmed/) was searched 
with the queries “curcumin” or “curcumin cancer”. Presented are the absolute numbers of found publications per puplication year.

Table 1. examples for growth inhibitory activities of curcumin and curcumin derivatives on tumor cells.

Tumor types1 substances2 Important observations3 Ref.
brain tumors 
(glioblastoma, 
medulloblastoma)

curcumin;
curcumin + paclitaxel

cell cycle inhibition; apoptosis; inhibition of telomerase; 
inhibition of migration; inhibition of hedgehog signaling

25–28

MPNST curcumin + TRAiL enhanced TRAIL sensitivity; increased production of ROS 29
sarcoma 
(chondrosarcoma, 
liposarcoma, 
osteosarcoma, ewing 
sarcoma)

curcumin;
curcumin + JCTH-4;
FLLL32

up-regulation of FAS, FAS ligand, and TRAiLR2; 
enhanced JCTH-4 sensitivity; cell cycle inhibition; 
inhibition of ATP2A2; apoptosis; down-regulation of 
MMP2

30–35

melanoma curcumin; 
FLLL32;
FLLL62;
DM-1 + dacarbazine;
D6

cell cycle inhibition; up-regulation of TNF receptor 1; 
apoptosis; inhibition of STAT3 signaling

36–39

neuroblastoma curcumin;
D6

apoptosis; inhibition of TNF induced NFKB signaling 39

(Continued)
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Table 1. (Continued)

Tumor types1 substances2 Important observations3 Ref.
breast cancer curcumin;

curcumin + fluoruracil;
curcumin + tamoxifen;
curcumin + vinblastin;
RL66;
RL71

cell cyle inhibition; inhibition of multiple signaling 
pathways; apoptosis; inhibition of eRK signaling; down-
regulation of eZH2; inhibition of migration of endothelial 
cells; depolymerization of microtubules

40–46

ovarian cancer curcumin + cisplatin;
curcumin + oxaliplatin;
B19;
HO-3867 + cisplatin;

inhibition of STAT3 signaling; apoptosis; up-regulation of 
TP53; increased production of ROS

47–49

testicular cancer curcumin + bleomycin apoptosis 50
prostate cancer curcumin;

dimethoxycurcumin
cell cycle inhibition; apoptosis; inhibition of MMP2, 
inhibition of wingless signaling

51–53

pancreatic cancer curcumin;
curcumin + sulforaphane 
+ aspirin 

cell cycle inhibition; apoptosis; inhibition of NFKB 
signaling

54,55

liver cancer curcumin + adriamycin apoptosis 56
biliary cancer curcumin apoptosis; inhibition of NFKB signaling; inhibition of 

STAT3 signaling; up-regulation of TRAiL receptors
57

gastric cancer curcumin;
curcumin + doxorubicin;
curcumin + etoposide

apoptosis; inhibition of NFKB signaling 58,59

colon cancer bisdehydroxycurcumin apoptosis; autophagy 60,61
lung cancer curcumin;

curcumin + cisplatin
B63;
T63;

cell cycle arrest; apoptosis; enhanced production of 
ROS; down-regulation of MDR transporters; enhanced 
degradation of HiF1A

62–65

mesothelioma curcumin;
curcumin + cisplain

apoptosis 66

renal cell carcinoma curcumin;
FLLL32;
FLLL62

apoptosis; inhibition of STAT3 signaling 37

bladder cancer curcumin + BCG inhibition of NFKB signaling; up-regulation of TRAiL 
receptors; apoptosis

67

esophageal cancer curcumin;
curcumin + fluoruracil
curcumin + cisplatin

cell cycle inhibition; inhibition of NFKB signaling; 
apoptosis; non-apoptotic cell death; inhibition of Notch 
signaling;

68–71

head and neck cancer curcumin;
FLLL32 + cisplatin

cell cycle inhibition; apoptosis; inhibition of STAT3 
signaling; increased production of ROS

72–75

leukemia and lymphoma curcumin;
curcumin + 
daunorubicin;
curcumin + iR;
CA#12 + bortezomib

cell cycle inhibition; increased production of ROS; 
apoptosis; inhibition of NFKB signaling; activation of eRK 
pathway; down-regulation of cyclin D1, down-regulation 
of MYC 

76–85

1MpnsT, malignant peripheral nerve sheath tumors.
2B19, (1e, 4e)-1, 5-bis(2-methoxyphenyl)penta-1,4-dien-3-one; B63, 1,5-bis(2-methoxyphenyl)penta-1,4-dien-3-one; DM-1, sodium 4-[5-(4-hydroxy-3-
methoxyphenyl)-3-oxo-penta-1,4-dienyl]-2-methoxy-phenolate; BcG, Bacillus Calmette-Guerin; cA#12, (1e,6e)-1,7-Bis(4-valinoyl-3-methoxyphenyl)
hepta-1,6-diene-3,5-dione hydrochloride; D6, (3e,3'e)-4,4'-(5,5',6,6'-tetramethoxy-[1,1'-biphenyl]-3,3'-diyl)bis(but-3-en-2-one); FLLL32, (2e,2'e)-1,1'-
(cyclohexane-1,1-diyl)bis(3-(3,4-dimethoxyphenyl)prop-2-en-1-one); FLLL62, (2e,2'e)-1,1'-(tetrahydropyran-4,4-diyl)bis(3-(3,4-dimethoxyphenyl)prop-2-
en-1-one); HO-3867, 1-[(1-Oxyl-2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrol-3-yl)methyl]-(3E,5E)-3,5-Bis(4-fluorobenzylidene)piperidin-4-one; IR, ionizing 
radiation; JcTH-4, synthetic pancratistatin analog; TRAIL, tumor necrosis factor-related apoptosis inducing ligand; RL66, 1-Methyl-3,5-bis[(e)-4-pyridyl)
methylidene]-4-piperidone; RL71, 3,5-bis(3,4,5-trimethoxybenzylidene)-1-methylpiperidine-4-one; T63, (1e,6e)-1,7-Bis(3,4-dimethoxyphenyl)-4-(4-hy dr-
oxy-3-methoxybenzylidene)hepta-1,6-diene-3,5-dione.
3ATp2A2, sarcoplasmic/endoplasmic reticulum calcium ATPase; eRK, extracellular signal-regulated kinase; eZH2, enhancer of zeste homolog 2; HIF1A, 
hypoxia inducible factor 1, alpha subunit; nFKB, nuclear factor of kappa light polypeptide gene enhancer in B-cells; TnF, tumor necrosis factor; Tp53, 
tumor protein 53; TRAILR2, TRAiL receptor 2 (death receptor 5); MDR, multi-drug resistance; MMp2, matrix metalloproteinase 2; MYc, myelocytomatosis 
viral oncogene homolog; ROs, reactive oxygen species; sTAT3, signal transducer and activator of transcription 3.
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cells is lysophosphatidic acid (LPA). LPA receptors 
are often expressed in tumor cells and co-expression 
of LPA receptors and LPA-producing phospholipases 
in tumor cells have been observed.103 Curcumin can 
also inhibit LPA-induced cancer cell motility.101 
Taken together, these observations indicate that cur-
cumin does not only inhibit tumor growth but also 
metastasis formation. However, enhanced metasta-
sis has been described in a Lewis lung carcinoma 
model.104

In addition to the death inducing activities of cur-
cumin on established tumor cells, curcurmin and 
curcumin derivatives can inhibit or delay tumor 
 formation in different tumor models.92,105–113  Curcumin 
significantly inhibited the formation of preneoplas-
tic lesions in animal models for chemical colon car-
cinogenesis.92,102 The combination with fluorouracil 
or carnitine enhanced this effect. Curcumin inhibited 
ultraviolet radiation-induced or chemically induced 
skin carcinogenesis in mice.106,107 Furthermore, cur-
cumin inhibited the development of gastrointestinal 
tumors,108,109 mammary tumors,110 and hepatocellular 
tumors111,112 in models for chemical carcinogenesis. 
The anti-inflammatory activity of curcumin seems to 
be responsible at least partially for such cancer pre-
ventive activities.113 In addition to the direct activities 
on tumor cells and pre-malignant cells, the inhibi-
tion of the growth of carcinogenic microorganisms 
such as Helicobacter pylori may partially account for 
tumor prevention by curcumin.114 Very infrequently, 
enhanced tumor formation in experimental models 
has been described.115 Such observations indicate that 
the biology of the used experimental models has not 
been fully elucidated and that further investigations 
are required in order to understand the effects of cur-
cumin in the different models.

The nuclear Factor Kappa B (nFKB) 
pathway as Target for curcumin
Avian reticuloendotheliosis defines a group of dis-
eases that are observed in turkeys, broiler chickens, 
ducks, among other birds. One of the interesting fea-
tures of reticuloendotheliosis is the development of 
lymphoid malignancies. The causative agent of reticu-
loendotheliosis is a gamma-retrovirus that transforms 
diverse avian cells. Analysis of the T strain of this 
virus (reticuloendotheliosis virus strain T; REV-T) 
led to the identification of the REL oncogene.116–118 

Thereafter, the human REL homologue was found 
on chromosome 2.119 REL is a member of a gene 
family that includes in the human genome at least  
5 members: REL, RELA,120,121 RELB,122 nuclear factor 
of kappa light polypeptide gene enhancer in B-cells  
1 (NFKB1),123 and NFKB2 (Fig. 3).124 This family 
can be divided into two sub-families (Fig. 3) and usu-
ally one member of the NFKB1/2 subfamily forms a 
heterodimer with a member of the REL subfamily. 
The NFKB pathway is a highly conserved signaling 
pathway in eukaryotes. Members of the NFKB fam-
ily are involved in chromosomal rearrangements that 
have been detected in cancer cells and gene fusions 
involving REL125,126 or NFKB2124,127 have been 
described.

The NFKB pathway is often deregulated in can-
cer cells. One example is Hodgkin’s lymphoma (HL), 
one of the most frequent lymphomas in Western coun-
tries.128 The etiology of HL is unclear, but immuno-
logical and molecular properties suggest that in most 
cases HL cells are derived from B cells.129–131 HL cells 
have a characteristic gene expression profile that dis-
criminates these cells from other normal and trans-
formed hematopoietic cells.132 With the combination 
of radio- and chemotherapy the majority of patients, 
with HL can be cured. However, the established 
therapy is associated with the induction of secondary 
malignancies, cardiac toxicities, and  treatment-related 
infertility.133–135 In addition, up to 10% of patients still 
cannot be cured with current therapy regimes, which 
represent a significant number.136,137 Thus, there is 
a clear demand to search for new treatment options 
and also for optimization of current treatment strat-
egies by identifying potential treatment resistance 
mechanisms.

An involvement of the NFKB pathway in HL has 
been suggested by the high expression of NFKB fam-
ily members in HL.138 Mutations in the NFKB inhibi-
tors NFKB inhibitor alpha (NFKBIA) and tumor 
necros factor alpha-induced protein 3 (TNFAIP3) 
have been observed in a high percentage of HL.139,140 
Curcumin inhibits NFKB activity in different cell 
types (Table 1) and the inhibition of the NFKB path-
way can be seen by decreased expression of NFKB. 
The activity of NFKB is regulated by inhibitors that 
bind NFKB and release NFKB only after degrada-
tion. Curcumin can inhibit NFKB activity indirectly 
by stabilization of NFKBIA.40
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Figure 3. Known human proteins of the ReL/nFKB family. Reference sequences of the indicated human proteins were used for a phylogenetic tree anal-
ysis using the clustalw algorithm (http://www.genome.jp/tools/clustalw/). For human ReLA (protein accession numbers NP_001138610, NP_001230913, 
NP_001230914, and NP_068810), human NFKB1 (NP_001158884, NP_003989) and human NFKB2 (NP_001070962, NP_001248332) different protein 
isoforms with highly similar sequences have been identified. For REL (NP_002899) and RELB (NP_006500) no additional human isoforms are in the 
databases. The family can be separated into two sub-families. A complete NFKB transcription factor consists of a heterodimer of a member of the NFKB1/2 
subfamily and a member of the ReL subfamily.

In addition to constitutive activation of NFKB,  
in some tumors NFKB expression and activation is 
induced by treatment with cytotoxic drugs or cytok-
ines.40,141,142 Curcumin and curcumin derivatives can 
prevent such induced activation. Curcumin derivatives, 
for example, have been shown to decrease the TFR-
induced expression of NFKB in melanoma and neuro-
blastoma cells.40 In some cases the anti-NFKB activity 
of curcumin requires the presence of additional treat-
ment elements. In pancreatic tumor cells, for example, 
curcumin inhibits DNA binding-activity of NFKB only 
in combination with aspirin and sufuraphane.54 As the 
final consequence of NFKB inhibition, expression of 
NFKB target genes is suppressed. These target genes 
include anti-apoptotic  factors and the  suppression of 

these factors can increase tumor cell death. In addition, 
the crosstalk between NFKB and other signaling 
 pathways can lead to complex alterations of the pheno-
type of tumor cells after inhibition of NFKB.

The activation of the NFKB pathway in HL makes 
curcumin an interesting drug for the treatment of HL. 
Indeed, curcumin induces cell death in HL cells. As 
shown in Figure 4A, incubation with curcumin leads 
to decreased cell viability in all HL cell lines tested 
whereas normal peripheral blood mononuclear cells 
(PBMC) are not affected by the used concentration of 
curcumin. Similar results were found by Mackenzie 
et al who showed that curcumin leads to cell cycle 
arrest in G2-M and reduced cell viability in Hodgkin 
and Reed-Sternberg cells.143
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Figure 4. curcumin inhibits growth of HL cells. A) HL cells from the 
indicated cell lines and peripheral blood mononuclear cells (PBMC) 
were incubated for 24 hours with 25 µM curcumin (Sigma, Taufkirchen, 
Germany). Cell viability was assessed by 2,3-bis-(2-methoxy-4- nitro- 
5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) assay (Roche, Man-
nheim, Germany). Shown are means and standard errors from 4 rep-
licates. B) Cells of the HL cell line L-428 were incubated with 1.25 µM 
curcumin or with carrier. The cells were treated with 6.25 and 12.5 µg/mL 
cisplatin (Sigma) or with the same concentrations of carrier (dimethylfor-
mamide). After 24 hours the cell viability was assessed using XTT assay 
(Roche). Shown are means and standard errors from triplicates.

In order to determine whether the combination 
of curcumin with conventional chemotherapy might 
have synergistic effects, HL cells were incubated 
either without curcumin or with a low dose (1.25 µM) 
of curcumin and varying concentration of cisplatin. 
The results are shown in Figure 4B. With the used 
concentration of curcumin, only marginal effects on 
cell viability were observed. In contrast, the combi-
nation of curcumin with cisplatin had a strong cyto-
toxic effect on the cells. However, inhibition of the 
Fanconi anemia (FA) pathway might be an important 
factor for the synergistic effect of cisplatin and cur-
cumin on HL cells. Ubiquitination of the FA comple-
mentation group D2 (FANCD2) protein in response 

to DNA damage is an important step during repair of  
cross-links in the DNA, caused by cisplatin. Chirno-
mas et al144 showed that curcumin inhibits the FA 
pathway by inhibition of ubiquituation of FANCD2. 
This inhibition sensitized ovarian and breast tumor 
cells for cisplatin.144 It remains to be shown whether 
similar mechanisms are responsible for increased cis-
platin sensitivity of curcumin treated HL cells. The 
HL cell lines used in our study outlined above were 

established from patients with refractory disease 
and are not perfect models for the situation in most 
patients in vivo. However, the increased cell death of 
these highly chemotherapy resistant cell lines after 
treatment with curcurmin seems to be encouraging.

Curcumin shares the NFKB-inhibitory  activity 
with another interesting dietary phytochemical: 
 capsaicin.145 Curcumin can bind the vanilloid recep-
tor TRPV1 (transient receptor potential cation chan-
nel, subfamily V, member 1), the same receptor that 
is activated by capsaicin.145 However, curcumin bind-
ing to TRPV1 did not result in the same signaling. 
TRPV1 is not the only receptor for curcumin and 
interestingly, curcumin can bind the aryl hydrocar-
bon receptor AHR.146 Many carcinogenic polycyclic 
aromatic hydrocarbons are carcinogens only after  
in vivo activation. Cytochrome P450 family member 
A1 (CYP1A1) is an enzyme which can catalyze this 
activation. Expression of CYP1A1 is induced after 
binding of AHR to polycyclic aromatic hydrocarbons. 

It was shown that curcumin can inhibit the CYP4A1 
inducing activity of the AHR.147 Binding to AHR and 
competition with aryl hydrocarbon derivatives might 
explain the chemopreventive activity of curcumin.147 
Probably more important for the cancer cell death 
inducing activity of curcumin is the third curcumin 
receptor, the vitamin D receptor.148,149

Vitamin D Receptors (VDR) 
and curcumin
Anti-neoplastic activities of vitamin D have been 
described, but epidemiological data also suggests that 
for some cancer types sunlight can reduce cancer risk 
independent from vitamin D.150 Curcumin increases 
apoptosis and differentiation of vitamin D-treated 
tumor cells.151,152 Direct binding of curcumin to the 
vitamin D receptor (VDR) was demonstrated.148 This 
binding allows VDRs to heterodimerize with the 
retinoic X receptor and translocate to the nucleus. 
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The complex can then activate gene transcription of 
vitamin D target genes.148

Recently, high expression of the VDR has been 
observed in HL biopsies.153 HL cell lines also express 
high levels of VDR (Fig. 5). Lymphoma cells can 
synthesize vitamin D154 and increased vitamin D lev-
els have been repeatedly reported in HL patients.155 
In addition, seasonal fluctuations of the prognosis 
of HL patients have been observed and discussed as 
being caused by fluctuations of endogenous vitamin D 
levels.156 Vitamin D can probably activate the NFKB 
pathway,157,158 but in most systems, vitamin D inhibits 
NFKB activation.159–162 In Jurkat cells with constitutive 
expression of VDR, no inhibition of NFKB by vitamin 
D was observed,163 suggesting that some tumor cells 
have inactivated this pathway. Interestingly, NFKB 
can inhibit VDR signaling.164 This cross-inhibition 
might explain the simultaneous high constitutive 
expression of VDR and activated NFKB in lymphoma 
cells. Stimulation of VDR by curcumin might shift 
this balance to the inhibitory activity of VDR.

Indirect effects of curcumin: 
Immunomodulation
Curcumin can reduce the number of myeloid-de-
rived suppressor cells,165 an important immuno-sup-
pressive cell population in tumors. Tumor patients, 
especially HL patients, often have a tumor-mediated 
dysfunction of the immune system. Experimental data 
suggest that curcumin is able to restore the immune 

 function in tumor-bearing hosts.166 On the other hand, 
induction of regulatory T cells might be increased in 
the  presence of curcumin,167 and the direct induction 
of apoptosis in activated T cells has been described.168 
As an anti- inflammatory agent, curcumin can sup-
press T cells.169,170

Such effects, however, might negatively affect 
anti-cancer immune responses. The balance between 
immunostimulation and -suppression might be depen-
dent on the concentration of curcumin.171 In the case 
of HL, the immune system is a double-edged sword. 
On the one hand, cytotoxic T cells can kill HL cells; 
on the other hand, T cells can provide survival sig-
nals for HL cells. The very low number of tumor cells 
and the presence of a high background of “normal” 
cells in HL indicate the importance of the interaction 
between tumor cells and the stroma. Whether cur-
cumin can shift the balance between tumor promoting 
activities and anti-tumor activities of T cells in HL into 
the direction of tumor destruction must be analyzed. 
HL is a disease with features of chronic inflammation 
and the accumulation of stroma cells by HL derived 
cytokines is an important factor for HL biology.172,173 

The anti-inflammatory activities of curcumin may be 
able to counteract this inflammatory stimulus.

Other curcumin Activities Related  
to HL Biology
Another interesting activity of curcumin is the suppres-
sion of histone deacetylases (HDAC).174,175 Reports 

Figure 5. expression of VDR in HL cell lines. RNA was isolated from HL cell lines and PBMC, reverse transcribed and used as template for polymerase 
chain reaction with specific primers for VDR (5'-gcc ttt ggg tct gaa gtg tc-3' and 5'-cag gct gtc cta gtc agg aga t-3'). The used primers recognize all three 
transcript variants of the human vDR (accession numbers NM_000376, NM_001017535, NM_001017536). PCR products were sparated by agarose gel 
electrophoresis in the presence of ethidium bromide. NTC: no template control.
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describe the inhibition of histon acetyltrasferases by 
curcumin without HDAC inhibition.176,177 In addition, 
curcumin has DNA methylation inhibiting activity.178 
Epigenetic regulation of gene expression by DNA 
methylation or histone deacetylation plays an impor-
tant role in HL biology. Treatment of HL cells with 
HDAC inhibitors can increase the sensitivity of HL 
cells to cytotoxic drugs.179 Treatment of HL cells 
with DNA methylation inhibitors can increase the 
expression of tumor antigens which might increase 
the recognition by the immune system.180,181 However, 
increased expression of factors involved in chemo-
therapy resistance might also occur after the treat-
ment of HL cells with such drugs.181

Interestingly, curcumin has been shown to inhibit 
transcription initiated by human immunodeficiency 
virus (HIV) type 1 long terminal repeats (LTR).182 
The activation of LTRs from endogenous retroviruses 
(ERV) in HL has been demonstrated. This activation 
can lead to the aberrant expression of oncogenes in 
HL.183 Whether curcumin can modulate the activity of 
ERV promoters in tumor cells is under investigation. 
If ERV activity is essentially involved in the patho-
genesis of HL, such ERV inhibition might reverse the 
malignant phenotype of the tumor cells.

A high percentage of HL carries copies of the 
Epstein Barr virus (EBV) in the tumor cells. Activation 
of the NFKB pathway by EBV seems to be involved 
in the pathogenesis of EBV positive HL. Curcumin 
can inhibit B cell immortalization by EBV.184,185 EBV-
immortalized B cells undergo pronounced apoptosis in 
the presence of curcumin which may inhibit the out-
growth of cell lines.185 In addition, it seems that oxida-
tive stress promotes B cell immortalization by EBV.186 
The anti-oxidant activity of curcumin might inhibit this 
effect in a similar way as it was shown for vitamin E.186 
Whether this activity can interfere with the EBV driven 
HL pathogenesis requires further investigations.

Additional HL related activities of curcumin have 
been described. For example, HL cells express the 
anti-apoptotic BCL-XL isoform of the B cell leukemia/
lymphoma 2 (BCL2)-like 1 (BCL2L1) oncogene.187,188 
Recently, a link between expression of BCL-XL and 
survival of HL patients has been suggested.189 Cur-
cumin can down-regulate BCL-XL.

190 Furthermore, 
curcumin is a topoisomerase II inhibitor with a similar 
activity as etoposide, a drug which is used for treatment 
of HL.191 In addition to the NFKB pathway, curcumin 

inhibits the STAT pathway (Table 1). This pathway 
is similarly important for HL cell proliferation and 
survival as the NFKB pathway and inhibitors of this 
pathway can induce apoptosis in HL cells.143,189,192–200  
Constitutive activation of the STAT pathway by 
rearrangements of the JAK2 have been described  
in HL.201 Taken together, curcumin targets several 
pathways in HL cells. The scarcity of the tumor cells in 
the tumors hampers the analysis of larger numbers of  
ex vivo isolated living cells. The number of estab-
lished HL cell lines is very low and these cell lines 
are not perfectly representative for the tumor cells in 
vivo. Whether curcumin or curcumin derivatives with 
better bio-availability can be used for the treatment of 
HL patients requires further investigation.

A number of microarray experiments of cur-
cumin treated cells and animals have been published 
(Table 2). These experiments indicate that the specific 
effects of curcumin on gene expression are depen-
dent on the investigated model. However, a model-
 independent common schema of curcumin activities 
can be seen. These activities include the shift from 
pro- inflammatory to anti-inflammatory gene expres-
sion signatures, the shift from anti-apoptotic to 
pro- apoptotic signatures, cell cycle inhibition, and 
down-regulation of pro-invasive factors (e.g., metal-
loproteinases). Such experiments might help to iden-
tify the relevant pathways which are involved in the 
biological effects of curcumin in the different models 
and may lead to the identification of new therapeutic 
targets.

Future Directions
The bio-availability of curcumin is limited by the 
rapid metabolism and the low water solubility of this 
phytoceutical. Curcumin is rapidly conjugated with 
sulfate or glucuronic acid in the gut and liver.230 In 
addition, reduction to tetrahydrocurcumin and hexa-
hydrocurcumin occurs.230 The resulting curcumin sul-
fate, curcumin glucuronide, and reduced curcumin 
derivatives can be found in the feces of curcumin 
treated patients.231 The curcumin metabolites have 
some biologic activities, for example tetrahydrocur-
cumin can inhibit the activity of multi-drug resis-
tance (MDR) transporters.232 However, enhanced 
excretion of  curcumin metabolites and the shorten-
ing of the half life of curcumin after conjugation are 
not desired. Inhibition of glucuronidation by piperine 

http://www.la-press.com


Curcumin and Hodkgin’s lymphoma

Cancer Growth and Metastasis 2013:6 45

Table 2. examples for DNA microarray experiments investigating the gene expression after treatment of cells or animals 
with curcumin or curcumin derivatives.

Models substances1,2 Important observations3 Ref.
head and neck cancer 
cells

curcumin decreased expression of MMP10 97

colon cancer cells curcumin regulation of cell-cycle-related genes; down-regulation of 
ReLA and MMP2

202,203

bladder cancer4 curcumin regulation of cell-cycle-related genes 205
endothelial cells demethoxycurcumin decreased expression of MMP9 and other angiogenesis-

related genes
206

lung cancer cells curcumin;
CLeFMA

decreased expression of MMP14 and other invasion-
related genes; down-regulation of microRNA-186*; 
up-regulation of genes related to cellular redox status

207–209

smooth muscle cells, 
peritoneal phagocytes

curcumin up-regulation of pro-apoptotic genes, cell adhesion 
molecules, and anti-inflammatory factors

210

breast cancer cells curcumin up-regulation of cell cycle inhibitors; complex regulation 
of apoptosis-related genes; down-regulation of pro-
inflammatory chemokines; down-regulation of EGF 
pathway

211–214

hepatic stellate cell line Curcuma oil down-regulation of interleukin 6 and TiMP2 215
colon5 curcumin strain-depended differences in regulated genes; reduced 

expression of pro-inflammatory genes
216–218

ewing sarcoma cells6 curcumin down-regulation of radiation-induced anti-apoptotic factors 220
pancreatic cancer cells curcumin regulation of microRNAs and microRNA-target genes 221
liver7 curcumin weak peroxisomal proliferator activity (in rats) 222
leukemia cells curcumin down-regulation of cell cycle regulators and JAK/STAT 

signaling
223

heart8 curcumin down-regulation of pro-inflammatory factors 224
liver cancer cells curcumin down-regulation of protein kinase C 225
microglia cell line curcumin up-regulation of anti-inflammatory factors 226
retinoblastoma cells curcumin regulation of multiple genes involved in apoptosis, 

cell cycle regulation, and angiogenesis; regulation of 
microRNAs and microRNA-target genes

227,228

blood cells9 curcumin down-regulation of pro-inflammatory factors 229
1cLeFMA, 4-[3,5-bis(2-chlorobenzylidene-4-oxo-piperidine-1-yl)-4-oxo-2-butenoic acid].
2in some investigations curcumin or curcumin derivatives were compared with other substances. 
3eGF, epidermal growth factor; JAK/sTAT, janus kinase/signal transducer and activator of transcription MMp2, matrix metalloproteinase 2; MMp9, matrix 
metalloproteinase 9; MMp10, matrix metalloproteinase 10; MMp14, matrix metalloproteinase 14; TIMp2, tissue inhibitor of metalloproteinases 2.
4in the cited publication the investigated cell line (eCv304) was used as a model for endothelial cells, but there is evidence that this cell line is identical to 
the bladder cancer cell line T24.204

5In-vivo models for inflammatory bowel diseases.
6in the cited publication the investigated cell line (SK-N-MC) was used as a model for neuroblastoma, but there is evidence that this cell line is derived 
from ewing sarcoma (Askin tumor).219

7In-vivo toxicology study.
8In-vivo model for myocardial infarction.
9In-vivo model for arthritis.

(the alkaloid from black pepper) has been shown to 
increase the bio-availability of curcumin.233

In addition to inhibition of glucuronidation, pip-
erine can inhibit the activity of MDR transporters.234 
On the other hand, increased expression of these 
trans porters after exposure to piperine has been 
observed.235 Together with the inhibitory effect 
of curcumin on MDR transporter expression and 
function,88,236 inhibition of MDR transporter function 
by piperine might counteract the effect of piperine on 

MDR transporter expression. In order to increase the 
solubility of curcumin, conjugation of curcumin with 
proteins or cyclodextrins have been tested.236,237 In 
addition, different types of nanoparticles, liposomes, 
and self- assembling polymers have been used for 
encapsulation of curcumin.238–240 Such formulations 
might finally overcome the bio-availability problem 
of curcumin.

Another interesting question that remains to be 
addressed is whether the effects of turmeric are only 
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mediated by curcumin or whether additional tur-
meric ingredients are involved. Early studies suggest 
that curcumin-free turmeric extracts also have can-
cer preventing activities.241,242 Indeed, differences 
between turmeric and curcumin in the regulation of 
pro-inflammatory genes have been described.243 The 
characterization of the factors that are responsible 
for biological activities of curcumin-free turmeric 
requires further investigations.
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