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Abstract: We recently constructed a computable cell proliferation network (CPN) model focused on lung tissue to unravel complex 
biological processes and their exposure-related perturbations from molecular profiling data. The CPN consists of edges and nodes 
representing upstream controllers of gene expression largely generated from transcriptomics datasets using Reverse Causal Reasoning 
(RCR). Here, we report an approach to biologically verify the correctness of upstream controller nodes using a specifically designed, 
independent lung cell proliferation dataset. Normal human bronchial epithelial cells were arrested at G1/S with a cell cycle inhibitor. 
Gene expression changes and cell proliferation were captured at different time points after release from inhibition. Gene set enrichment 
analysis demonstrated cell cycle response specificity via an overrepresentation of proliferation related gene sets. Coverage analysis of 
RCR-derived hypotheses returned statistical significance for cell cycle response specificity across the whole model as well as for the 
Growth Factor and Cell Cycle sub-network models.
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Background
Detailed mechanistic network models for the compu-
tational analysis of molecular profiling data are critical 
tools for understanding complex biological processes 
and their perturbations. Ideally, these network mod-
els are specifically designed to capture the normal, 
non-diseased biology of the tissue or cell type under 
investigation. They can then be used to better under-
stand the impact of exposure to biologically active 
substances and toxicants and the associated disease 
risks,1 as outlined in the 21st century toxicology  
settings.2,3

With the aim of developing a systems biology-
based risk assessment approach for tobacco products, 
we are currently building a series of biological net-
work models that reflect smoking-related molecular 
changes in target tissues, namely the lung and the 
cardiovascular system. One of the network models, 
the cell proliferation network (CPN) model, focuses 
on cell proliferation and encompasses the major areas 
involved in the regulation of lung cell proliferation.4 
The CPN is composed of two parts: one focuses on the 
core cell cycle machinery and contains only one sub-
network named “Cell Cycle”; the other focuses on 
pathways regulating the cell cycle and consists of 
4 components named “Growth Factor”, “Cell-Cell 
Interaction”, “Epigenetics”, and “Intra/Extra-Cellular 
Signaling”. The whole CPN model, and hence the sub-
networks, consists of nodes that are either biological 
entities such as biological processes like “Gap 2 (G2) 
phase of mitotic cell cycle” or that represent protein 
abundances, protein activities, or mRNA expression. 
The nodes are connected by edges that are catego-
rized either as causal or non-causal. Nodes and edges 
are expressed using Biological Expression Language 
(BEL5) terminology. The whole CPN is composed 
of 848 nodes and 1597 edges that are supported by 
curated literature evidences.4

To map and quantify the perturbations that could 
occur in an exposed biological system, we have applied 
a method called Reverse Causal Reasoning (RCR)6 
to score transcriptomic datasets. The RCR method 
is based on the identification of upstream controller 
nodes, called hypotheses, which are supported by 
observed gene expression changes. Because hypoth-
eses can represent nodes within causal networks such 
as the CPN, their activities could be mapped to related 
networks and/or sub-networks. Hypotheses provide a 

better understanding of the molecular responses trig-
gered within the exposed biological system. In addi-
tion, computational methods have been developed to 
quantify the observed perturbations within specific 
networks.7

To further substantiate the correctness of the 
hypotheses, the relevance of the descriptive content of 
the network, and network directionalities, the network 
should be verified with independent data whose type of 
exposure was not included during model building, and 
which has a well-defined mode of action towards the 
principal mechanisms underlying the model. There-
fore, a dedicated experiment was designed to generate 
a gene expression dataset that represents the molecu-
lar changes that occur during cell proliferation in an 
in vitro system. To be consistent with the context used 
to build the CPN (namely, non-diseased human lung), 
we chose to use normal human bronchial epithelial 
(NHBE) cells. Because NHBE cells are primary cells, 
they better reflect normal cell proliferation behav-
ior compared to immortalized cell lines. In addition, 
NHBE cells represent a target cell type in the lung for 
exposure to cigarette smoke and other airborne chemi-
cals and irritants8 and have frequently been used to 
assess lung epithelium responses, including cell cycle 
progression, under various conditions.9–12 Moreover, it 
has been shown that these cells can be synchronized in 
vitro in the G0/G1 phase.9 To investigate the molecu-
lar processes that occur at the onset of the cell cycle, 
we used the pyridopyrimidine-derived cyclin-depen-
dent kinase (CDK) inhibitor PD-0332991 (INH), 
which specifically arrests the cells in the G1 phase. 
This inhibitor exhibits high specificity for CDK4 and 
CDK6, specifically reducing the phosphorylation of 
the retinoblastoma (Rb) protein at Ser780/Ser795.13 INH 
is a potent anti-proliferative agent against Rb-positive 
tumor cells in vitro at a low nanomolar concentration 
range;14 its activity in non-transformed cells has been 
reported only sparsely, for example, in certain tissues 
during embryogenesis,15 or in differentiating myo-
blasts in vitro.16

Experimentally, the optimal concentration of INH 
that causes sufficient inhibition of NHBE cell prolifera-
tion at low toxicity was determined by flow cytometry 
and applied to arrest actively proliferating subconflu-
ent NHBE cell cultures. For verification of our CPN 
model, we followed the process of re-entering the cell 
cycle after washout of INH and measured the fraction 
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of cells in the Synthesis phase (S-phase), namely the 
Bromodeoxyuridine (BrdU)-positive cells, at 4 time-
points. At the same time, we compared the gene expres-
sion signaling from the re-proliferating NHBE cultures 
with the signaling of cell cultures with ongoing INH 
treatment. We also included an unperturbed proliferat-
ing control group that received only growth medium. 
The correctness of the upstream regulators within the 
CPN model was investigated by analyzing the qualita-
tive and time-resolved gene expression changes for this 
independent experimental dataset in correlation with 
the onset and progression of the cell cycle in NHBE 
cells after release from INH, revealing the molecular 
signaling mechanisms.

Methods
Cell culture and treatment
Normal human bronchial epithelial (NHBE) cells 
(Lonza Inc., Walkersville, MD, United States) were iso-
lated from donated human tissue after obtaining permis-
sion for their use in research applications by informed 
consent or legal authorization. The donor was a 56 
years old Caucasian female with no history of smoking. 
NHBE cells were cultured in standard growth medium 
(GM): BEBM (Lonza Walkersville, Inc., Clonetics®) 
supplemented with BEGM® BulletKit® with BPE 
(0.13  mg/mL) and hEGF (25  ng/mL). According to 
the experimental design (see Fig. 1), NHBE cells from 
the same culture stock were treated with or without a 

non-toxic dose of 1 mm PD-0332991 (Biozol GmbH, 
Eching Germany), a pyridopyrimidine-derived cyclin-
dependent kinase inhibitor with high specificity for 
CDK4 and CDK6.13

Cell cycle analysis
Cells were exposed to 10 mM of BrdU 2 hours before 
trypsinization (trypsin/EDTA solution from Lonza, 
Inc.). They were then harvested 2, 4, 6, and 8 hours after 
the washing step (Fig. 1). This time points were cho-
sen to capture early events after re-entering cell cycle at 
Gap 1 (G1). BrdU immunostaining kit (APC BrdU flow 
kit, BD Pharmingen™) was then used to label cells that 
had replicated the DNA after the addition of BrdU to the 
medium. Cellular DNA was stained for 30 minutes (min) 
with a phosphate buffer solution containing propidium 
iodide (20 mg/mL, Life technologies™, Carlsbad, CA, 
United States) and RNAse A/Dnase free (100 mg/mL, 
Applichem GmbH, Darmstadt, Germany) and analyzed 
using a flow cytometer (BD FACSCanto II System with 
Fluidics Cart, Becton Dickinson Biosciences). For each 
experimental condition (Fig. 1), the number of biologi-
cal replicates used was n = 3.

Transcriptomics data generation
RNA preparation
For each experimental condition, 3 biological repli-
cates were used to extract total RNA from NHBE cells 
using the RNeasy Mini Kit (Qiagen). Purified RNA 
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Figure 1. Outline of cell proliferation experiment. Diagrammatic representation of the 3 in vitro culture conditions applied to NHBE cells and analyzed at 
the gene expression level (2 hours, 4 hours, 6 hours, and 8 hours after the washing step). From t0 to t1, the cells were cultured in normal growth medium 
(GM) for 24 hours. PD-0332991 inhibitor (INH, final concentration 1 mM) was then added to the GM at t1 for 32 hours (B) or for 24 hours (C). The control 
group (A) was cultured in GM and no inhibitor was added. At t2 (after 48 hours in GM), a washing step was done for all 3 conditions. The cells were then 
cultured in GM (A and C) or in GM plus INH (B).
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was quantified using the Nanodrop ND-1000 (peqlab) 
and RNA integrity was determined using the Agilent 
2100 Bioanalyzer. Only RNA samples with an RNA 
integrity number (RIN) higher than 6 were included 
for analysis.

Microarray preparation
Transcriptome analysis was conducted using the 
GeneChip® HT 3′ IVT Express Kit according to the 
manufacturer’s instructions (Affymetrix, Santa Clara, 
CA). Briefly, after synthesis of double-stranded cDNA 
using 100 ng total RNA as starting material, in vitro 
transcription was performed to synthesize biotiny-
lated aRNA. The aRNA was then purified and frag-
mented. The degree of fragmentation and the length 
distribution of this fragmented biotinylated aRNA 
was checked by running samples on a 1.0% agarose 
gel. 10 µg of biotinylated fragmented aRNA were 
hybridized to Affymetrix HG-U133Plus2 at 45 °C 
for 16 hours. After washing and staining, arrays were 
scanned with Affymetrix Scanner 3000 7G. Captured 
array images were analyzed and converted to probe 
array signal intensity, saved as CEL files, applying 
default parameters set up in the Affymetrix data anal-
ysis software package. An initial chip quality check 
was also performed using the Affymetrix software.

Transcriptomics data is available in ArrayExpress, 
accession number E-MTAB-1272.

Transcriptomics data analysis
Raw transcriptomics data were processed and 
normalized using the GCRMA R package from 
Bioconductor.36 Data were quality checked and all 
CEL files passed the quality criteria.

To identify the differentially regulated genes when 
GM was added after washing relative to the inhibi-
tory condition (proliferation effect), and to then per-
form reverse causal reasoning analysis (see details 
below), pairwise comparisons were computed with 
linear models for microarray data (limma) following 
a global linear model. Coefficients of the model were 
estimated with an ebayes approach using the limma 
R package.36 For each time-point, the gene expression 
levels were measured in NHBE for group C and com-
pared to the expression levels measured in NHBE 
for group B. The cells from both groups were kept 
under cell cycle inhibitory condition for 24  hours 
before washing step. This resulted in a contrast for 

each treatment-control pair (growth medium versus 
cell cycle inhibition). Significantly differentially reg-
ulated genes were identified with a significance level 
(corrected using a false discovery rate; FDR) below 
0.05, with an absolute log2 fold change value above 
1.3, and an abundance level above log2 (100).

The analysis was performed to check the sustained 
effect of the CDK inhibitor over time.

2 groups of samples were compared. Samples orig-
inating from cells kept under the inhibitory condition 
(group B) before and after washing, and from cells 
maintained under growth medium before and after 
washing (group A, additional untreated control).

Gene set enrichment analysis (GSEA)
To investigate the main biological effects induced by 
growth medium (proliferation effect), and the sus-
tained effect of the inhibitor, GSEA was performed 
with entire contrasts.17 For each exposure time, the list 
of genes was decreasingly sorted by the t-values com-
puted from the limma analysis. Normalized enrich-
ment scores and associated FDR were then computed 
for each gene set belonging to the canonical pathway 
subset of the C2 collection (MSigDB).37 For each of 
the 2 effects under investigation, gene sets with sig-
nificant NES values (FDR , 0.05, directly computed 
during GSEA17) for at least 1 exposure time and asso-
ciated with similar functions were grouped according 
to the cell cycle phase they were associated with.

Reverse causal reasoning (RCR)
RCR6 is a knowledge-driven backward reasoning 
technique for identifying potential upstream regula-
tors or controllers which could explain the observed 
differential gene expression profiles. RCR analysis 
requires a priori knowledge in the form of hypoth-
eses and significantly regulated genes (absolute 
log2 fold change value above 1.3; FDR  ,  0.05; 
abundance level  $  log2 (100)) from the transcrip-
tomics data are required as inputs. A hypothesis 
corresponds to a simple causal network constituted 
by an upstream node (subject term or “controller”) 
connected to downstream nodes (measured quanti-
ties, eg, expression of target gene) by a causal edge. 
Each edge represents the causal relationship between 
the “controller” and the target gene derived from a 
statement extracted from literature (eg, transcrip-
tion activation of X increases the expression of Y, 
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but decreases the expression of W). The notion of 
causal relationship directionality is important in 
RCR. Indeed, hypotheses can be evaluated as poten-
tial explanations for the observed differences in 
measurement sets by calculating two statistics called 
“richness” and “concordance”. For each hypothesis, 
the “richness” measures the over-representation 
of the set of observed state changes (corresponding 
to the pairwise differentially expressed genes) and 
the set of nodes downstream of the hypothesis. The 
“concordance” measures the consistency of the 
directions between the observed state changes and 
the expected direction from the hypothesis model. 
A P-value is computed for each richness and con-
cordance statistic. Currently, the Selventa Technol-
ogy Platform19 holds more than 2000 hypotheses and 
these data were used for the analysis.

Hypotheses in Figure 6 were arranged as follows:

1.  Concordance matrix was binarized (P , 0.05)
2. � Affinity Propagation clustering38,39 algorithm was 

applied to cluster hypotheses.

Verification of regulation directionalities
For each network model, shortest paths were extracted 
for each pair of hypotheses. The sign of the path was 
the product of single edge signs forming the path. 
Concordance sign was considered for the 2 hypoth-
eses and compared against the path sign. A positive 
(negative) path between 2 hypotheses was deemed to 
be correct if the hypotheses had the same (different) 
concordance sign. A path was deemed to be incorrect 
otherwise.

Statistics were computed using a parameters: 0.5 
as probability of success; the number of hypotheses as 
the number of total trials; the number of correct paths 
as the number of successes. Then the probability to 
randomly obtain more than number of correct paths 
was retained.

Results
Cell cycle perturbation analysis
The cell cycle distribution of NHBE cells under the 
different conditions (Fig. 1) was determined by flow 
cytometric assessment of DNA content and BrdU incor-
poration. NHBE cells in the control group (A, Fig. 1) 
that received the fully supplemented growth medium 
grew exponentially throughout the whole experimental 

period of 56 hours (19 to 24 hours population doubling 
time during the log phase as determined in a pilot study, 
data not shown), and the fraction of cells in the S-phase 
(BrdU-positive cells) at time-points t2 (48 hours) plus 
2, 4, 6, and 8 hours was constant and in the range of 
30%–35%. In addition, 1%–3% of the cells were clas-
sified as BrdU-negative S-phase cells based on their 
DNA content (group A, Fig. 2).

To synchronize NHBE cells, we first tested the 
method described by Fischer et al9 where cells are starved 
for 48 hours in an epidermal growth factor (EGF)-free 
and bovine pituitary extract (BPE)-free media. Unfor-
tunately this method did not trigger the expected cell 
synchronization in Resting phase or G0 phase (G0)/G1 
(data not shown), we decided to take advantage of the 
inhibitory effect of PD-0332991 on the cell cycle. At 
first, various doses (0.1 mM, 1 mM, 10 mM, 100 mM) 
of this drug were tested on NHBE cells and both cel-
lular toxicity (Resazurin assay) and cell proliferation 
(BrdU assay) responses were measured after 24 hours 
of exposure (data not shown). Doses above 1 mM were 
excluded due to cell toxicity. The dose of 1 mM was 
selected due to its best efficiency to stop cell prolifera-
tion and thus to synchronize cells in G0/G1.
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Figure 2. Flow cytometric analysis of cell cycle distribution of NHBE 
cells under various conditions. The proportion of NHBE cells in different 
phases of the cell cycle (G2, S, G1) was evaluated by flow cytometry 
using BrdU and PI staining. For all 3 culture conditions (group A, group B,  
and group C), the cells were counted 2  hours, 4  hours, 6  hours, and 
8  hours after the washing step (see Fig.  1). Continuous exposure to 
PD-0332991 inhibitor (group B) blocked most cells in G1 phase (group B); 
the washing step of the inhibitor followed by the GM culture period 
(group C) allowed the cells to proliferate again because the proportion of 
cells in the S phase increased after 4 hours and at 8 hours (group C) and 
is comparable with the proportion of cells in the S phase after 8 hours in 
growth medium (group A).
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In the inhibitor-treated group (B, Fig. 1), NHBE 
cells exposed to INH at time (t) 1 (24  hours) for 
24 + 8 hours were efficiently arrested in the G1 phase 
at the four measurement time-points: 90% or more of 
the cells were in G1; 2% or less were BrdU-positive 
S-phase cells; and another 1%–2% were BrdU-
negative S-phase cells (group B, Fig. 2).

In the inhibitor-release group (C, Fig. 1), NHBE 
cells treated with INH at t1 followed by a washout 
with growth medium at t2, a time-dependent re-entry 
into the cell cycle at the S-phase was observed with 
an increase in the fraction of BrdU-positive cells after 
the washout at t2 from 2% at 2 hours to 5% at 4 hours, 
27% at 6 hours, and 38% at 8 hours; 0%–2% were 
BrdU-negative S-phase cells (group C, Fig. 2).

These results confirm that under the chosen exper-
imental conditions, the cells in the INH-release group 
could be efficiently arrested, and an increasing num-
ber re-entered the cell cycle at the S-phase between 
2 and 4 hours after washout and reached the level of 
BrdU-positive cells in the untreated control cultures 
8 hours after washout (see Supplemental File 7 for the 
raw data of the FACS analysis).

Differential gene expression analysis
The cells from the 3 groups, fully supplemented growth 
medium (group A), INH (group B), and INH-release 
group (group C), in the cell proliferation experiment 
(Fig. 2) were collected after 2 hours, 4 hours, 6 hours, 
and 8  hours of exposure and, following extraction, 
the mRNAs were hybridized on microarrays (see 
Methods—RNA and microarray hybridization). 2 dif-
ferential gene expression comparison analyses were 
performed. In the first, group C was compared against 
group B, and in the second, group B was compared 
against the fully supplemented growth medium con-
trol group A.

In the group C versus group B comparison, the pro-
liferation effect was studied over time. The volcano 
plot and the Venn diagram emphasizing the differen-
tially expressed genes (see Methods—Transcriptomics 
data analysis) at each time-point are shown in 
Figure  3. The number of differentially regulated 
genes increased over time, from 2 to 8 hours of expo-
sure (Fig. 3B). The Volcano plots also show that the 
expressions of some of the genes were significantly 
up-regulated, and only a few genes were significantly 
down-regulated (Fig. 3A and B).

When comparing gene expression in group C 
versus group B, we found that 38 genes were differ-
entially regulated at 2 hours, and a total of 199 genes 
were differentially regulated at later time-points; 
about 72% of the genes were differentially regu-
lated at 4, 6, and 8 hours (Fig. 3B), but with a time-
dependent increase in the numbers of genes. A core 
set of 30 genes was commonly regulated at all time-
points, while other groups of genes were specifically 
regulated between 2 hours and 4 hours, 4 hours and 
6 hours, or 6 hours and 8 hours (Fig. 3B).

In the group B versus group A comparison, the 
stability of the inhibitory effect was studied. As 
Figure  2  shows, the proportions of group A cells 
across each cell cycle phase did not change consider-
ably over the various time-points. We found that the 
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Figure 3. Differentially expressed genes under the inhibitor-released and 
inhibitory cell cycle conditions (group C versus group B). (A) Volcano plot 
highlighting genes differentially expressed; red (green) dots correspond 
to genes with a log Fold Change greater (lower) than 1.3 (−1.3). (B) Venn 
diagram showing the number of genes differentially expressed at each 
time-point. Genes differentially expressed (absolute value of the log Fold 
Change above 1.3) at 2 hours are also differentially expressed at later 
time-points. There exist genes differentially expressed at specific time-
points: for example, a group of 25  genes were differentially regulated 
only at 8 hours.
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number of differentially regulated genes across the 
time-points was stable when comparing gene expres-
sion in group B versus group A (See Supplemental 
File 1A and B). The total number of genes that were 
differentially regulated at, at least, 1 time-point was 
293 (combined number of differentially regulated 
genes across all time-points); 70% (206 of the 293) 
were differentially regulated at all 4 time-points.

Gene set enrichment analysis (GSEA) 
identifies main biological processes 
activated following proliferation induced 
exposure
To identify the main biological processes that are 
activated under proliferation conditions, GSEA was 
performed using collection gene sets representative of 
canonical pathways (collection 2 from MSigDB).17,18 
Gene sets were scored against the ranked (t-statistic) 

list of genes obtained from the group C versus group B 
comparison.

The GSEA results showed that an overall enrich-
ment of cell cycle related genes had occurred in 
the cells in these 2 groups (Fig. 4). In Figure 4, the 
gene sets are arranged to reflect the order of the cell 
cycle phases. No significant enrichment of cell apop-
tosis related gene sets was observed; rather, genes dif-
ferentially regulated at 2 hours were associated with 
G1-S, while at later time points gene sets related to 
later cell cycle phases were significantly enriched, 
showing an early response capturing the G1-S 
transition. Moreover, GSEA analysis was able to 
capture the G2/M transition at 4 and 6 hours (Fig. 4). 
For the group B versus group A comparison that 
tested the stability of the inhibitor, the GSEA results 
also showed an enrichment of cell cycle related gene 
sets but with negative enrichment scores, as expected 
(see Supplemental Files 2 and 6).

Gene set 2 h 4 h 6 h 8 h
REACTOME_FORMATION_AND_MATURATION_OF_MRNA_TRANSCRIPT 0.91 1.19 1.308 1.3
REACTOME_TRANSPORT_OF_MATURE_MRNA_DERIVED_FROM_AN_INTRON_CONTAINING_TRANSCRIPT 1.519 1.73 1.80 1.69
REACTOME_CELL_CYCLE_CHECKPOINTS 2.53 2.81 2.89 2.56
REACTOME_G1_S_TRANSITION 2.69 2.91 3.02 2.71
REACTOME_E2F_MEDIATED_REGULATION_OF_DNA_REPLICATION 2.30 2.38 2.47 2.34
REACTOME_CYCLIN_E_ASSOCIATED_EVENTS_DURING_G1_S_TRANSITION_ 2.23 2.15 2.01 1.93
REACTOME_S_PHASE 2.72 2.90 2.99 2.66
REACTOME_SYNTHESIS_OF_DNA 2.59 2.83 2.95 2.64
REACTOME_ACTIVATION_OF_THE_PRE_REPLICATIVE_COMPLEX 2.32 2.37 2.54 2.38
REACTOME_DNA_REPLICATION_PRE_INITIATION 2.47 2.63 2.78 2.43
REACTOME_DNA_STRAND_ELONGATION 2.38 2.57 2.70 2.50
REACTOME_LAGGING_STRAND_SYNTHESIS 2.16 2.31 2.43 2.28
KEGG_DNA_REPLICATION 2.36 2.59 2.72 2.48
REACTOME_ACTIVATION_OF_ATR_IN_RESPONSE_TO_REPLICATION_STRESS 2.35 2.55 2.58 2.40
REACTOME_DNA_REPAIR 2.24 2.49 2.58 2.20
KEGG_BASE_EXCISION_REPAIR 1.94 2.16 2.21 2.06
REACTOME_NUCLEOTIDE_EXCISION_REPAIR 2.00 2.28 2.29 2.12
KEGG_NUCLEOTIDE_EXCISION_REPAIR 2.01 2.35 2.27 2.11
KEGG_HOMOLOGOUS_RECOMBINATION 1.701 2.04 2.23 2.01
REACTOME_DOUBLE_STRAND_BREAK_REPAIR 1.615 2.02 1.97 1.78
KEGG_MISMATCH_REPAIR 2.10 2.36 2.39 2.29
REACTOME_EXTENSION_OF_TELOMERES 2.22 2.34 2.52 2.37
REACTOME_TELOMERE_MAINTENANCE 2.24 2.52 2.45 2.19
BIOCARTA_G2_PATHWAY 1.606 1.99 1.94 1.84
REACTOME_CENTROSOME_MATURATION 1.324 1.80 1.95 1.98
REACTOME_LOSS_OF_NLP_FROM_MITOTIC_CENTROSOMES 1.275 1.73 1.92 1.92
REACTOME_CDC20_PHOSPHO_APC_MEDIATED_DEGRADATION_OF_CYCLIN_A 1.145 1.85 1.99 1.95
REACTOME_APCDC20_MEDIATED_DEGRADATION_OF_CYCLIN_B 1.625 1.85 1.98 1.84
REACTOME_G2_M_CHECKPOINTS 2.40 2.55 2.71 2.52
REACTOME_G2_M_TRANSITION 1.39 1.94 2.07 2.08
REACTOME_MITOTIC_PROMETAPHASE 1.787 2.47 2.83 2.57
REACTOME_CELL_CYCLE_MITOTIC 2.59 3.02 3.27 2.84
REACTOME_INACTIVATION_OF_APC_VIA_DIRECT_INHIBITION_OF_THE_APCOMPLEX 1.605 1.86 2.02 1.82
REACTOME_MITOTIC_M_M_G1_PHASES 2.23 2.68 3.06 2.66
REACTOME_M_G1_TRANSITION 2.33 2.49 2.57 2.12
REACTOME_REGULATION_OF_APC_ACTIVATORS_BETWEEN_G1_S_AND_EARLY_ANAPHASE 1.516 2.00 2.14 2.00

REACTOME_APOPTOSIS 0.449 0.973 0.91 1.23
REACTOME_APOPTOTIC_EXECUTION_PHASE 0.943 1.084 1.202 1.12
REACTOME_NRAGE_SIGNALS_DEATH_THROUGH_JNK −2.08 −1.58 −1.08 0.55
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Figure 4. Gene set enrichment analysis (GSEA) of gene sets associated to canonical pathways. Gene lists were built to represent the onset of proliferation 
upon release from the INH treatment and ranked according to the t-statistic from the results of the limma analyses. Gene sets were grouped according to 
the cell cycle phase to which they were associated. The last 3 gene sets in the list were associated to cell death. The Normalized Enrichment Score (NES) 
is shown. The red (positive NES) and green (negative NES) scales mark the FDR q-val scores with significances below 0.05.
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Unlike the results from the cell proliferation experi-
ment, no difference in the normalized enrichment score 
(NES) was observed across the time-points. A group of 
206 genes (60% of the total) that are commonly dif-
ferentially expressed for all time-points was identified 
(see Supplemental File 1 for details). This observation 
and the GSEA results together indicate a consistent and 
stable INH effect on gene expression in these cells.

GSEA analysis confirmed that the transcriptomics 
data reflect the experimental perturbation of the cell 
cycle.

Verification of upstream regulators  
by Reverse Causal Reasoning (RCR) 
analysis
To verify the correctness of the predicted upstream 
regulators of the CPN model, we applied RCR (see 
Methods—Reverse Causal Reasoning) to the cell pro-
liferation datasets described above to predict the activ-
ity states of specific hypotheses that are consistent with 
the biology of the underlying datasets as determined by 
GSEA and flow cytometry. Mapping these hypotheses 
on the related sub-networks should further elucidate 
the expected molecular mechanisms involved.

RCR analysis was performed by selecting the genes 
that were differentially regulated (see Methods—
Transcriptomics data analysis) between group C and 
group B (proliferation effect over time). RCR scored 
each set of significantly regulated genes (4 lists of 
genes in total: 2, 4, 6, and 8h) against the full set of 
hypotheses (.2000) from the Selventa Technology 
Platform.19

RCR produces richness and concordance scores 
(see Methods6). Concordance measures the con-
sistency of the directions between the observed 
state changes (corresponding to the pairwise 

differentially expressed genes) and the expected 
direction captured in the hypothesis model. By fix-
ing the concordance P-value cutoff (,0.05), 185 
hypotheses passed the threshold value; 54 of the 
hypotheses (29%) belonged to the CPN model 
with a significant over-representation of coverage 
(P-value  ,  0.008, as reported in Table  1). Among 
the 54 Hypotheses present in the CPN models, 26 
and 20 Hypotheses were part of the Cell Cycle and 
Growth Factor sub-network models, respectively 
(Fig. 5 (see also Supplemental Files 3 and 4)). Among 
the 26  significant hypotheses from the cell cycle 
sub-network, coordinated predictions for down-
regulation of Hypotheses related to cell cycle inhibi-
tion (RBL, taof(RB1), RB1, CDKN1 A, taof(E2F4) 
and THAP1) and for activation of Hypotheses that 
are in relation to cell cycle induction (E2F1, E2F2, 
E2F3, taof(E2F2), taof(E2F3), TFDP1, CDK4, 
CCND1, taof(MYC), taof(MYCN)) were identified. 
Mapping the related hypotheses to the Cell Cycle 
sub-network model (Supplemental File 3) enabled 
the extraction and visualization of the intracellular 
pathway including the connections between the iden-
tified key players (Fig. 6).

The removal of the CDK4/CDK6 inhibitor (group C) 
drove the cells into the s-phase. Consequently, CDK4 
and flavopiridol (a cyclin-dependent kinase inhibi-
tor under clinical development) associated hypoth-
eses were predicted to be activated and inhibited, 
respectively. Overall, high concordance was observed 
between the expected biological processes and the G1 
to S-phase transition-associated processes.

Evaluation of the predicted hypotheses for the 
Growth Factor sub-network (Fig.  5) showed an 
induction of growth factor related Hypotheses 
(Platelet Derived Growth Factor Complex family Hs, 

Table 1.

Significant  
hypotheses  
in submodel

Hypotheses  
in submodel

Significant  
hypotheses

Total number  
of hypotheses

Significance  
(hypergeometric  
distribution)

Concordance/
richness

Cell proliferation  
network model

54 301 185 2151 1.25E-08 C
100 301 465 2151 3.03E-07 R

Growth  
factor

20 126 185 2151 4.28E-03 C
39 126 465 2151 7.53E-03 R

Cell  
cycle

26 58 185 2151 7.30E-14 C
38 58 465 2151 3.52E-13 R

Notes: RCR results for the over-representation analysis of hypotheses in the three CPN-associated models. RCR scored each set of significantly 
regulated genes (4 lists of genes in total: 2, 4, 6, and 8 hours) against the full set of hypotheses (.2000) from the Selventa Technology Platform.
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Figure 5. Results of Reverse Causal Reasoning analyses. Fifty-four 
hypotheses of the cell proliferation network (CPN) model had significant 
concordance (P-value , 0.05, see Table 1 for the significance of the test 
statistic). Each row represents the data for one of the hypotheses as 
follows: name of hypothesis, the concordance significance level at each 
time-point, and whether the hypothesis belongs to the Growth Factor 
and/or Cell Cycle sub-network models (green rectangles) that are part of 
the CPN model. Rows of the matrix are clustered by applying the affinity 
propagation clustering algorithm (see Methods for details).

anti-EGFR mAB Clone 225, IGF1, IGF2, FGF7). 
Interestingly, FGF7 was a component of the cell 
culture medium that was used in this study. Down-
stream from the growth factors, hypotheses that cor-
respond to PI3K (kaof(PI3K family Hs), kaof stands 

for kinase activity of)) and serine-threonine protein 
kinase (AKT) (kaof(AKT family Hs)) activity were 
predicted to be time-dependently up-regulated, 
indicating the activation of this particular cellular 
pathways in our experiment (Fig. 6 (see also Supple-
mental File 5)). Consistent with this finding, the RCR 
analysis predicted the inhibition of PTEN activity 
(paof(PTEN)), a negative regulator of the PI3K/Akt 
signaling pathway which inhibits AKT activity via 
dephosphorylation.20

14 of the 54  significant hypotheses were neither 
part of the Cell Cycle nor of the Growth Factor sub-
network models. Hypotheses such as gtpof(RHOA), 
RAC1, and kaof(ROCK1) that describe the activi-
ties of RHOA, RAC1 and ROCK1, proteins that are 
mainly involved in cell migration processes, were pre-
dicted to be up-regulated.21 However, because these 
processes, including cytoskeleton rearrangement, are 
also present in cell division, the increased activity 
of these genes might be expected.22 Differentiation-
associated hypotheses (Indian hedgehog homolog 
(IHH), GLI1 (taof (GLI1), taof stands for transcrip-
tional activity of), GLI2 (taof (GLI2))) were predicted 
to be activated under proliferation conditions. When 
we investigated this more closely, we found that the 
respective underlying evidences were enriched for 
the cell cycle process gene ontology term associated 
genes (false discovery rate (FDR) , 1E-11).

It was important to verify that the regulation 
directionality of predicted active hypotheses was 
concordant with respect to the expected cascade of 
causal molecular events modeled in the backbone 
of the network models. Statistical analysis (see 
Material and Methods) showed regulation direction-
ality in agreement between Network Models paths 
and the corresponding activation/inhibition of pre-
dicted hypotheses (CPN, P-value , 0.02; Cell Cycle 
P-value , 0.0003).

Discussion
Our study aimed at verifying the correctness and 
the relevance of the recently published CPN model4 
using a dataset independent of the network build-
ing process focusing on lung cell proliferation. The 
experiment was designed in such a way that it was 
possible to observe the re-entry and progression of 
human normal bronchial epithelial cells (NHBE) in 
the S-phase of the cell cycle following the withdrawal 
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of the chemical CDK4/6-inhibitor that blocked cells 
in G1 phase. These results were observed by FACS 
(Fig. 2), and confirmed at the molecular level using 
gene expression data analyzed with computational 
approach (GSEA) supporting the identification of 
significantly enriched cell cycle-related pathways/
biological processes (Fig.  4). Having checked that 
the dataset reached biological expectations (Fig. 4), 
transcriptomics data were used to evaluate the CPN 
model. As a first step, RCR analysis, which uses a 
database of hypotheses as prior biological knowl-
edge, enabled to identify hypotheses predicted to 
be active upstream regulators of the observed gene 
expression in the dataset and which significantly 

E2F3
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TFDP1/DP1
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taof(E2F2)

E2F1

taof(E2F4)
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CDK4

Growth factor related hypothesess (eg, FGF7, IGF1/2, PDGF)

CDK4

Cell cycle progression G1/S

E2F1/2/3 DP1

= starting point

0 < conc < 0.001 −0.001 < conc < 0
0.001 ≤ conc < 0.05 −0.05 < conc ≤ −0.001

0.05 ≤ conc < 0.1 −0.1 < conc ≤ −0.05
Predicted activated Predicted inhibited

Linkage to
growth factor
subnetwork

Cell cycle
subnetwork

Transcription of S-phase genes
eg, RRM2, CDC6, MCM10, BIRC5,

DHFR, PCNA, RBL1

Flavopiridol

Figure 6. RCR results overlaid on a part of the Cell Cycle sub-network model. Nodes of the Cell Cycle sub-network model are organized in a network 
structure, and RCR results are shown as heat maps (concordance levels) beneath the name of each hypothesis. Upstream part of the network represents 
the link to the Growth Factor sub-network. The middle part shows hypotheses of the Cell Cycle sub-network model directly responsible for the S-phase 
genes transcriptional response (bottom part of the network).

covered the CPN model (Fig. 5). The subnetworks for 
which predicted active hypotheses were the most sig-
nificantly represented were the cell cycle and growth 
factor sub-networks, indicating that the CPN model 
has the ability to capture specific signals. Indeed, the 
culture medium used to grow NHBE cells contains 
growth factors that activate growth factor pathways 
converging towards the cell cycle leading to cell 
proliferation. Under CDK4/6-inhibitor conditions, 
some growth factor signaling is blocked at the entry 
of the cell cycle corresponding to the G1-phase.13 As 
a second step, it was important to verify that the regu-
lation directionality of predicted active hypotheses 
was concordant with respect to the expected cascade 
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of causal molecular events modeled in the backbone 
of the CPN model (Fig. 6). This was actually the case, 
indicating that those biological mechanisms were 
accurately modeled. Moreover, the prediction of the 
flavopiridol hypothesis demonstrates that the CPN 
may also support mode-of-action studies for biologi-
cally active substances such as putative drugs.

This verification process also enabled to pinpoint 
some unexpected findings. The hypothesis taof(TP53) 
related to the tumor suppressor p53 was predicted to be 
activated, implying that the transcriptional activity of 
p53 was activated. p53 activation in non-transformed 
cells mainly occurs after cell damage such as DNA 
damage and leads to cell cycle arrest, which is clearly 
opposite to our experimental set-up and the cell pro-
liferation results, which show no difference between 
the untreated control (group A) and the INH-released 
(group C) cells at the 6-hour and 8-hour time points. 
Active p53 would normally act via the induction of 
genes involved in DNA repair and cell cycle regulation 
such as the cell cycle inhibitor p21/CDKN1A,23 but 
CDKN1A, similar to other cell cycle inhibitors such 
as RB1, was predicted to be down-regulated in our 
analysis (Fig. 6). We found that evidence in our knowl-
edgebase, ie, causal relationships available from the 
literature that support the p53-associated hypothesis, is 
originating from tumor cells. This observation from an 
experimental evaluation of the network model demon-
strates the importance of context-specific causal evi-
dence to be available in the knowledgebase, as well as 
the value of experimental verification studies to reveal 
the lack of such appropriate statements. Therefore, the 
underlying evidence statements in the knowledgebase 
for this hypothesis will be augmented to represent the 
p53  signaling in non-tumor cells by adding newly 
curated causal relationships from the appropriate tis-
sue context, namely non-diseased lung tissue, when a 
new release of the model becomes available.

Another unexpected finding concerns the role of 
AKT in the Cell Cycle sub-network. One possible 
explanation could be the inhibition of GSK3B because 
active GSK3B has been reported to inhibit CyclinD1 
(CCND124,25) and MYC (see Supplemental File 5); 
in addition, growth factors may act via the RAS/
RAF/MAPK pathway. But, except the activation of 
c-Jun (taof(JUN)), the predicted activity of the RAS/
RAF/MAPK pathway could not be identified, maybe 
because activation of the MAPK pathways is very 

fast and transiently regulated via phosphorylation and 
dephosphorylation. Therefore the 2-hour time point 
may already be too late to detect the activity of single 
pathway members. Moreover, the addition of more 
granularity, in terms of phosphorylation site, regarding 
the phosphorylation reactions involved in the regula-
tion of AKT might augment the model predictions in 
this pathway.

These 2 examples highlight important aspects 
of the experimental verification of computational 
models. Among others, the full traceability of all 
evidences from the knowledgebase enables to under-
stand unexpected and contradictory predictions, and 
the need of adding more context-specific evidences 
where appropriate.

Different approaches for biological network con-
struction and evaluation/validation have been pro-
posed. A 2-step approach was reported for a Growth 
Factor sub-network model: initially, a rough network 
was compiled from databases of biological pathways,26 
and in the second step, interactions between pathway 
components were evaluated by applying computa-
tional models on specifically generated experiments. 
Another example is a DNA damage-response network 
model, which was built initially as an extended, litera-
ture based, DNA damage-response model. In the sec-
ond step, this model was augmented and verified by 
quantitative interrogation of a subset of the network 
components by Western blotting under doxorubicin 
conditions, as well as doxorubicin + TNF” to “Tumor 
Necrosis Factor (TNF) supplied conditions.27 With 
this approach, network level relationships could be 
confirmed or identified partially; for example, for two 
of the computational models. One possible reason that 
limits direct experimental network model validation 
to only partial evaluations is the fact that these mod-
els are inherently incomplete, notably in complex sys-
tems such as mammalian organisms. However, a few 
complete mechanistic models in less complex systems 
have been proposed.28 Another problem is that large-
scale network models comprising thousands of com-
ponents (eg, mRNAs, proteins) connected by tens of 
thousands of relationships, cannot be fully validated 
due to the lack of appropriate technologies.

On the other hand, neither mechanistic nor causal 
genome-wide network models have been pro-
posed, since after the advent of the high-throughput 
technologies and, currently, networks mainly represent 
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correlations among gene expression profiles. Network 
evaluation is usually carried out computationally 
against databases of protein-protein interaction net-
works, followed by biological validations limited to a 
small subset of yet undiscovered interactions.29 Occa-
sionally, predicted yet invalidated interactions involve 
even well studied cellular processes. Although cell 
proliferation, and, in particular, the cell cycle, prob-
ably represent the most studied biological process, 
some mechanisms are yet to be discovered; for exam-
ple, cell cycle machinery differs from species to spe-
cies and even across tissues/conditions within the 
same species, and new interactions among cell cycle 
related cell components are still being reported.29

The overall results of our study demonstrate the 
importance and the value of the verification process. 
It is clear from this study that not a single dataset can 
cover the perturbation of the entire network model 
as observed with a lower coverage of the epigenetic 
component and the nuclear receptor intracellular sig-
naling (FDR ,  0.05, data not shown). The process 
would require the generation of additional data tar-
geting the perturbations of these parts of the network. 
However, costs and unavailable technologies limit the 
generation of datasets. One possibility is to benefit 
from datasets newly available in public repositories. 
A complementary approach may be the involvement 
of the scientific community to evaluate the correct-
ness of a network model. For example, when a manu-
ally assembled map of the mammalian target of the 
rapamycin (mTOR) signaling network was built from 
literature evidence extracted from 522 scientific pub-
lications30 the map content was evaluated by sharing 
it via Payao, a collaborative environment tool.31 This 
approach opened up a manual process for evaluating 
and augmenting the map content based on the sci-
entific knowledge of the community. Following this 
idea, the CPN model4 will be made available to the 
scientific community on an open web platform. Sci-
entists will be able to access the CPN model through 
the BEL framework, which consists of a set of tools 
enabling the loading and visualization of the platform 
content. The BEL framework is made available by the 
OpenBEL consortium.5

Conclusion
This work describes the process of experimental 
verification of the CPN model using an independent 

dataset designed for this purpose. The results show 
that the model faithfully captures the process that is 
activated when cells are released form the cell cycle 
block. The use of datasets newly available in pub-
lic repositories and the contribution of the scientific 
community to our open access model will contrib-
ute to refine, adjust and augment the CPN model. 
Therefore, this network model evaluation process 
described here can be considered as an iterative and 
dynamic process that will increase the model accu-
racy over time. This can be regarded for this CPN 
model and the related RCR-based network models 
of diverse cellular functions32–35 as well as for all 
other computational modeling approaches on large-
scale molecular datasets as a necessary prerequisite 
for their practical application; for example, to inves-
tigate the impact of exposure to biologically active 
substances and toxicants and the associated disease 
risks, as discussed in the concepts for the “21st Cen-
tury Toxicology”.2,3
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