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Coarse-Grained Models Reveal Functional Dynamics - I. 
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Abstract: In this review, we summarize the progress on coarse-grained elastic network models (CG-ENMs) in the past 
decade. Theories were formulated to allow study of conformational dynamics in time/space frames of biological interest. 
Several highlighted models and their underlined hypotheses are introduced in physical depth. Important ENM offshoots, 
motivated to reproduce experimental data as well as to address the slow-mode-encoded confi gurational transitions, are also 
introduced. With the theoretical developments, computational cost is signifi cantly reduced due to simplifi ed potentials and 
coarse-grained schemes. Accumulating wealth of data suggest that ENMs agree equally well with experiment in describing 
equilibrium dynamics despite their distinct potentials and levels of coarse-graining. They however do differ in the slowest 
motional components that are essential to address large conformational changes of functional signifi cance. The difference 
stems from the dissimilar curvatures of the harmonic energy wells described for each model. We also provide our views on 
the predictability of ‘open to close’ (openÆclose) transitions of biomolecules on the basis of conformational selection 
theory. Lastly, we address the limitations of the ENM formalism which are partially alleviated by the complementary CG-
MD approach, to be introduced in the second paper of this two-part series.
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Introduction
Protein has a dynamic nature. Dynamics encoded in the evolutionally optimized (Leo-Macias et al. 
2005) structures are coupled with catalytic chemistry in facilitating protein functions (Eisenmesser et al. 
2002; Wolf-watz et al. 2004; Yang et al. 2005a). The ‘jiggling and wiggling’ atoms were understood in 
further depth when Koshland turned the ‘lock-and-key’ paradigm (Fischer, 1894) into an ‘induced-fi t’ 
fever (Koshland, 1958) along with the fi rst determined protein structure of sperm whale myoglobin by 
X-ray crystallography (Kendrew et al. 1958), in the same year. However, theoretical physics in long-
wait could not characterize such an intrinsic property of proteins, microscopically, despite accumulated 
X-ray-solved structures in the 60’s and early 70’s, until computational facilities were mature enough 
to accomplish the fi rst Molecular Dynamics (MD) simulation by Karplus and coworkers (McCammon 
et al. 1977). This seminal work described atomic motions following Newton’s 2nd law with an empir-
ical potential energy function and suggested a fl uid-like nature in the interior of the protein (McCammon 
et al. 1977).

Not before long, in early 80’s, Noguti T and Gō fi rst examined the fl uctuations of globular protein 
by a set of collective variables (Noguti T and Gō N, 1982). The new application of Normal Mode 
Analysis (NMA; Goldstein, 1950) to the protein BPTI deciphered the mode compositions of protein 
fl uctuations (motions in the range �30 cm–1 dominate the fl uctuations) and described crystallographic 
temperature (B-) factors (the degree of uncertainty in atomic positions) surprisingly well (Gō et al. 
1983; Brooks and Karplus, 1983). Domain motions at the active sites of lysozyme and ribonuclease 
were seen to occur in low frequency normal modes (Levitt et al. 1985). Within the small fl uctuations 
at the equilibrium (reached after energy-minimizing the crystal structure according to a given potential 
energy function), NMA approximates the complicated potential (comprised of multiple contributions 
including bond stretching, angle bending, dihedral, electrostatics and van der Waals) surface harmoni-
cally. The second derivatives of the potential (with respect to atom displacements), the Hessian, is 

http://creativecommons.org/licenses/by/3.0/.
http://creativecommons.org/licenses/by/3.0/.


26

Yang and Chng

Bioinformatics and Biology Insights 2008:2 

singular-value decomposed to obtain the normal 
mode shapes (eigenvectors) and frequencies (the 
square root of the eigenvalues). The analytical 
approach, solving the eigen-problem of the 3Na by 
3Na  Hessian matrix (Na is the number of atoms in 
the protein) greatly reduces the computation time 
for obtaining the equilibrium dynamics of protein, 
as compared to MD. The low-frequency (slow) 
modes containing a certain degree of anharmonic-
ity (Gō et al. 1983) not only are able to describe 
functional, confi gurational changes (Brooks and 
Karplus, 1985) but also help in the refi nement of 
X-ray structures (Kidera and Gō 1992a, b).

NMA usually yields robust results, especially 
in the low frequency regime, because the results 
are not subject to statistical errors or sampling 
inaccuracies (unlike those retrieved from MD). 
However, MD, which makes no assumption about 
the underlying potential surfaces and allows tran-
sitions across energy barriers (which anharmonic 
motions include), is dearly needed to describe non-
equilibrium dynamics involved in biologically 
important large conformational transitions, given 
a suffi cient duration of simulations (Kitao et al. 
1998; Arkhipov 2006a, b). However, the heavy 
computation of MD has limited its applicability to 
large biomolecular systems. The renaissance and 
further developments of coarse-grained MD (CG-
MD) models, able to overcome the computational 
limit at a decreased resolution while maintaining 
key dynamic features of described systems 
(Tozzini, 2005), made possible simulations up to 
tens of microseconds (see our review on CG-MD 
in this series).

NMA gained unprecedented popularity in the 
late 90’s along with two simplifi ed schemes that 
resulted in a huge reduction of computational cost. 
One is the introduction of the Elastic Network (EN) 
concept, using a much simplifi ed potential, being 
introduced by Tirion (Tirion, 1996) who proposed 
modeling molecules with their atoms within an 
interaction range being connected by Hookean 
springs of a universal strength. However, the fi rst 
use of the word ‘network’, interpreting protein as 
junctions and elastic connections, was pioneered 
by Bahar and coworkers (Bahar et al. 1997) who 
took the idea from polymer science (Flory, 1976), 
using only Cα atoms to represent the protein. The 
description of proteins in reduced presentations is 
the so-called Coarse-Grained (CG) approach. 
Slow modes derived from both schemes were 
found to agree well with slow modes obtained from 

the standard NMA that uses a much more detailed 
potential. The saving of computational cost is 
tremendous: GNM, Bahar’s model, required the 
diagonalization of a dimension-reduced Hessian, 
Γ (see below), which took 8.2 sec for T4-lysozyme 
(164 residues) on a single workstation (Bahar et al. 
1997), as compared to 3 days by NMA (see Table 
1) and much longer for nanosecond MD simulation 
for proteins of the same size to capture similar 
structural deformations.

Since then, the ease of programming and 
reduced computational cost due to the use of sim-
plifi ed potentials and smaller number of degrees 
of freedom resulted in wide-spread application of 
CG-EN models to deduce both the conformational 
dynamics of large structures and assemblies, 
including hammerhead ribozyme (Van Wynsberghe 
and Cui, 2005), CDK2/cyclin A (Dror and Bahar 
2005), citrate synthase (Hinsen, 1999), hemoglobin 
(Xu et al. 2003), HIV reverse transcriptase (Bahar 
et al. 1999; Hinsen, 1999), hemagglutinin A 
(Doruker et al. 2002), aspartate transcarbamylase 
(Hinsen, 1999), F1-ATPase (Cui et al. 2004), an 
actin segment (Ming et al. 2003), GroEL-GroES 
(Keskin et al. 2002), the ribosome (Wang et al. 
2004; Yang et al. 2006; Cui and Bahar, 2006) and 
viral capsids (Rader et al. 2005). Many intriguing 
biological systems as such, in a variety of sizes and 
extended applications (Tama et al. 2004; Leo-
Macias et al. 2005) of ENMs have been carefully 
reviewed (Case, 1994; Kitao and Gō, 1999; Ma, 
2005; Rader and Bahar, 2005; Tozzini, 2005). 
However, in-depth comparisons of the theories that 
underline the ENMs and their offshoots have been 
lacking.

In this review, ENMs (highlighted on Tirion’s 
model, GNM, ANM and RTB/BNM) are illustrated 
in suffi cient theoretical details: the basic hypotheses, 
the physical grounds, mathematical treatments and 
consequently achieved computational effi ciency. 
The well comprehended ENM foundations serve 
to interpret data obtained from comparisons 
between predictions and experimental results, 
namely the observed equilibrium and non-
equilibrium dynamics and those within ENMs 
themselves. Slow normal modes derived from 
different potentials and molecular resolutions are 
found robust within a subspace spanned by 5–6 
dimensions (Nicolay and Sanejouand, 2006) but 
not on a one-to-one basis between the models.

NMA-based models show different levels of 
accuracy (Tama and Sanejouand, 2002) when 
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examining the agreement between experimentally 
characterized large conformational changes and 
single slow-mode-driven structural deformations. 
These results together can be understood by motions 
taking place in harmonic energy wells with different 
curvatures approximated by different potentials and 
coarse-grained levels in the models. The profi le of 
potential of mean force also helps in understanding 
the origin of a better predicted openÆ close 

transition than the closeÆopen counterpart by 
ENMs, using the concept of conformational 
selections (Ma et al. 1999; Dror and Bahar, 2006). 
Lastly, benefiting from the statistical study on 
comparisons of X-ray B-factors, RMSDs of NMR 
ensembles and GNM, we recently reported how 
experimentally characterized dynamics can 
comprise (and be affected by) motional components 
in different frequencies (Yang et al. 2007) and how 

Table 1. Main features of CG-ENM. 

EN Models Nodes  Parameters in eq 1ζ Matrix  tH or tΓ* 
 represent  Dimension£

GNM Cαs E0  =  0, γ = c, wG = 1, wT = 0, n = N, Rc = 7–15Å N × N 1
(Bahar et al. 1997)    
CNM Cαs γ = 1 for |i – j| = 1and 0.1 for |i – j| ≠ 1; E0 = 0,  N × N 1
(Kondrashov et al.   wG = 1, wT = 0, n = N; Rc = 4 or 4.5Å (ab   
2007)  denotes atom a in i and atom b in j that   
  are the closest atoms between i and j)  
ANM Cαs E0 = 0, γ = c, wG = 0, wT = 1, n = N, Rc = 10–15Å 3N × 3N 27
(Atilgan et al. 2001)    
HENM Cαs E0 = 0, wG = 0, wT = 1, n = N 3N × 3N 27
(Hinsen 1998, 1999)    
βGM Cαs, Cβs γ = 1 for Cα–Cα and 0.5 for Cα–Cβ  and Cβ–Cβ;  3N ×  3N 27
(see Supplemental)   E0 = 0, wG = 0, wT = 1, n = 2N, , Rc = 7Å  
BENM  Cαs E0 = 0, wG = 0, wT = 1, n = N; γ and Rc are  3N × 3N 27
(see Supplemental)  obtained in minimizing KLD with 
  atomistic Hessian
DNM Cαs E0 = 0, wG = 0, wT = 1, n = N,  3N × 3N 27
(Kondrashov et al.   γ(|r →0

ij|) = 1/tr(Hd), d  = Rc = 2.3,   
2007)  3.3,5,7,9,11Å; ab denotes atom a in i and 

 
 

  atom b in j  
RTB/BNM blocks§ H from detailed potential 6nB × 6nB 216
(Durand et al. 1994/     
Li and Cui, 2002)    
Tirion’s atoms E0 = 0, γ = c, wG = 0, wT = 1, n =  Na,  3Na × 3Na 27000
(Tirion, 1996)†  Rc = 5.9Å  
DWNM  Cαs wG = 0, wT = 1, n = N, γ does not depend on  N/A N/A
(see Supplemental)  |r →0

ij| but is a function of conformer m¶;   
  Rc = 13Å

 
 

PNM atoms wG = 0, wT = 1, n =  Na, γ does not depend on  N/A N/A
(see Supplemental)  |r →0

ij| but is a function of conformer m¶;   
  Rc = 4.5–9.5Å 

 
 

QEDM  quantized  E0 = 0, γ = c, wG = 0, wT = 1, n = Nn, Rc = 13Å 3Nn ×  3Nn 27 (if 
(see Supplemental) nodes   Nn  =  N)

E E H R w wo
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∑ �
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1,

        

(eq 1);

†Note that standard NMA has Hessian of the same size as Tirion’s hence same diagonalization time.
§with user-defi ned number of atoms.
¶when the structure is in the energy well of the conformer m at a given external parameter λ.
ζc is constant; ab = ij if not stated otherwise; i and j denote residues if n = N, or atoms if n = Na; eq 1 is not applied for RTB.
£the dimension of the square matrix H or Γ; N and Na is the number of residues and atoms respectively; N ≈ 10 Na; nB  =  N if 1 residue 
per block; Nn is the number of quantized nodes.
*tH and tΓ are the time taken to diagonalize the H or Γ (all the modes) using the standard subroutine ; in relative unit as setting the time 
taken by GNM as unity.
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the findings can be of use to understand the 
frequency dispersions of the models themselves. A 
separate review article on coarse-grained molecular 
dynamics simulations is presented back-to-back so 
as to address the non-equilibrium structural 
transitions that are beyond the reach of herein 
introduced EN models, given their basic 
hypotheses.

Theory—The ENM Models

Atomic-ENM

Tirion’s model
To dispense with the problematic energy-minimization 
process prior to NMA while gaining computer 
effi ciency, Tirion proposes a model to connect atom 
pairs with Hookean springs with a universal force 
constant γ  (Tirion, 1996). The equilibrium structures 
are taken from the experimentally (X-ray or NMR) 
characterized structures assuming a zero energy. The 
resulting potential is a harmonic approximation that 
is much simplifi ed than sophisticated potentials 
(Fig. 1a) used in NMA involving multiple bonded 
and nonbonded terms, which may or may not be 
harmonic depending on the instantaneous 
confi gurations of biomolecules in question. The total 
energy E of a molecule is

 E H RTirion ij ij c ij
i j

Na

= −( ) −( )
=

∑ γ
2

0 2 0

1

� � �
r r r

,

  (1)

where 
G
rij

0  is the vector connecting atoms i and j at 
equilibrium, defi ned in the PDB structures. Atoms 
i and j in the molecule that contains Na atoms are 
connected by a Hookean spring if their separation 
is closer than a cutoff distance, Rc. H(x) is the 
Heaviside step function that is 1 when x � 0 and 
zero otherwise. Force constant γ  is chosen to opti-
mally scale with NMA results or experimental 
measurements, such as the temperature (B-) factors 
of X-ray characterized structures (Tirion, 1996; 
Bahar et al. 1997). ENM reproduces the frequency 
spectrum and the eigenvectors of low-frequency 
modes of NMA at a 10−3 computational cost of 
NMA’s (Tirion, 1996). The improved effi ciency is 
attributed to the absence of the initial energy-
minimization step required before applying NMA 
and accelerated computations for the force constant 
matrix (second derivatives of the potential) due to 

the simplifi ed energy function (Tirion, 1996). Rc 
was tested over values of 4.5, 4.9, 5.4 and 5.9 Å 
(including the sum of van der Waals radii, roughly 
3.4 Å, for contacting atoms) and in all cases gave 
satisfactory results (Tirion, 1996).

CG-ENM

GNM
GNM, developed by Bahar and coworkers (Bahar 
et al. 1997), differs from Tirion’s ENM in the 
following aspects. It was the first ENM that 
represents proteins with interacting ‘nodes’ at the 
amino-acid level (the CG scheme) while successfully 
reproducing X-ray B-factor data (Bahar et al. 1997), 
H/D exchange free energy costs (Bahar et al. 1998b) 
and 15N-NMR relaxation order parameters (Haliloglu 
and Bahar, 1999). Its potential employs the vector 
form of the displacement for node pair i and j under 
the isotropic assumption (�∆X ∆XT � = �∆Y ∆YT 
� = �∆Z ∆ZT � = (1/3) �∆R ∆RT �, T is 
transpose, see the Supplementary Material):

 E

H R

GNM ij ij
i j

N

ij ij c ij

= −( )
• −( ) −( )

=
∑ γ

2
0

1

0 0

� �
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r r

r r r

,

 
 (2)

or EGNM
T( )∆ ∆ ∆R R R= γ

2
Γ  (in matrix form) (3)

where ∆R  is the column vector of ∆
G
ri ; i runs 

over 1 to N for a protein of N residues; γ is again 
the uniform spring constant (force constant) and Γ 
is the N × N connectivity matrix (see Supplemen-
tary Material for details).

We can easily see the difference in the potentials 
of Tirion’s and GNM. The inner product of vector 
differences, instead of the scalar difference of the 
i-j pair separations, penalizes not only the 
translational but also the rotational displacement, 
which partially accounts for its better B-factor 
agreement over other ENM models (Cui and Bahar, 
2006).

The nodes in GNM are usually the Cα atoms of 
amino acid residues. Rc is generally set near or 
above 7 Å, the range of which covers the fi rst 
coordination shell (Bahar et al. 1997; Cui and 
Bahar, 2006; see also Discussion). From the basics 
of Statistical Mechanics, one can easily derive the 
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Figure 1. (a) The effect of simplifi ed potentials. The energy landscape outlined by the conventional force fi eld (detailed potential, as used 
by standard NMA) is drawn in thick lines. Simplifi ed potential, (in thin lines) as used in Tirion’s or CG-EN models, approximates the rugged 
potential surface crossing the local energy barriers. At coarse-grained level, the rugged potential can be described by RTB/BNM and the 
smoothed-out one by XNM {X = A, βG, C, D and HE ...}. Despite the difference between the two potentials, equilibrium dynamics character-
ized by X-ray and NMR can be well described by both potentials from which the derived slowest modes cover the slowest ends of experi-
mentally observed dynamics (see Discussion). In contrast, the slowest modes derived from the smoothed-out potential are slower than those 
derived from the detailed potential due to the narrower energy wells in the latter. As a result, large conformational transitions with high 
anharmonicity could be better predicted by the slowest modes derived from the simple elastic potential than by force-fi eld-based potential. 
The blue long dashed line joins the equal energy points of two CG energy wells as described by PNM (see Supplementary Material). (b) 
Similarity of the shape of hierarchical global potential envelopes. The thick lines indicate the actual detailed potential. The blue dotted 
line approximates the local energy well as in the standard NMA or ENMs. Green dashed and red dot-dashed lines approximate the potential 
envelopes at a higher hierarchy. The fractal-like similarity between the curvature of the local well and those of the potential envelopes at a 
higher hierarchy could account for part of the reason why NMA-based models, assuming a minimal structural deformation and approximat-
ing the potential of mean force harmonically at the equilibrium, can often predict large conformational changes reasonably well.
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following results (see Supplementary Material for 
details)
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where �∆
G
ri

2
�is the ensemble average of the 

squared displacement of node i from equilibrium. 
Clearly, in GNM, only the magnitude square (the 
variance from the mean) of fl uctuation is obtained 
due to the isotropic assumption and therefore the 
directions of the motions are not predicted. One 
should note that Γ has a rank of N-1. The diago-
nalization of matrix results in one zero eigenvalue 
and the associated trivial mode accounts for the 
rigid-body translation of the entire molecule. 
Therefore the Γ–1 is a pseudo-inversion that is the 
sum of all the non trivial-modes. The covariance 
for pair i-j can be rewritten as

 ∆ ∆ Γ
� �
r r

u u

i j
B

ij

B
k k k

T

ij
k

k T

k T

⋅ =
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−

−∑

3

3

1

1

γ

γ
λ

( )  
(5)

λk
−1  is the reciprocal of the kth nonzero eigenvalue 

(the frequency square of the kth mode) solved for Γ. 
The slowest mode (the 1st mode, with the lowest 
frequency) that has the most dominant contribution 
to the entire fl uctuation is along the eigenvector uk  
that is led by the biggest λk

−1 . The slowest modes 
describe functional motions that are to great 
biological interests (Bahar et al. 1998a; Yang et al. 
2005a). In addition, it is known from crystallography 
that the isotropic B-factors are proportional to the 
sizes of the fl uctuations. That is

 Bi = (8π2/3) �(∆ �
r i)

2
�  (6)

Hence, B-factors can be predicted from GNM 
whereas the needed spring constant is obtained as 
scaling the predictions to match up with the exper-
iment, namely the magnitude of B-factors, assuming 
internal atomic fl uctuations fully account for struc-
tural uncertainties (Bahar et al. 1997; Cui and Bahar, 
2006). The correlation between theories and exper-
iments on the B-factors is found around 0.6 for a 
wide range of cutoffs and temperatures (Yang et al. 
2006, supplementary material) and is 0.65 if crystal 
contacts are considered (Kundu et al. 2002).

CNM, an isotropic model extended from GNM, 
has reported a 0.74 correlation with B-factor 
profiles (Kondrashov et al. 2006) of 98 high 
resolution (�1.0 Å) structures while employing a 
few modification schemes including crystal 
contacts (also reported previously by Kundu et al. 
2002), residue contacts determined in atomic level 
while maintaining a N × N connectivity matrix (Γ) 
and enhanced force constant for backbone 
connections by a factor 10 (Kondrashov et al. 
2006).  More details can be seen in the 
Supplementary material.

ANM/Hinsen’s CG-ENM
The ‘restoration’ of predicted fl uctuations from 
1-D (magnitude only) to 3-D came no later than 
1998, pioneered by Hinsen (Hinsen, 1998). 
Hinsen’s ENM (HENM) is carried out at the 
residual level, the potential adopts the same form 
as Tirion’s except for the spring constant being 
in exponential decay with increasing residual pair 
separations. The decay corresponds to a weakened 
interaction between pairs far apart which simply 
refl ects the physicochemical reality, although 
there is no specifi c reason why an exponential 
form has to be taken (Hinsen, 1998). The 
suggested form is

 γ
G

G
r

r
ij

ij
c

r
0

0 2

0
2( ) = × −

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟
exp  (7)

The parameter r0 is set at 3–7 Å so as to best repro-
duce the low frequency normal modes obtained with 
the AMBER force fi eld (Hinsen, 1998; Hinsen et al. 
1999); c is a scaling factor. The design eliminates 
the need for assigning a cutoff distance (or inter-
changeably in this article, cutoff) as in other ENM 
models. However, an updated version of γ( )�rij

0  takes 
a stronger interaction for residue pairs in separation 
less than 4 Å, the range of which covers well the 
backbone neighbors. The spring constant for Grij

0  
above 4 Å now decays with 1/r6. This format is 
proved to better approximate the long-time dynam-
ics of proteins (Cui and Bahar, 2006).

Following a different path of derivation, Atilgan 
obtained the same result that differs from Hinsen’s 
only at the spring constant being set as constant 
for simplicity hence the need to assign a cutoff 
distance of interactions (Atilgan et al. 2001). ANM 
is basically the CG version of Tirion’s ENM except 
in assuming uniform mass for each amino acid (or 
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bead) as done in HENM. HENM and ANM basi-
cally solve an eigen-problem involving a 3N × 3N 
force constant matrix (the second derivatives of 
the potential, see below), the Hessian (H) that 
contains N × N super elements Hij (each super ele-
ment is of dimension 3 × 3)

 H r
r

ij ij

ij

ij ij ij ij ij ij

ij ij ij ij ij ij

ij

x x x y x z

y x y y y z

z

�
�

0

0 2( ) = −γ

xx z y z z

H R i j

ij ij ij ij ij

c ij

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−( ) ≠
�
r0 for 

  (8)

 H Hii = − ≠
=

∑ ij i j
j

N

1

 
 (9)

The form is derived from the second derivatives 
(with respect to the node displacements) of the 
potential. Here, xij, yij and zij are the components of G
rij

0 . Six zero eigenvalues and associated eigenvectors 
obtained from diagonalization of the Hessian stand 
for the six degrees of freedom of rigid-body 
translation/rotation. The 3N-6 non-trivial 
eigenvectors that give sizes and directions of 
motions for nodes in each mode are obtained.

As for the effi ciency, Hinsen’s Hessian is less 
sparse than ANM’s and therefore takes minimal 
advantage of the regular sparse matrix solver hence 
a slower computation than ANM, despite similar 
low-frequency modes being obtained in both (Cui 
and Bahar, 2006). DNM, a modifi ed version of 
ANM, which uses distance-dependent force 
constants (hence the name Distance-based Network 
Model; Kondrashov et al. 2007b), was reported to 
have an improved prediction on Anisotropic 
Displacement Parameters (ADPs) over ANM 
(Kondrashov et al. 2007). More details are 
available in the Supplementary Material.

RTB/BNM
The collective motions seen in low-frequency 
normal modes often occur at the levels of residues, 
secondary structures, or even domains. It provides 
the physical motivation to describe such motions 
as rigid-body translations/rotations of blocks 
(RTB) of atoms (Fig. 2a), the mathematical treat-
ment of which is the projection of the 3Na by 3Na 
atomistic Hessian into a small 6nB × 6nB block-
matrix, where Na is the number of atoms and nB is 
the number of blocks chosen for the molecule in 
question (see below).

Although Bahar physically coarse-grained 
proteins, Sanejouand and co-workers were among 
the first to coarse-grain the protein at the 
mathematical level as early as 1994 by breaking 
up the protein into residue blocks (the building-
block approach) while introducing rotation-
translation basis into the atomic Hessian (Durand 
et al. 1994). With the eigen-problem solved at a 
reduced dimension, RTB makes the dynamic 
analyses of supramolecules computationally 
tractable, in the same spirit as other CG models. 
The analysis on a series of proteins of various sizes 
is made possible and demonstrates a good 
reproducibility of standard NMA results especially 
in the low-frequency spectrum. (Tama et al. 
2000).

Atomistic Hessian herein, H, of size 3Na × 3Na, 
is fi rst computed and stored. The projection matrix, 
P, of size 3Na × 6nB, comprising six local 
translation/rotation vectors of blocks (and the 
degrees of freedom of each block sum up to Na, 
see Fig. 2b), is prepared for the subsequent 
projection (the detailed formula for P can be found 
in Li and Cui, 2002). A block, although can be a 
cluster of any number of atoms, is often chosen to 
consist of atoms of a single or several consecutive 
residues in sequence (Tama et al. 2000). The 
projected Hessian,

 H P HPb = T  (10)

of size 6nB × 6nB, usually 25 fold smaller in 
memory storage and therefore 125 fold faster in 
computation than H (consider 1 block = 1 residue ≈ 10 
atoms and in one dimension, 3Na/6nB ≈ 5), is 
diagonalized to give 6nB eigenvalues and eigenvec-
tors (Fig. 2b). The corresponding 3Na atomic 
displacements can then be approximated by 
projecting the solutions from a reduced dimension 
back to the full dimension as

 A PAp b=   (11)

Here, Ap is the approximated eigenvector matrix 
(3Na × 6nB) of H, which consists of 6nB slowest 
normal modes and can be projected from Ab 
(6nB × 6nB), the eigenvector matrix of Hb, with 
multiplying the projection matrix P.

The Block Normal Mode (BNM) approach is 
basically the same as RTB, yet employs a better 
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computational implementation such that the 
required atomic Hessian elements for constructing 
the ‘blocks’ are computed on the fl y and the big H 
never has to be stored (Li and Cui, 2002).

Note that approaches such as RTB/BNM are dif-
ferent from other CG-EN models on two aspects. 
RTB and BNM inevitably need the preliminary 
energy minimization, as the standard NMA, before 
building the atomic Hessian elements. Moreover, the 
harmonic potential they describe, despite being 
blocked, is less smoothened out than models such as 

GNM or ANM that have a physically coarse-grained 
elastic potential (Fig. 1a, see also Discussion).

Other EN Models such as backbone-enhanced 
elastic network model (BENM), β Gaussian Model 
(βGM), quantized elastic deformation model 
(QEDM), plastic network model (PNM), double-
well elastic network model (DWNM) and models 
based on linear response theory, also to readers’ 
great interest, are introduced in the supplementary 
material. Their potentials and resulting properties 
of Hessians are summarized in Table 1.

(a)

(b)

Figure 2. (a) Each block in the molecule is a rigid body that is subject to local translations/rotations (T/R) described by 6 T/R eigenvectors. 
The fi gure is reproduced from Durand et al. (1994) (b) The atomic Hessian matrix is expressed in a reduced basis for each coupled or 
diagonal block. Block i and j has Na,i and Na,j atoms, respectively. Ui (part of the P matrix) is a Na,i by 6 matrix that consists of 6 T/R vectors, 
representing the rigid body motions of block i. The atomic Hessian elements for blocks i and j is projected to a 6 × 6 reduced Hessian Hij

b 
using the equation H U H Uij

b
i ij j= T . Superblock, used in BNM, comprises several blocks. The Hessian elements within each superblock is 

computed on the fl y and then projected to reduced dimension with P. The fi gure is reproduced from Durand et al. (1994) and Li and Cui, 
(2002).
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Online access of the CG-EN models and 
NMA results
Web services for GNM (Yang et al. 2005b, 2006), 
ANM (Eyal et al. 2006), NMA (Wako et al. 2004) 
and others (see a review by Xiong and Karimi 
2007) are developed in recent years to facilitate a 
high-throughput analysis on conformational 
dynamics via ‘biologist-friendly’ interfaces.

Discussion
The section is composed to fi rst analyze the basic 
assumptions of EN models, the nature of the nor-
mal modes that are derived from them and the 
nature of the experimental observations that are 
often compared with ENM-derived predictions and 
eventually answer the question—which EN model 
is the ‘best’?

The essence of the cutoffs
The cutoff distance (Rc) is usually set to take 
account the physical reality and save the computa-
tion cost on those negligible interactions for atom 
pairs far apart (Leach, 2001). For Tirion’s ENM or 
ANM, Rc was fi rst chosen to best reproduce the 
frequency spectrums of NMA or GNM respectively 
(Tirion, 1996; Atilgan et al. 2001) whereas in 
GNM, it was chosen to include the contacts within 
the fi rst coordination shell defi ned by the Cα-based 
radial distribution function (Bahar et al. 1997). 
However, Yang has shown that a range of Rc from 
7 to 15 Å simply renders statistically identical cor-
relations with B-factors over 1250 nonhomologous 
proteins (Yang et al. 2006). The robust isotropic 
nature of time-average fluctuations was also 
reported in Eyal and Kondrashov’s studies (Eyal 
et al. 2007; Kondrashov et al. 2007).

Taking the correlation with B-factors of 
Protein/DNA/RNA biocomplexes as a function of 
residue-residue contact distance (Rc), nucleotide-
nucleotide contact distance (Rp), residue-nucleotide 
contact distance ((Rc + Rp)/2) and the number of 
beads (from 1 to 3) used to represent a nucleotide 
given one bead per protein residue, Bahar and 
coworkers found that the result was maximized at 
Rc = Rp = 7 Å given 3 beads per nucleotide which 
is known to be roughly 3 times heavier than an 
amino acid (Yang et al. 2006). The setting of 3-
nodes-per- nucleotide (P, C4* in the sugar and C2 
in the base) plus 1-node-per-residue also made 
nodes distributed more evenly within the shape of 
the molecule than other settings.

The use of cutoff distance in these models 
simply serves to measure the local packing density 
(Halle, 2002) which is the counts within a fi xed 
volume (consequently a fi xed cutoff distance). The 
concept herein has been widely used in classical/
statistical mechanics for sampling particle 
properties at a coarse-grained level (Nitzan, 2006). 
Mixed cutoff schemes, as fi rst attempted in the 
study above, do not sample such a density in equal 
volume while the packing density is known to have 
a dominant contribution to residue fl uctuations 
(Halle, 2002; Cui and Bahar, 2006; Yang et al. 
2006). Biased local density sampled leads to an 
unphysical Hessian that preserves no cutoff 
information, causing impaired predictions. Hence, 
as long as the employed cutoff renders a good 
representation of local features (not too small for 
nodes to ‘see’ only the backbone neighbors or too 
wide for all the nodes to be connected together), 
similar prediction results for isotropic data are 
faithfully obtained. We should also note that 
anisotropic vibrations are more sensitive to 
employed cutoffs hence models based on detailed 
potentials giving better predictions for ADPs than 
ANM does (Kondrashov et al. 2007).

Slow modes rather than fast modes are robust
Nicolay and Sanejouand asked how many normal 
modes are needed for a given NMA-based model 
to describe the normal modes obtained from other 
protein models that use different potential and 
coarse-grained schemes. The results suggested that 
5–6 Tirion’s EN modes in the lowest frequencies 
are enough for the description of a few slow modes 
obtained with the all-atom CHARMM potential 
(Nicolay and Sanejouand, 2006). The invariant 
nature of a robust subspace spanned by 5 to 6 normal 
modes was again seen in the crosscheck over the 
other two CG-EN models, including ANM (Nicolay 
and Sanejouand, 2006). Moreover, low-frequency 
subspace from essential dynamics analysis is found 
to be spanned well by a few low-frequency normal 
modes (Rueda et al. 2007). In fact, similar slowest 
(1st ) modes can be obtained through a hierarchy of 
coarse-grained (HCA) schemes for a given EN 
model (Doruker et al. 2002; Ming et al. 2002).

Proteins with a similar architecture encode 
similar conformational dynamics, as natural as one 
might expect. However, slow components are more 
robust against structural variations than the fast 
ones (Keskin et al. 2000; Cox et al. 2007). Quan-
titatively speaking, a 2.1 Å RMSD between two 



34

Yang and Chng

Bioinformatics and Biology Insights 2008:2 

structures of the same protein, separately solved 
by X-ray and NMR, gives a correlation of 0.94 
(statistical average) between their slowest-mode 
profi les that are derived from GNM (Yang et al. 
2007). The insensitivity to minor structural changes 
is understood to stem from the collective nature of 
the low-frequency modes. The collective oscilla-
tion is a joint effect of many interacting pairs, 
summed up to approach a universal form that is 
governed by the central limit theorem, regardless 
of the details of pair positions or potentials (Tirion, 
1996; Atilgan et al. 2001). Another interesting 
observation made by ANM combined with a struc-
tural perturbation method is that low modes are 
robust to sequence variations or in other words, 
insensitive to mutations (Zheng et al. 2006).

Magnitude rather than directions of fl uctuations 
is a robust feature
On the other hand, the fl uctuation magnitude is 
better predicted than the direction of the motions. 
Kondrashov used fi ve different CG-EN models 
including BNM using the CHARMM potential 
t o  e x a m i n e  t h e i r  a g r e e m e n t  w i t h 
crystallographically characterized isotropic and 
anisotropic dynamics (Kondrashov et al. 2007). 
The result showed almost the same correlation 
between the predicted time average magnitude 
and the reported isotropic fl uctuations for the fi ve 
models, whereas the predictions on the reported 
directions of motions are shown to be model-
dependent (Kondrashov et al. 2007). Bahar and 
coworkers confi rmed the same observation in a 
systematic study on a collection of ADPs (see 
the DNM model in Theory) reported in 93 high-
resolution PDB structures and found the sums of 
the diagonal elements (the magnitude) in the 
inverse Hessian to agree better with experiment 
than the off-diagonal elements (indicating the 
directions) (Eyal et al. 2007). In fact, Kondrashov 
and Eyal found experimentally reported ADPs 
are highly refinement package dependent 
(average anisotropy given by Refmac is 0.64 and 
is 0.51 by SHELX; Kondrashov et al. 2007) and 
greatly sensitive to the forms of crystal packing 
symmetry (substantial difference in ADPs 
reported for the same proteins packed in different 
space groups; Eyal et al. 2007). One should note 
that a model that is tuned to best predict the 
directions of motions does not necessarily best 
descr ibe the magnitude of  the motions 

(Kondrashov et al. 2007; Eyal et al. 2007), 
indicating strong experimental artifacts. Use of 
ANM to predict RMSDs of the 64 NMR 
ensembles also found better agreements in the 
magnitude (0.69) rather than the directions (0.62) 
(Yang et al. 2007). The better reproducibility in 
the magnitude rather than the directions is not 
only seen between experiment and theory but 
also between theoretical results (Cox et al. 
2007).

Understanding dynamics hidden in the electron cloud
In X-ray crystallography, the iso- and anisotropic 
B-factors are obtained via a fi tting process to posi-
tion the atoms that best represent the electron 
density distribution. They have been understood 
more as the structural uncertainty (or errors) rather 
than quantization of dynamics. The diffi culty to 
fully count B-factors as dynamic quantities is that 
they contain strong contributions from the crystal 
packing. In the early 90’s, Kidera and Gō have 
shown through the use of the standard NMA that 
the external contribution (58%) to the B-factors 
are actually larger than the internal ones (42%) in 
human lysozyme (Kidera and Gō 1992 a, b). As 
EN models describe internal fl uctuations, only, 
how can a model like GNM score a good correla-
tion with B-factors?

The reason is explained as follows. We have to 
note that GNM is a 1-D model that motions are 
carried out in the 1-D magnitude space with a 
rigid-body translational shift (the trivial mode led 
by a zero eigenvalue) for the entire molecule. 
B-factors can therefore be fi tted as
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Where r ri mc
→ →and  are the position vectors of atom i 

and mass centroid of the molecule respectively. This 
is the minimal fi tting scheme using the least param-
eters. Of course, due to the heterogeneity in the 
crystal, popular models (Winn MD et al. 2001) using 
more parameters is quite understandable. Also, if 
considering how each mode could be excited by 
different crystal packing forms, a modifi ed version 
of the above equation would be to parameterize the 
contribution of each normal mode (Song and Jerni-
gan, 2007). Both the rigid-body rotation G G

r ri mc−( )2  
and internal vibrations ∑ ⎡⎣ ⎤⎦

⎛
⎝⎜

⎞
⎠⎟=

−

k

N

k k k
T

ii2

1λ u u  contribute 
to the shape of the theoretical profi les. However, 
most of the comparisons between ENM-derived 
internal fl uctuations and B-factors are done without 
considering such a contribution of rigid-body 
rotation (Kondrashov et al. 2007; Eyal et al. 2007). 
This could be part of the reason that 3-D ENM 
models compare slightly worse with B-factors than 
1-D models do (such as GNM and CNM) on top of 
the acknowledged fact that GNM penalizes the 
rotational deformation when 3-D ENMs do not (see 
the GNM subsection in Theory; Bahar, 1997; Cui 
and Bahar, 2006).

Understanding NMR characterized dynamics
NMR characterizes protein structure and dynamics 
in the solvated state. Predictions from ENMs have 
been in a good agreement with such NMR-char-
acterized dynamics, namely the order parameters 
(Yang and Kay, 1996), derived from NMR relax-
ation data (Haliloglu and Bahar, 1999; Ming and 
Bruschweiler, 2006). Accordingly, Chen recently 
uses such quantity as a benchmark to rationally 
select ensembles from MD snapshots that best 
reproduce the order parameters (Chen et al. 2007). 
In addition, it is interesting to see that GNM has a 
0.74 correlation with the RMSDs of NMR ensem-
bles as opposed to a 0.59 correlation with the B-
factors of their X-ray counterparts (same proteins 
alternatively solved by X-ray). Deleting the slow-
est GNM mode that contributes to the time-average 
fl uctuations and then comparing with the same 
aforementioned quantities leaves the correlation 
with X-ray unchanged but dramatically decreases 
the correlation with NMR, indicating the differ-
ences in the spectrum of modes accessible in solu-
tion and in the crystal environment. Specifi cally, 
large amplitude motions sampled in solution are 
subdued in the crystalline environment of X-ray 
crystallography due to the restraints from crystal 

contacts (Kundu et al. 2002) and low temperatures 
(Yang et al. 2007).

Refi ned NMR conformers are obtained from 
simulated annealing runs and energy minimization 
(Brünger, 1991a, b) over the detailed potential 
surface defi ned by the target function (Schwieters 
et al. 2003) that comprise both the empirical force 
fi eld and NMR restraint-derived penalty terms 
(Yang et al. 2007). Although more studies are 
needed for a clear understanding of the correlation 
between NMR and GNM, surprisingly, anharmonic 
procedures as such to populate the NMR conform-
ers in distributed local wells can be approximated 
by GNM that uses simplifi ed elastic potential. The 
statistical result suggests NMR ensembles should 
not be deemed solely as the range of ‘errors’ in 
structure determination but more as a set of con-
formations accessible to the molecule in question 
under the experimental conditions.

Open-to-close transitions being better predicted than 
contrariwise
There have been studies showing protein openÆ 
close transitions (meaning that the open form of the 
structure is used by NMA- or MD-based models to 
generate low frequency normal or PCA modes in 
order to compare with experimentally identifi ed 
structural transition vectors) are better predicted than 
their closeÆopen counterparts in quite a few systems 
including adenylate kinase (Temiz et al. 2003; 
Miyashita et al. 2003; Maragakis and Karplus, 2005), 
citrate synthase (Hinsen, 1999), LAO binding protein 
(Tama and Sanejouand, 2001), hemoglobin TÆR2 
transition (Xu et al. 2003) and E. coli ABC Leu/Ile/
Val transport system (Trakhanov et al. 2005). A 
systematic study over 10 structure pairs (open/close) 
further confi rmed this intriguing tendency (Tama and 
Sanejouand, 2001). The statistics in average, when 
ANM is used, is 0.58 and 0.43 for openÆclose and 
closeÆopen, respectively (Tama and Sanejouand, 
2001). The trend does not seem altered when 
different models or potentials are used. For adenylate 
kinase, which undergoes large, functional 
conformational transition that is crucial for life-
related signaling cascades when triggered by 
hormone or metabolite cues, the correlations between 
prediction and experiment for openÆclose transition 
when simplifi ed or detailed potentials are used in the 
ENM are 0.62 and 0.53 respectively, while those for 
closeÆopen are 0.38 and 0.37, respectively (Tama 
and Sanejouand, 2001).
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The reason is explained in Figure 3. The concept 
of conformational selection (Ma et al. 1999; Dror 
and Bahar, 2006) states that protein binds its 
ligands/substrates at its preexisting equilibrium 
state and therefore a certain conformational state 
is ‘selected’ or being ‘locked up’. Hence, an 
unbound structure has natural tendency to deform 
along the slowest normal modes to a state that 
resembles the bound conformation before the 
ligand comes in and locks the very state. For struc-
ture in the bound state, new contacts (or bonds) are 
formed not only at the binding site but also 
throughout the distal domains. The newly defi ned 
architecture due to altered pair contacts gives a 
Hessian distinct from that of the open state. The 
‘open’ structure is therefore hardly found along the 
smoothest path (at the lowest energy cost) of the 
narrowed energy well (see Fig. 3) of the ‘close’ 

structure. The disallowed returning journey back 
to ‘open’ is permitted again upon the ligand release/
bond breakage or the second incoming chemical 
cues.

Which CG model is the best?
Since the late 90’s people regained interest in 
NMA-based models, due to aforementioned sim-
plifi cations, the initial of ‘X’NM has had a decent 
coverage over the 26 alphabets. A natural question 
that arises is: which one is the best? To answer this, 
we shall fi rst defi ne what ‘good’ is? For a long time, 
‘good’ has been acknowledged as reproducing (1) 
results derived from detailed, atomistic potentials 
(NMA or MD) and/or (2) experimental results 
(spectroscopic data, free energy measurements 
etc). Depending on the type of questions in study, 

open unbound

close unbound

close bound

: Protein

: Ligand

∆G

(protein at the transition state)

: Newly formed
residue contact

Figure 3. Conformational selection (Ma et al. 1999; Dror and Bahar, 2006) explains why open → close is easier predicted than close →
open. Assuming only the protein takes the conformational change but ligand does not in either the bound or unbound state, the binary sys-
tem, ligand + protein, evolves along the energy landscapes defi ned by (1) protein conformational change (with or without the contact of 
ligand) and (2) the binding energy ∆G, only. The conformational change is approximated harmonically by either atomic- or CG-ENM. “Close 
bound” state herein is referred to as ‘close state’ in the literature. Protein at the ‘open’ state access a close but unbound state (Dror and 
Bahar, 2006) along the smoothest deformational path (thin line), namely the slowest few normal modes. The protein in the disfavored “close 
unbound” state may further change the conformation a bit as being ‘induced’ by the ligand which then draws the whole binary system down 
to a new energy funnel at the big ∆G relief, in the end of the ligand docking. Since the architecture of protein is redefi ned by the newly formed 
contacts (Fig. 1 in Tama and Sanejouand, 2001), in either the “close unbound” or “close bound” (more so) state, the energy profi les (dash 
and solid lines, respectively) change their shape and curvature (mostly narrower) and the groups of atoms that undergo collective motions 
in the path open → close may not be identifi able again in the path close → open as NMA being performed on both of these close states. Not 
until the catalytic reaction on the substrate is complete or the ligand is released upon other chemical cues and in turn ‘pushes’ the structure 
back open, anharmonically, does the protein architecture resume its ‘open’ state again.
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(1) and (2) are not necessarily always the same 
thing (see below).

Great efforts have been expended on CG-mod-
els to reproduce the results obtained from detailed  
(force-fi eld-based) potentials (Hinsen, 1998; Tama 
et al. 2000; Li and Cui, 2002). The coarse-grained 
schemes therein seem motivated from a purely 
computational point of view. Is there any physical 
insight gained from coarse-graining and its con-
comitant simplifi ed potential used, besides the 
mathematical convenience?

Simplifi ed and detailed potentials
Although slow normal modes derived from 
different potentials and molecular resolutions are 
found robust within a subspace spanned by 5–6 
dimensions (Nicolay and Sanejouand, 2006), the 
correspondence between modes of different 
models is not on a one-to-one basis. Kondrashov 
examined fi ve CG models and found that BNM/
RTB (using detailed potential) gave lower mode-
to-mode correspondences with the other three 
CG-EN models investigated in the study than 
those within CG-ENM themselves: 15–25% lower 
in the lowest 17 modes (Kondrashov et al. 2007: 
Fig. 3, statistical results from 83 proteins). In fact, 
ANM and BNM showed the largest differences 
in the study: ‘only’ 0.6 to 0.7 agreements were 
seen between them in the slowest three modes 
(Kondrashov et al. 2007). Tama and Sanejouand 
also demonstrated that the simple potential used 
in ANM actually outperformed the detailed one 
used in RTB in predicting the protein openÆclose 
conformational transitions for 4 out of 5 proteins 
(Tama and Sanejouand, 2001).

On the other hand, ANM and BNM show identi-
cal accuracy in reproducing isotropic displacements 
(B-factors) although BNM outperforms ANM in 
predicting ADPs (Kondrashov et al. 2007). Note 
that to predict B-factors or ADPs requires a sum-
mation of all the normal modes. A question that 
follows is why the sum of all the modes of ANM 
and BNM agree with B-factors equally well when 
they differ in their slow modes that should contrib-
ute the most to overall fl uctuations?

Recently, Bahar and coworkers demonstrated 
that deleting the slowest mode of GNM does not 
deteriorate its theoretical agreement with crystal-
lographic B-factors due to the slowest motions 
being restrained by crystal contacts at low tem-
perature (Yang et al. 2007). A subsequent study 

along this line, for the same set of 64 proteins, has 
shown that consecutive deletions of the slowest 
8th modes in ANM and �140th modes in Tirion’s 
model are needed before a reduced agreement with 
B-factors can be seen (unpublished data). This 
indicates that the lowest frequency components are 
not required for a good prediction of isotropic 
motions of molecules in the crystal although add-
ing those components back barely (if any) decrease 
the correlations. This more or less explains why 
almost all the models give reasonable predictions 
on B-factors.

Coarse-grained and fi ne-grained ENMs
GNM, ANM and Tirion’s ENM have different 
curvatures in their ‘slowest’ harmonic wells, the 
curvatures of which are simply captured by the 
second derivatives of the potentials in the 
Hessian(s) spanned by the slowest mode(s). How-
ever, they show nearly identical accuracy to 
reproduce B-factors (Eyal et al. 2007). The reason 
of that can be understood similarly as for simpli-
fi ed and detailed potentials. The study in infl uenza 
virus hemagglutinin A (Doruker et al. 2002) 
nonetheless shows that reduced representations 
of molecules produce similar shape of slow mode 
profi les. In fact, the slower the modes are, the 
more similar they are with each other across a 
hierarchical, reduced representation. Other evi-
dence shows that the slowest 50 modes derived 
from fine-grained model (Tirion’s) or from 
coarse-grained model (ANM) can drive the dock-
ing of high-resolution structures into the corre-
sponding low-resolution electron-density maps 
(Tama et al. 2004; Delarue et al. 2004; Hinsen 
et al. 2005) equally well in the Normal Mode 
Refi nement (Kidera and Gō, 1992a, b).

Harmonic approximations of potentials used in ENMs
The observed difference between detailed-
potential- and simplifi ed-potential-derived normal 
modes is a natural result of harmonic approxima-
tions taken at energy minima with different 
curvatures. The difference remains even when the 
atomistic Hessian being projected into reduced 
subspace in the RTB/BNM.

So, which model is the best? For structures 
staying near their equilibrium states where the 
dynamics can be characterized by NMR or X-ray, 
almost all the models perform equally well. GNM 
and Tirion’s ENM predict the size of RMSDs of 
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NMR ensembles equally well (0.74) and slightly 
outperform ANM (0.68) (Yang et al. 2007) whereas 
GNM, ANM, Tirion’s ENM, βGM and standard 
NMA predict isotropic B-factors (or the trace 
magnitude of the anisotropic fl uctuations) equally 
well with a correlation from 0.55 to 0.59 when the 
crystal contacts are not taken into account (Yang  
et al. 2006; Eyal et al. 2007).

Large conformational transitions that span 
across multiple local wells or a hierarchy of energy 
wells are beyond the reach of harmonic approxima-
tions discussed herein. Atomistic- or CG-MD are 
better approaches to study such transitions (usually 
accompanied with partial unfolding; see Okazaki 
et al. 2006) although CG-ENM could still give 
reasonable predictions along their slowest motional 
path due to the similarity of the shape of hierarchi-
cal global potential envelopes and the approxima-
tions by simplifi ed potentials (Fig. 1b; Hinsen, 
1998; Tama and Sanejouand, 2001; Tama et al. 
2004; Cui and Bahar, 2006), which exhibits a 
fractal character. More rigorous systematic studies 
are needed to examine how the difference in the 
slowest normal modes from different CG-EN 
models impacts the prediction accuracy in dynamic 
events at an extended time scale.

Note that slow modes obtained from Principle 
Component Analysis (PCA) on MD trajectories 
can well agree with the slow modes obtained from 
both standard NMA (Kidera et al. 1992b; Kitao 
et al. 1998) and CG-ENMs (Doruker et al., 2000; 
Rueda et al. 2007) as long as sufficient length of 
the simulation is carried out (Kitao et al. 1998). 
CG-MD models are subject to the sampling 
problems as much as seen in conventional 
atomistic-MD simulations but more capable of 
overcoming such problem given the advantage of 
much enhanced computational effi ciency (see our 
back-to-back paper in this issue).

Limitation of CG-ENMs
As mentioned, NMA-based models, at fi ne or coarse-
grained levels, are not as valid in handling large 
confi gurational changes in protein, which demand 
crossings of multiple energy barriers, as handling 
small changes, due to their harmonic approximations 
for energy minima at equilibrium. However, large 
conformational changes are generally predicted well 
along the slowest few normal modes for the 
aforementioned reasons (see end of the last section). 
On the other hand, coarse-graining inevitably has 

inherited problems. As in all the CG models, the 
dynamics that occur within the level of coarse-
graining are not sampled; for instance, the bond 
vibrations or the side chain reorientations cannot be 
evaluated in residue-based CG-ENMs. The restoration 
from CG to full atomic details involves the 
reconstruction of the backbone atoms and then side 
chain atoms, which pays computationally. The 
development of methodology as such is nevertheless 
nicely addressed (Heath et al. 2007).

Closing remarks
NMA-based methods, despite the limitation stated 
above, describe well the equilibrium motions. As for 
X-ray or NMR-characterized dynamics, the Tirion’s 
or CG-EN models seem suffi cient to cover the slow-
est end of such motions. The deletion of the slowest 
GNM mode does not hurt the correlation between 
predicted and experimental B-factors. In fact, the 
correlation continuously goes up (although 
moderately) in sequential deletion of the fi rst 10 
slowest modes in ANM before it decays back down 
(unpublished data). Use of simplifi ed or detailed 
potentials do not change much (if any) of the agree-
ment with experiment. On the other hand, the under-
standing of multi-barrier-crossing conformational 
changes that involve partial unfolding and/or induc-
tion/perturbation from ligand demands the study from 
more sophisticated methods such as conventional 
atomistic-MD, CG-MD or theories such as LRT.
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Other EN-models

BENM
Ming and Wall proposed a method to rationally optimize the parameters used in a CG-EN model by 
minimizing the Kullback-Leibler divergence (KLD) between the coarse-grained Hessian (from ANM) 
and the atomistic Hessian (from NMA) (Ming and Wall, 2005). They found that the frequency spectrum 
was nicely reproduced by the CG-EN model if the backbone constraints can be enhanced by a factor 
of 42 (Ming and Wall, 2005). They termed this model a Backbone-Enhanced-Network-Model (BENM) 
(Ming and Wall, 2005). The optimized model was found to have similar cutoff and force constant as 
used in ANM.

β Gaussian Model (βGM)
βGM is granted the name for residue interactions in the model centering not only at Cα but also at Cβ 
atoms. The matrix remains a size 3N × 3N while the potential is added from interactions between Cα-Cα, 
Cβ- Cβ and Cα-Cβ (Micheletti et al. 2004). An interesting point is that the position of Cβ can be predicted 
with good accuracy given the i – 1, i and i + 1 positions of the Cα trace (Park and Levitt, 1996) so the 
only needed information is the positions of Cα trace. βGM outperforms ANM and underperforms GNM 
in its agreement with B-factor profi les of X-ray structures and the RMSDs of NMR ensembles for a 
selected set of proteins (Micheletti et al. 2004), though the difference between the models are within 
the statistical errors. The time-averaged fl uctuations predicted by βGM have a 0.8 correlation with the 
results from a 14-ns MD simulation (Micheletti et al. 2004).

CNM
An isotropic model extended from GNM, has reported a 0.74 correlation with B-factor profi les of 98 
high resolution (�1.0 Å) structures (Kondrashov et al. 2006) while employing several modifi cation 
schemes. The crystal contacts are considered as in Kundu’s work (Kundu et al. 2002). In contrast to 
GNM, the model couples two residues if any heavy atoms from each are found within 4.0 Å apart. An 
enhanced force constant for backbone-connections (bb-cons) is added to refl ect the chemical reality 
(also used in Hinsen’s ENM and BENM, see below) hence the name Chemical Network Model 
(Kondrashov et al. 2006). Although residue contacts are defi ned using atomic information and spring 
constants are assigned based on the connectivity of beads, the Γ remains an N × N dimension as used 
in GNM. The nearest atom cutoff and the force constant ratio of non-bb-cons to bb-cons are explored 
to maximize the correlation with experimental B-factor profi les. The optimal values found for (cutoff 
distance, non-bb-con/bb-con) are at (4.0 Å, 0.1) and (4.5 Å, 0.05), both giving the same maximal cor-
relation 0.74 (Kondrashov et al. 2006). The 10 to 20-fold coupling enhancement for backbone neighbors 
is in the same magnitude as the enhancement factor, 42, reported by Ming in his BENM model (see 
above). The result more or less refl ects the fact that a covalent bond (~350 kJ/mol) is roughly ~12 times 
stronger than a hydrogen bond (~30 kJ/mol), the latter being one of the most common stabilizating 
forces for non-local interactions in biomolecules (Jeffrey, 1997).
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DNM
A modifi ed version of ANM, uses distance-depen-
dent force constants hence the name Distance-based 
Network Model (Kondrashov et al. 2007). As in the 
CNM, the separation of pair residues in DNM is 
defi ned as the contact distance of their nearest 
atoms. For different such distances that fall in each 
of a priori defi ned distance bins 0–2.3Å, 2.3–3.3Å, 
3.3–5.0Å, 5.0–7.0Å, 7.0–9.0Å and 9.0–11.0Å, cor-
responding spring constants (γ) are assigned for 
interacting pairs. To regard the chemical reality that 
is to have the spring constants in each bin decrease 
with the growing separations without introducing 
extra parameters, spring constant γa is set to be 1/
tr(Γa). Here, a denotes the bin class. Γa is the GNM 
connectivity(or contact) matrix defi ned at the cutoff 
distance Rc,a, the separation range used in bin a. 
Hence, the nearer the separation (accompanying 
with less contact neighbors), the stronger force 
constant (1/contacts) of spring is assigned. A sys-
tematic study comparing 5 EN models’ reproduc-
ibility of crystallographic Anisotropic Displacement 
Parameters (ADPs) found that DNM gives good 
descriptions of molecular anisotropic movements 
(Kondrashov et al. 2007).

QEDM
Quantized Elastic Deformational Model (QEDM), 
first proposed by Ma and coworkers, invited 
attention to the possibility of describing protein 
dynamics in the absence of amino acid sequence 
and atomic coordinates (Ming et al. 2002). The 
main point is to take rigorous account of the protein 
architecture, described by the inter-residue contact 
topology, using the EN formalism. ANM is used 
herein, although the approach can easily extend to 
GNM. Low-resolution structures with determined 
electron density distributions by either X-ray or 
Cryo-EM are fi rst obtained. The density maps from 
X-ray or Cryo-EM are clustered into quantized 
nodes that best represent the shape of such 
distributions by minimizing an error function by 
Topology Representing Network algorithm (see 
also Arkhipov et al. 2006a, b; Martinetz and 
Schulten, 1994). A set of Nn evenly distributed 
quantized nodes are obtained (Nn could be N) and 
ANM can be applied upon those using a certain 
cutoff that reasonably samples the local packing 
density for each node.

The approach successfully reproduces the slow 
modes derived from high resolution structures 
(Ming et al. 2002). The study lends support to the 

view that proteins possess mechanical character-
istics uniquely defi ned by their particular architec-
tures, regardless of the chemical properties (Ming 
et al. 2002; Yang and Bahar, 2005a).

PNM
Plastic Network Model (Maragakis and Karplus, 
2005) and Double-Well Network Model (DWNM; 
Chu and Voth, 2007) were motivated from an 
interest at describing conformational transitions. 
Instead of using a few NMA modes to deform the 
structures iteratively towards the targeting 
conformations (Miyashita et al. 2003, 2005), the 
pathway of conformational transitions herein is 
searched by numerical procedures in PNM. Structure 
in each conformer well possesses elastic energy as 
shown in Table 1. The wells are energetically 
connected at their common energy point and the 
‘crossing’ part is made differentiable using an 
analogy to the quantum mechanical convention of 
coupling two potential energy surfaces (eq. P1; Fig. 
1; see also Okazaki et al. 2006 who adopted a similar 
approach in creating multi-basin CG-MD models). 
The minimum energy path (MEP) is then searched 
by the steepest decent at the saddle point (the joints 
of the wells) towards the minima of the wells by 
minimizing the integration of G (being the combined 
potential over G1, G2, …, Gm) along the path using 
CHARMM modules (Brooks et al. 1983).

 G
G G G G

=
+ − − +1 2 1 2

2 24
2

( ) ε
  

where ε is a small number 

The equation gives the solution G for the simplest 
case of two neighboring conformers, 1 and 2, where 
at the hypersurface points G1 = G2.

CG model using Linear Response Theory 
(CG-LRT)
Ikeguchi had demonstrated a beautiful way to 
model ligand-induced conformational change using 
Linear Response Theory (Ikeguchi et al. 2005).

 ∆ ∆ ∆
� � � �
r r r fi i j

j
j≅ < • >∑β  

∆→ ri  is the ligand-induced displacement of atom i 
(Cα in the CG scheme). Atoms j are among those 
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strongly interacting with the bound ligand(s) that 
applies a force → fj on j. β is a scaling constant. The 
effect of binding on j affects i through the 
covariance < • >∆ ∆

G G
r ri j , the ij element of a time-

independent variance-covariance matrix that is 
obtained from either CG-ENM (the ensemble 
average) or Principle Component Analysis (PCA) 
on MD trajectories (the time average). An excellent 
agreement of the predicted conformational changes 
with the experiment for F1-ATPase has been 
reported (Ikeguchi et al. 2005).

Assumptions and Derivations for 
GNM Theory in Details
The derivation of the section starts from the defi nition 
of ensemble average (or expectation value) of a 
certain physical quantity represented as a random 
variable; the probability associated with each instan-
taneous value of such quantity can be defi ned by the 
potential of the system at the value through 
Boltzmann relation (see S3 below). The potential 
featured in GNM here is a simple, residue-based, 
pairwise potential.

Within the classical limit, the ensemble average 
of a physical quantity A takes the form:

 A
AP A dA

P A dA
= ∫

∫
( )

( )
 (S1)

Since our main concern is the fl uctuation, under-
stood as the positional variance,
let A be ∆R∆RT, which is the positional variance 
matrix for all the degrees of freedom (N) of the 
molecule.

�∆R∆RT� = 
∫   

∫
∆ ∆ ∆ ∆ ∆

∆ ∆ ∆
R R R R R

R R R

T T

T

P

P

( )d
( )d

 
(S2)

where ∆RT = ∆ ∆ ∆ ∆
G G G

…
G

R R R R1 2 3 N
⎡
⎣⎢

⎤
⎦⎥, 

∆
G
R i  is the position vector indicating the deviation 

from the equilibrium state for the atom i (see the 
following and Fig. S1) and

P(∆R∆RT) or P(∆R) = exp(−E(∆R∆RT)/kBT) 
(S3)

following the Boltzmann relation.
The energy E here takes the form

 E

H R

GNM ij ij ij ij
i j

N

c ij

= −( )• −( )
−( )

=
∑ γ

2
0 0

1

0

� � � �

�

R R R R

R

,

 (S4)

Here 
G
R ij and 

G
R ij

0  are the positional vectors point-
ing from Cα atom i to Cα atom j at an instantaneous 
moment and at the equilibrium state (readily 
obtained from solved X-ray or NMR structures) 
respectively. The difference of vectors 

G
R ij  and G

R ij
0  can also be understood as the difference 

between vectors ∆
G
R j and ∆

G
R i . A schematic illus-

tration for the relation of these vectors can be 
found in Figure S1a. Rewriting the above expres-
sion into a matrix-vector form, one can easily 
obtain

EGNM
T( )∆ ∆R R  or EGNM

T( )∆ ∆ ∆R R R= γ
2

Γ  
 (S5)

An illustrative example of a simple tripeptide mol-
ecule to show how Γ is obtained as well as the 
transformation from the scalar form to the matrix 
form of the potential can be found in Figure S1b. 
Substitute (S5) into (S3), we obtain

�∆R∆RT� = 

∫   −

∫ −

−

−

∞

∞

∞

∞

∆ ∆ ∆ Γ∆ ∆

∆ Γ∆ ∆

R R R R R

R R R

T
k T

T

k T
T

B

B

exp( )d

exp( )d

γ

γ
2

2

 

(S6)

With the isotropic assumption:

�∆X∆XT� = �∆Y∆YT� = �∆Z∆ZT�
  = (1/3)�∆R∆RT� (S7)

One can similarly obtain

�∆X∆XT� = 

∫   −( )
∫ −( )

−

−

∞

∞

∞

∞

∆ ∆ ∆ Γ∆ ∆

∆ Γ∆ ∆

X X X X X

X X X

T
k T

T

k T
T

B

B

exp d

exp d

γ

γ
2

2

 

(S8)

One can solve the Gaussian integral in the denom-
inator and the integral in the numerator using the 
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equalities ∫ = ( )−e dxax
a

2 π  and ∫ =− −
x e dx aax2

2

2 3
2π , we 

therefore obtain

 �∆X∆XT� =  
k TB

γ
Γ −1  (S9)

From S6 and S8, we can also see how the elastic 
form of the GNM potential grants a Gaussian 
distribution for the residue positions in question.

From S7, �∆R∆RT� = 3�∆X∆XT�; that is

 
∆ Γ

∆ ∆ Γ

�

� �

R

R R

i
B

ii

i j
B

ij

k T

k T

2 1

1

3

3

=

⋅ =

−

−

γ

γ

( )

( )
 (S10)

Hence, the fl uctuation of residue i is a constant 
times the diagonal element ii of the inverse Γ (the 
variance of i) ! We should note that the fastest 
motions that contribute the �∆

G
R i

2� may not be 
well within the classical limit (kBT ��ħω). How-
ever, the inaccuracy of fast motions resulting from 
the quantum effects can be alleviated by the fol-
lowing facts: (1) The contribution of the fastest 
motions to the overall size of the fl uctuations is 
extremely small; the fast modes are led by small 
λk

−1 (as explained in the equation 5 of the main text) 
(2) For CG models such as GNM, the fastest 
motions take place at the residue level and fastest 
Cα motions should be well above hundreds of fem-
toseconds (fs) or �1 picosecond (ps), which are 

Figure S1. (a) The relative orientations of vectors 
G
R ij , 

G
R ij

0 , ∆
G
R j  and ∆

G
R i  (b)The elastic potential of a tripeptide molecule, represented by 

Cα atoms only. The cutoff Rc here is set small enough so that only the atom pairs (1,2) and (2,3) are in contact but not for (1,3). Practical 
GNM cutoff often takes a value between 6.5 and 15 Å. Provided a certain pair ij (i ≠ j) is in contact (their linear separation �Rc), the off-
diagonal element ij of the connectivity matrix Γ is set to –1; otherwise 0. The diagonal elements are the negative sums of the off-diagonal 
elements in each individual row (or column; since Γ is symmetric).
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still within the classical range, although the fastest 
motions on the residue level reported thus far, to 
the best of our knowledge, occurs at 130 cm–1 
(or ~250 fs) as an ‘effective’ frequency for all the 
atoms in a residue (Moritsugu and Smith, 2007).
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