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Abstract: One of the most important measures for detecting molecular adaptations between species/lineages at the gene level is the 
comparison of relative fixation rates of synonymous (dS) and non-synonymous (dN) mutations. This study shows that the branch model 
is sensitive to tree topology and proposes an alternative approach, devogs, which does not require phylogenetic topology for analysis. 
We compared devogs with a branch model method using virtual data and a varying ω ratio, in which parameters were obtained from 
real data. The positive predictive value, sensitivity, and specificity of the branch model were affected by the phylogenic tree topology. 
Devogs showed greater positive predictive value, whereas the branch model method had greater sensitivity. In a working example using 
devogs, a group of human RNA polymerase II-related genes, which are important in mediating alternative splicing, were significantly 
accelerated compared to four other mammals.
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Introduction
One of the most important measures for detect-
ing molecular adaptation is to compare the relative 
substitution rates of synonymous (dS) and non-
 synonymous (dN) mutations.1 The non-synony-
mous/synonymous rate ratio (ω = dN/dS) measures 
selective pressure, with ω = 1 indicative of neutral 
mutation, ω , 1 indicative of purifying or negative 
selection, and ω . 1 indicative of positive diversify-
ing selection. Several methods have been developed 
to apply this criterion to particular lineages on a phy-
logeny (branch methods)2,3 or to subsets of gene sites 
(site methods).4–7 Based on the site or branch-site 
model, a series of likelihood ratio tests (LRTs) have 
been used in a comprehensive examination of posi-
tively selected genes in six eutherian mammals.8 
Current methods for detecting molecular adaptation 
use phylogenetic trees for analysis. However, phy-
logenetic relationships require further examination 
before they can be confirmed, although the phylo-
genetic relationships of orders have been addressed 
in several recent molecular studies. Previous studies 
have yielded inconsistent results with respect to some 
ordinal relationships. For example, the phylogenetic 
positions of rodents, primates, and carnivores remain 
unclear. Traditional morphology supports a primate–
rodent clade,9 but molecular studies support either a 
primate–rodent clade10 or a primate–carnivore clade.11 
Even a  primate–cetartiodactyla clade is supported by 
mitochondrial DNA analysis.12 The phylogenetic tree 
of Brucella, a genus of host-specific bacteria, is not 
consistent with host species; for example, Brucella 
canis (dog host) is closer to Brucella suis (pig host) 
than to another dog host in the phylogenetic tree.13

Here, we propose an alternative approach for 
detecting accelerated molecular evolution between 
species at the individual gene level using relative 
criteria and not phylogenetic trees. This method uses 
similar data structures and analysis approaches as gene 
expression microarray data, which involves the iden-
tification of “differentially evolved genes” (devogs). 
This method can be used with data from one gene up 
to large comparative genomic data sets with no prior 
biological assumptions, which may be responsible for 
the evolutionary differentiation between two clades 
of interest. We show that the present branch method 
is significantly affected by phylogenetic tree topology 
using various phylogenetic trees with real data from 

five mammalian species. We also compare devogs 
with the present method in terms of positive predic-
tive value (PPV), which is defined as the proportion 
of predicted positives that are actually positive, sen-
sitivity, and specificity using virtually evolved data 
from five real mammals. Additionally, we compare 
human-specific accelerated genes with four other 
mammals using devogs. Devogs has already been 
applied to an evolutionary study in avian lineages at 
the turkey genome project.14

Methods
Concept
Let ωij(k) be the pairwise ω ratio between i and j spe-
cies of an orthologous gene k∈O, where i and j∈S are 
in a species set S and their orthologous set O. For 
example, six pairs (ωab(k), ωac(k), ωad(k), ωbc(k), ωbd(k), and 
ωcd(k)) were generated from four species: a, b, c, and d. 
Focusing on species a, the pair ωij can be divided into 
two groups: ω*a(k) = {ωij(k) | i or j is a, a, i, j∈S, k∈O} 
and ω^a(k) = {ωij(k) |i and j are not a, a, i, j∈S, k∈O} 
(Fig. 1). Orthologous gene k under accelerated evolu-
tion within species a would increase the mean ω ratio 
in ω*a(k) compared to ω^a(k). Verification of whether the 
mean ω ratio of ω*a(k) is higher than ω^a(k) can be used 
to detect accelerated evolution within species a.

Implementation
t-test comparison between ω*a(k) and ω^a(k) was used 
to identify differences between the two means. We 
normalized the ω ratios because one of the assump-
tions of the t-test is data normality. Base-2-logarithm 
transformation of the ω ratio was performed since the 
ω ratio was similar to the red/green (R/G) intensity 
of two-channel expression microarrays.  Quantile nor-
malization Q: x → quantile normalized x on {log2Ωij| 
i, j∈S} was then performed, where Ωij was {ωij(k)| i, 
j∈S, k∈O} and log2Ωij was {log2ωij(k)| i, j∈S, k∈O}. 
The assumption that bias exists between Ωab and Ωcd 
is more reasonable than supposing that evolution 
between species a and b is faster than that in species c 
and d when the mean ω ratio of Ωab is higher than that 
of Ωcd (a ≠ b ≠ c ≠ d, a, b, c, d∈S). The bias among 
{Ωij | i, j∈S} affects the t-test. For example, the mean 
of ω*a(k) is higher than ω^a(k) in many orthologous genes 
when Ω*a is higher than Ω^a, where Ω*a is {ω*a(k) | a∈S, 
k∈O} and Ω^a is {ω^a(k)|a∈S, k∈O}.

http://www.la-press.com


Identification of differentially evolved genes

Evolutionary Bioinformatics 2013:9 287

Orthologous gene k was verified as an acceler-
ated gene based on two conditions: the mean of 
{Q(log2ω*a(k))|a∈S, k∈O} was higher than the mean 
of {Q(log2ω^a(k))|a∈S, k∈O} and the P-value of ω*a(k) 
against ω^a(k) was below 0.05, which considered to be 
significant. We referred to this method as devogs, or 
identification of differentially evolved genes.

In addition to correction for multiple hypothesis 
testing, Benjamini and Hochberg false discovery 
rates can be applied.

Validation
Branch model under various phylogenic  
tree topologies
To examine the consistency of the branch method 
with tree structures, we performed the branch method 
under various tree topologies. The tree topologies 
were obtained from real data. We prepared 10,891 
orthologs of human, mouse, rat, dog, and opossum 
from ENSEMBL.15 Trees for each ortholog were gen-
erated using Mrbayes v3.1.2 (n-generation: 2 × 105, 
burn-in: 2 × 103).16 Distinct tree topologies from all 
orthologs were identified using TOPD-fMtS v3.3 
(split method).17 Branch model using codeml in 

PAML4.2 (F3X4) was applied to all orthologs with 
changing tree topologies along distinct trees.18

Creation of simulated test data and evaluation 
of devogs and the branch model
To compare the performance of devogs and the branch 
model in codeml in PAML4.2,18 we generated simu-
lated data with evolved genes. We then used the two 
methods to evaluate the simulated data and measured 
their performance.

generation of test data
To compare the two methods under real conditions, 
we constructed virtual data using real parameters, 
including tree topology (excluding ω, which is the 
variable being manipulated). A total of 30 ortholo-
gous gene sets, which reduced the computational 
burden, were selected randomly from the genomes 
of human, mouse, rat, dog, and opossum obtained 
from ENSEMBL15 to choose parameter values, 
including codon usage, substitutions per codon, and 
sequence length. Test DNA sequences from the five 
species were generated using the evolver program in 
PAML4.2 (kappa = 2.0, tree length = 0) based on the 

ωab(k)

a   b   c d 

ωac(k)

a   b   c d 

ωad(k)

a   b   c d 

ωcd(k)

a   b   c d 

ωbd(k)

ωab(k) ωac(k) ωad(k) ωbc(k) ωbd(k) ωcd(k)K
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a   b   c d 

Gene Paring with a Paring without a

Figure 1. Schematic view of two groups of the ω ratio. a, b, c, and d represent species. ωij(k) represents the pairwise ω ratio between i and j species of k 
orthologous genes.
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actual parameters.18 The phylogenetic tree and branch 
lengths converted to species divergence times, as 
required by the evolver program, were obtained from 
a previous report (Fig. 2).19 In addition, the branch 
lengths were rescaled based on the average number 
of substitutions per codon between mice and humans. 
We included an accelerated branch with a higher ω 
ratio to compare human, mouse, rat, dog, and opos-
sum branches when generating data. Differences in 
the ω ratio between the accelerated branch and other 
branches ranged from 0 to 1.2 (steps of 0.1).

Testing devogs and the branch model with virtual data
Orthologous sequences were aligned using 
 ClustalW220 and alignments were converted to codon 
alignments using pal2nal.21 Both devogs and the 
branch model were applied to the data. Each species 
was set as the foreground once to test acceleration. 
In this case, we estimated ω values for devogs using 
codeml in PAML4.2 (runmode = -2 option),18 which 
adopts the maximum-likelihood method. Compared 
to the branch model, the only difference was that tree 
topology information was not used when estimating 
pairwise ω between two species; therefore, the com-
parison is valid and not affected by bias in maximum-
likelihood methods.

devogs analysis of real data
We downloaded 1:1 orthologous protein and refer-
ence mRNA sequences of human, mouse, rat, dog, 
and opossum from ENSEMBL.15 The phylogenetic 
trees were obtained from a previous report.19 A total of 
10,891 1:1 orthologous genes for the five species were 
collected, and the orthologous gene sets were aligned 
using ClustalW2.20 The devogs method was applied 
for identification of accelerated genes in humans. 
Orthologs with dS . 3 or ω . 5 were filtered.22,23 
A total of 8,407 orthologs were examined.

Results
Branch model under various  
phylogenic tree topologies
A total of 10,889 gene trees for 10,891 orthologs 
from human, mouse, rat, dog, and opossum from 
ENSEMBL15 were generated using Mrbayes.16 The 
10,889 trees were grouped into 14 distinct  topologies. 
Trees were arranged in order of the number of orthol-
ogous genes mapping to each tree, which were named 
A, B, C, … N. The branch model was used to detect 
genes showing accelerated evolution in each of five 
lineages within each of these 14 trees.

Some genes showed evidence of accelerated 
 evolution. However, the number of predicted accel-
erated genes varied from 9.7%–15.2% between tree 
topologies. Figure 3 shows the statistical results of 
the branch model for all orthologous gene sets in the 
14 distinct gene trees. The accelerated genes in the 
lineage with their own trees were considered to be 
true accelerated genes for the calculation of PPV, 
sensitivity, and specificity. The positive predictive 
value (PPV), which is defined as the proportion of 
predicted positives that are positive, varied from 
0.17–0.98 among gene trees. The degree of variation 
of the PPV in the tree topologies was high for mouse 
and rat. The sensitivities also showed wide variation, 
with values ranging from 0.29–0.98. The degree of 
decrease in sensitivity on the minor trees was high 
for humans. The sensitivities of mice and rats were 
typically higher than the others, in contrast to PPV. 
Specificities were high for all trees, ranging from 
0.77–0.98. However, the specificities of mice and rats 
in the G, H, I, M, and N trees were relatively low, 
which reduced the PPV of mice and rats in the trees, 
despite their high sensitivity.

Comparison of the performance  
of devogs and the branch model  
for simulated data
We compared the devogs approach with a branch 
model method using virtual data from human, mouse, 
rat, dog, and opossum, which evolved under varying 
ω ratios. To compare the two methods under realis-
tic conditions, the parameters, including tree topol-
ogy (excluding ω), were obtained from real data in 
ENSEMBL.15 A total of 10,965 orthologous sets were 
generated after filtering, and devogs and the branch 
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Figure 2. Branch length for generating virtual data.
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model were used to detect accelerated evolution of 
one species at a time among the five species (five times 
in total). A total of 54,825 examinations were con-
ducted using both models. Additionally, we included 
an altered devogs approach where normalization and 
t-tests were replaced with the non-parametric Mann 
Whitney U-test.

Of the 54,825 tests, the devogs method predicted 
that a total of 5,514 genes (10.0%) showed evi-
dence of accelerated evolution. Additionally, 4,630 
(84.0%) of these genes were true-positives. Devogs 
with the Mann Whitney U-test predicted that a total 
of 5,690 genes (10.4%) showed evidence of acceler-
ated evolution. Of these, 4,909 (86.3%) genes were 
 true-positives. The branch model predicted that a total 
of 7,781 genes (14.2%) showed evidence of acceler-
ated evolution. Of these, 6,419 (82.5%) genes were 
true-positives.

Figure 4 shows the Venn diagram of positives 
and true-positives from two types of devogs and the 
branch model. Many overlapped genes were identi-
fied among the models. There are more overlapped 
genes per model than non-overlapped genes in all 
models, whereas the branch model contained the larg-
est number of non-overlapped genes (2,609 genes) 
and devogs incorporating the Mann Whitney U-test 
showed the lowest number of non-overlapping genes 
(234 genes). The ratio of true-positives was higher for 
overlapped genes than non-overlapped genes, and the 
ratio of true-positives was highest (95.4%) at the inter-
section of the three models. As shown in Table S1, 
total PPV, sensitivity, and specificity of both methods 
were  similar. PPV and specificity of devogs with the 
t-test were slightly higher than the branch model, and 
sensitivity of the branch model was higher than that of 
devogs. Sensitivity of devogs with the Mann Whitney 
U-test was higher than that of devogs with the t-test.

Next, we measured the performance of both meth-
ods under varying ω ratio differences between the 
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Figure 3. Statistical representations of performance for detecting accel-
erated genes from each foreground lineage using the branch model with 
real orthologous gene sets on 14 trees. Positive predictive value = TP/
(TP + FP). Sensitivity = TP/(TP + FN). Specificity = TN/(TN + FP).  
TP: number of true-positives; FP: number of false-positives; TN: number 
of true-negatives; FN: number of false-negatives.
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Figure 4. Venn diagram of positives and true positives from two types 
of devogs and the branch model. devogs T: devogs with t-test. devogs 
MW: devogs with Mann Whitney U-test.
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accelerated branch and other branches from 0–1.2 
(steps of 0.1). Figure 5 shows the statistical mea-
sures of performance with differences between fore-
ground and background ω ratios. The “longs” is the 
group consisting of humans, dogs, and opossums 

with long-branch lengths between the species, as 
shown in Figure 2. The “shorts” is the group consist-
ing of the mouse and rat, with a short-branch length 
between species. We divided the species into short- 
and long-branch length groups based on the results 
of foreground ω having a tendency to be grouped 
into mainly two patterns according to branch length 
(Fig. S1).

PPVs of all methods (excluding the short group in 
the branch model) are high and increased rapidly with 
increasing differences in ω ratios between the accel-
erated branch and other branches (Fig. 5). The PPV 
of the branch model in the short group peaked at 0.73 
at a difference in ω ratios of 0.2, and decreased to 
0.54. The overall sensitivity increased gradually with 
increasing differences in the ω ratio (excluding the 
short group in devogs). The curve slope of the short 
group was lower than that of the long group. The sen-
sitivity in the short group of devogs incorporating the 
t-test remained very low (,0.10) across all differences 
in ω ratio, whereas the sensitivity in the short group 
of devogs with the Mann Whitney U-test increased 
gradually to 0.70. Specificities were very high from 
a difference in ω ratio of 0, and increased linearly to 
1.0, excluding the short group in the branch model. 
The specificity of the short group in the branch model 
decreased from 0.97 to 0.79 with increasing differ-
ences in the ω ratio.

devogs analysis of real data
We applied devogs analysis to identify genes with 
accelerated evolution in humans compared to other 
mammals with 1:1 orthologous sequences of human, 
mouse, rat, dog, and opossum from ENSEMBL.15 
A total of 50 genes showed accelerated evolution in 
humans compared with other species with FDR , 0.05 
from 8,407 orthologous genes with dS # 3 (Table S2). 
Differences in the ω ratio between these two groups 
ranged from 0.005–0.603, although the ω ratios of 
the group pairing with humans were ,1. The dif-
ference in the ω ratio of the NAA30 gene was 0.443. 
 Differences in the ω ratio of ETV6, LEPROTL1, 
TM4SF19, SMEK1, and HTRA4 were all .0.20. 
Gene enrichment analysis of GO terms was per-
formed using the DAVID functional annotation tool24 
with thresholds (count 2, EASE 0.1). Table 1 shows 
enriched GO terms of biological process, cellular 
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Table 1. Functional annotation of enriched gO terms for 
human accelerated genes detected using devogs.

Category Term P-value*
Bioprocess ER-associated protein  

catabolic process
0.062

Cellular  
component

dNA-directed RNA  
polymerase II, core complex

0.043

Nuclear dNA-directed RNA  
polymerase complex

0.075

dNA-directed RNA  
polymerase complex

0.075

RNA polymerase complex 0.078
Molecular 
function

Protein kinase activity 0.003
N-acetyltransferase activity 0.012
Acetyltransferase activity 0.016
N-acyltransferase activity 0.017
Insulin-like growth factor  
binding

0.058

Protein heterodimerization  
activity

0.088

RNA polymerase activity 0.098
dNA-directed RNA  
polymerase activity

0.098

Note: *EASE score.

component, and molecular function. Terms related to 
RNA polymerase II were also significantly enriched.

We also applied the branch model to the same 
actual data. A total of 553 genes were predicted to 
show accelerated evolution. Additionally, 39 of 
50 genes identified during devogs analysis agreed 
with genes from the branch model (Table S3). 
 Agreement of genes between devogs and the branch 
model increased as the P-values of the branch model 
results decreased (Fig. S3).

Discussion
Performance of the branch model  
and devogs approaches under  
various phylogenic tree topologies
The accuracy of results obtained using the branch 
model was affected by the phylogenic tree  topology. 
In addition, use of the incorrect tree topology reduced 
overall accuracy. A PPV of 0.17, as shown in Figure 3, 
indicated that 83% of the results from the branch 
model were affected by tree topology, although very 
low PPVs were determined for specific orthologous 
genes in our experiment. However, devogs does 
not require phylogenetic tree topology during the 

 analysis process. Therefore, devogs was not affected 
by phylogenic topology.

Comparison of the performance  
of devogs and branch model approaches
Both devogs and the branch model approaches 
showed acceptable overall performance, as shown 
in Figures 4 and 5. However, both devogs and the 
branch model showed low performance for detect-
ing accelerated genes in mice and rats. This may be 
because the numbers of synonymous and non-synon-
ymous substitutions between the mouse and rat genes 
were very small and did not cause statistically sig-
nificant differences in ω ratios, as the branch lengths 
of the mouse and rat are relatively shorter than the 
other lineages, as shown in Figure 2. However, the 
responses of devogs and the branch model under 
their low performance conditions differed signifi-
cantly. Sensitivity was markedly reduced in devogs, 
while PPV was reduced in the branch model. This 
difference in responses may explain the advantages 
and disadvantages of using tree topology informa-
tion, particularly under low performance conditions 
since the only difference in input information for the 
branch model compared to devogs is tree topology 
information. The topology information input into the 
branch model may increase sensitivity, but may also 
increase the false-positive rate, thus decreasing speci-
ficity and PPV. In actual analysis, the true-positive 
and true-negative conditions as determined by the 
gold standard remain unknown, while the positive and 
negative values from the test outcome are  available. 
False-positives are problematic for identifying truly 
accelerated genes, although the sensitivity of the 
model has been shown to be high in many  studies. 
However, PPV can be used since it is defined as the 
sum of true positives divided by the test outcome 
 positives. An advantage of devogs is that the number 
of false-positives is low, despite the reduction in sen-
sitivity under low-performance conditions.

The t-test used in the devogs analysis has several 
underlying assumptions. The first is that the data fol-
low a standard normal distribution under the null 
hypothesis. The distribution of ω is positively skewed 
as ω itself is a ratio value of the non-synonymous 
rate divided by the synonymous rate, and genes are 
typically under purifying selection. We adjusted the 
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skewness by log2 transformation to approximate the 
normal distribution (Fig. S2) to fulfill this assumption, 
although the t-test is sufficiently robust to moderate 
violations of the normality assumption.25 However, 
another assumption is that the data used to perform 
the t-test should be sampled independently from the 
two populations being compared. The pairwise ω ratio 
is calculated on the branch across the two  species. 
However, ω*a(k) and ω^a(k) which are compared by 
t-tests, share some branches between the two groups, 
as shown in Figure 1. This violates the assumption 
of independency in the t-test and may reduce devogs 
sensitivity. If rapid evolution occurred in the branch, 
both means of the two ω-ratio groups would increase; 
conversely, if evolution were suppressed, both means 
of the two ω-ratio groups would decrease. This would 
reduce the differences in means between the two 
groups, which may reduce the discrimination of t-tests 
and lower the sensitivity of devogs.  Alternatively, the 
Mann  Whitney U-test (a non-parametric test) can 
be applied. We generated receiver operating charac-
teristic and PPV curves using the P-value (Figs. S4 
and S5).

devogs analysis of real data
A total of 50 genes showed accelerated evolution for 
humans compared with the other four species when 
analyzing real data with devogs. Terms related to 
RNA polymerase II were significantly enriched from 
gene enrichment analysis with this set of 50 genes. 
Developmentally complex organisms do not appear 
to be distinguished by the total number of genes 
they encode, but rather by the number of ways these 
genes can be expressed and controlled. The surpris-
ingly small number of genes found in the human 
genome26 illustrates the importance of evolutionary 
advances in the control of gene expression. RNA 
polymerase II in animals has a very important role 
in mediating alternative splicing of exon junctions to 
produce different tissue-specific or developmentally 
specific products from the same gene. The C-terminal 
domain of RNA polymerase II binds the mediator 
that transduces control signals to the polymerase II 
promoter complex, as well as recruits serine-arginine 
proteins and other splicing factors to the elongating 
message.27 Rapid evolution of genes related to the 
RNA polymerase promoter or RNA elongation may 
be related to the observation that approximately 40% 

of genes in the human genome are subject to such 
alternative splicing, resulting in a more than a three-
fold increase in the complexity of gene products over 
gene  content.28 Similar trends between devogs and 
the branch model with actual data are observed when 
compared with our virtual data analysis (Fig. 4). The 
branch model predicted many accelerated genes, and 
non-overlapped genes were primarily identified using 
the branch model. The ratio of true-positives may be 
higher in overlapped genes when we refer our vir-
tual data analysis (Fig. 4). Additionally, most genes 
(39 of 50) overlapped between devogs and the branch 
model, and the concordance of genes between devogs 
and branch model increased as the P-value of the 
branch model decreased.

Devogs can be used to complement the branch 
model method and yields reliable results under mar-
ginal conditions but has low sensitivity, such as short 
evolutionary distances between lineages, and makes 
no assumptions regarding phylogenetic relationships. 
The branch model is accurate with well-defined phy-
logenetic tree structures and longer distances between 
lineages. However, the devogs method currently cor-
responds only to the branch model. Therefore, further 
studies are required to optimize devogs and apply it to 
detect positive selection in sites level with particular 
lineages corresponding to the branch-site model.29,30
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Figure S1. Statistical assessment of the performance of two types of devogs and the branch model based on differences in the ω ratio between foreground 
and background lineages from virtually accelerated genes through simulation. PPV and specificity cannot be defined at a 0 difference. No data at a differ-
ence of 1.2 were observed after screening out those with dS . 3. devogs T: devogs with t-test. devogs MW: devogs with Mann-Whitney U-test.
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devogs T: devogs with t-test. devogs MW: devogs with Mann-Whitney U-test.
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Figure S5. Positive predictive value by P-value of all and each species of devogs with t-test, devogs with Mann-Whitney U test and the branch model. 
devogs T: devogs with t-test. devogs MW: devogs with Mann-Whitney U-test.

Table S1. Statistical assessments of the performance of 
devogs and the branch model for simulated data.

Approaches PPV* Sensitivity Specificity
devogs t-test 0.84 0.50 0.98
devogs  
Mann-Whitney U

0.86 0.53 0.98

Branch 0.82 0.70 0.97

Note: *Positive predictive value.
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Table S2. Accelerated human genes. The lists are ordered by (a) to (b). (a) Average ω of group pairing with humans. 
(b) Average ω of group pairing without humans.

Gene symbol (a) average of ω*human (b) average of ω^human (a)-(b) FDR
NAA30 0.603 0.160 0.443 2.0.E-03
ETV6 0.297 0.001 0.296 3.5.E-04
LEPROTL1 0.321 0.039 0.282 4.1.E-03
TM4SF19 0.477 0.240 0.236 3.3.E-03
SMEK1 0.229 0.008 0.221 7.5.E-03
HTRA4 0.343 0.126 0.217 4.3.E-02
CYFIP2 0.196 0.001 0.195 3.5.E-04
C7orf59 0.235 0.042 0.194 4.1.E-03
FAM18A 0.255 0.073 0.182 9.3.E-03
MPDU1 0.313 0.143 0.170 1.6.E-02
FBXL17 0.192 0.029 0.162 8.8.E-03
IFT20 0.165 0.013 0.151 4.6.E-02
C9orf114 0.224 0.080 0.144 9.3.E-03
SCG5 0.201 0.059 0.142 1.7.E-02
IKBKB 0.164 0.026 0.139 4.1.E-03
CHEK1 0.201 0.065 0.136 4.6.E-02
POLR2H 0.136 0.001 0.135 8.5.E-04
NAA60 0.158 0.027 0.131 1.5.E-02
POLR2F 0.129 0.007 0.122 5.6.E-04
P4HA3 0.204 0.084 0.120 9.3.E-03
SYVN1 0.163 0.058 0.105 3.6.E-02
GNB2L1 0.102 0.001 0.101 8.5.E-04
PRRX1 0.104 0.004 0.100 2.0.E-03
PTDSS1 0.137 0.039 0.098 3.6.E-02
ST6GALNAC2 0.230 0.153 0.077 3.3.E-02
XKR6 0.091 0.016 0.076 3.6.E-02
NPLOC4 0.090 0.018 0.072 2.0.E-03
IFT74 0.123 0.052 0.071 3.3.E-02
FYN 0.071 0.002 0.068 1.8.E-02
S1PR1 0.093 0.025 0.068 3.5.E-02
MRS2 0.152 0.084 0.068 3.7.E-02
PPIE 0.098 0.032 0.066 2.1.E-02
CNOT4 0.113 0.049 0.064 2.8.E-03
BRE 0.075 0.013 0.062 9.3.E-03
CDH8 0.081 0.019 0.061 1.8.E-02
CRIM1 0.120 0.062 0.058 3.9.E-03
PPP2R4 0.102 0.047 0.055 1.8.E-02
CHMP3 0.073 0.020 0.053 1.8.E-03
PDGFD 0.076 0.036 0.039 9.3.E-03
KAT8 0.031 0.002 0.029 9.3.E-03
CSNK2A1 0.053 0.024 0.028 2.6.E-02
KLHL5 0.045 0.019 0.027 4.6.E-02
ARHGEF7 0.062 0.039 0.023 4.1.E-03
OSBPL3 0.077 0.057 0.020 2.7.E-02
FAT1 0.078 0.068 0.009 3.3.E-03
GABRR1 0.030 0.021 0.009 4.6.E-02
TECTA 0.034 0.025 0.009 9.3.E-03
ARCN1 0.022 0.015 0.008 2.1.E-02
TNNI1 0.011 0.005 0.006 3.1.E-02
TSPAN12 0.022 0.017 0.005 4.0.E-02
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Table S3. human genes accelerated by both devogs and the branch model. (ωf: foreground ω, ωb: background ω)

Gene symbol ωf ωb ωf-ωb 2ΔlnL FDR
GNB2L1 0.21713 0.0001 0.21703 142.9604 3.21E-29
FYN 0.17872 0.00142 0.1773 117.2497 6.77E-24
NPLOC4 0.21826 0.01957 0.19869 88.33955 5.90E-18
SMEK1 0.54245 0.00902 0.53343 84.75537 2.58E-17
CDH8 0.27516 0.02168 0.25348 81.12733 1.13E-16
FBXL17 0.48817 0.02551 0.46266 79.07555 2.91E-16
CHEK1 0.36934 0.05885 0.31049 76.26699 1.02E-15
HTRA4 1.12494 0.13605 0.98889 67.98521 5.51E-14
SYVN1 0.38628 0.06539 0.32089 66.44629 1.07E-13
S1PR1 0.2133 0.02751 0.18579 58.64361 4.81E-12
PRRX1 0.24999 0.00515 0.24484 57.70917 7.39E-12
KAT8 0.07173 0.00218 0.06955 57.36686 8.41E-12
NAA60 0.323 0.03072 0.29228 51.50981 1.27E-10
POLR2F 0.31863 0.0089 0.30973 49.44172 3.42E-10
P4HA3 0.42905 0.08903 0.34002 46.80893 1.20E-09
CRIM1 0.25088 0.06587 0.18501 42.37855 1.03E-08
LEPROTL1 0.57632 0.04803 0.52829 42.20085 1.10E-08
IKBKB 0.35023 0.02784 0.32239 38.98667 4.66E-08
BRE 0.17412 0.01632 0.1578 35.75642 2.17E-07
KLHL5 0.1485 0.01919 0.12931 35.47817 2.46E-07
SCG5 0.49508 0.06306 0.43202 35.20808 2.73E-07
IFT74 0.31864 0.06139 0.25725 32.71837 8.70E-07
ETV6 0.58307 0.0001 0.58297 30.92364 2.02E-06
FAM18A 0.46072 0.07708 0.38364 29.57495 4.00E-06
XKR6 0.32755 0.01835 0.3092 28.93148 5.35E-06
PPIE 0.2062 0.03426 0.17194 27.10987 1.20E-05
CNOT4 0.25645 0.04921 0.20724 25.9242 2.06E-05
MRS2 0.4065 0.08935 0.31715 25.77011 2.19E-05
PPP2R4 0.24671 0.0505 0.19621 22.94705 8.18E-05
MPDU1 0.48702 0.14541 0.34161 22.23522 0.000112
C7orf59 0.42855 0.05606 0.37249 20.81865 0.00021
CHMP3 0.16945 0.02443 0.14502 20.59236 0.000229
NAA30 0.71871 0.1542 0.56451 19.72839 0.000325
TM4SF19 0.76833 0.238 0.53033 18.07518 0.000673
ARHGEF7 0.13243 0.03913 0.0933 16.36756 0.001446
TECTA 0.06032 0.02751 0.03281 14.23274 0.003388
CSNK2A1 0.11741 0.02413 0.09328 10.26646 0.018676
PTDSS1 0.26073 0.05253 0.2082 9.925722 0.021687
OSBPL3 0.15242 0.06439 0.08803 8.251596 0.041802

http://www.la-press.com

