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Abstract: The database of Genotypes and Phenotypes (dbGaP) allows researchers to understand phenotypic contribution to genetic 
conditions, generate new hypotheses, confirm previous study results, and identify control populations. However, effective use of the 
database is hindered by suboptimal study retrieval. Our objective is to evaluate text classification techniques to improve study retrieval 
in the context of the dbGaP database. We utilized standard machine learning algorithms (naive Bayes, support vector machines, and 
the C4.5 decision tree) trained on dbGaP study text and incorporated n-gram features and study metadata to identify heart, lung, 
and blood studies. We used the χ2 feature selection algorithm to identify features that contributed most to classification performance 
and experimented with dbGaP associated PubMed papers as a proxy for topicality. Classifier performance was favorable in comparison 
to keyword-based search results. It was determined that text categorization is a useful complement to document retrieval techniques 
in the dbGaP.
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Introduction
In 2003, the National Institute of Health (NIH) 
required that certain funded projects include a data-
sharing plan. Motivated by the idea of understand-
ing phenotypic influence on genetic disease, these 
policies were later expanded to include NIH funded 
genome-wide associated studies (GWAS).1,2 In order 
to facilitate implementation, a central data repository, 
the database of Genotypes and Phenotypes (dbGaP), 
was created by the National Center for Biotechnology 
Information (NCBI) to provide researchers access to 
the genotypic and phenotypic information. The data-
base includes specific phenotype variables, statistical 
summaries of genetic information, and offers potential 
to access individual level data if approved by an NIH 
Data Access Committee. The database is growing at 
a rapid pace. In August 2011, 187  top-level studies 
(a study comprised of sub-studies) were archived 
in dbGaP, and by December 2012 there were 357 
 top-level studies.3

The existence of a publicly accessible database, 
however, does not guarantee information is available 
in a suitable form for efficient retrieval, study repli-
cation, identification of control populations, or new 
hypothesis generation.4 Major contributing factors 
to suboptimal study reuse are that phenotypic vari-
able names are not standardized and related concepts 
are not effectively mapped. Approximately 130,000 
variable names exist in the database and many are 
redundant. For example, systolic blood pressure is 
represented by SBP, systolic_BP, and other variations 
such that a string match-based search may miss these 
synonyms. Alternatively, if the search term “white” is 
entered as a keyword search instead of “Caucasian,” 
for example, the retrieved results for each search do 
not match. Genetic studies are expensive and time-
consuming, hence maximizing data reuse is of para-
mount importance.5

We are approaching this problem by aligning phe-
notype variable descriptions to a standard information 
model in two ways. First, our group has developed 
PhenDisco—Phenotype Discoverer (http://pfindr.
net/)—a robust tool for researchers to query and 
upload studies in a standardized fashion by retro-
fitting phenotypes in dbGaP with ontologies using 
natural language processing. Second, we are enhanc-
ing  PhenDisco by integrating automatic document 
classification  techniques into the system. This paper 

is focused on the second objective as we explore 
approaches to automatic document classification, 
motivated by the need to provide enhanced search 
functionality to the PhenDisco system. The exploding 
number of scientific publications in recent decades and 
an increasing number of databases makes automated 
document classification in biomedicine extremely 
important to provide accurate data retrieval, organize 
topics of interest for research, and streamline costs of 
data curation.

While there is a growing body of literature in the 
field of biomedical text classification, a search of 
PubMed and Google Scholar revealed no publications 
about text classification applied to dbGaP. We aim to 
(1) describe in detail the attributes of dbGaP studies, 
and (2) improve text categorization utilizing n-grams 
and metadata features. We focus on heart (cardiac), 
lung (pulmonary and/or respiratory), and blood 
(heme) studies. These categories were chosen due to 
their importance to the dbGaP host organization, the 
National Heart, Lung, and Blood Institute (NHLBI).

Methods
Three hundred and seventeen studies were available 
in dbGaP on July 1, 2012. Each title and abstract was 
manually reviewed and annotated by MKR and KWL 
into heart, lung, blood, and other categories. Inter-
rater reliability was calculated using the R program-
ming language (package IRR) implementation of 
Cohen’s kappa (two raters) and Fleiss’s kappa (three 
raters).6 We confirmed the need for enhanced retrieval 
by performing a simple manual keyword search 
experiment. Search terms (asterisk = wildcard search) 
for heart studies were heart and/or card*. Lung study 
terms were lung and/or pulm* and/or resp*. The terms 
blood and/or heme* were entered for blood studies.

Three machine learning algorithms used success-
fully for text classification in the past were applied in 
this work: naïve Bayes (NB), support vector machines 
(SVM), and the C4.5 decision tree learning algorithm 
(Weka v. 3.6.8 using default parameters). The NB 
algorithm is frequently utilized for text classification 
with good results despite its assumption that features 
are independent. The SVM algorithm is commonly 
used because it is robust and resilient to over-fitting. 
Decision tree algorithms are another commonly 
applied tool, but incur the risk of mistakes early in the 
training process.7
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Below we describe the experiments in detail. First, 
we explain the study metadata features. Second, 
we detail text classification experiments integrating 
n-grams and metadata features. Finally, we outline 
the χ2 feature selection algorithm experiments. In 
addition to text classification based directly on dbGaP 
studies, we also experimented with using PubMed 
listed abstracts associated with each study as proxy 
representation of dbGaP documents. All classifiers 
were evaluated using Weka with stratified 10-fold 
cross validation. Evaluation metrics used were accu-
racy, precision, recall, and F-measure (Table 1). The 
F-measure is the harmonic mean between precision 
and recall. Results of the manual keyword search 
demonstrate the opportunity for improvement in 
accuracy, precision, recall, and F-measure (Table 2).

Metadata features
Each dbGaP study Web page is organized into descrip-
tive sections (Fig. 1). The sections are: study descrip-
tion, authorized access, publicly available data, study 
inclusion/exclusion criteria, molecular data, study 
history, selected publications, disease related to 
study (MeSH terms), links to other NCBI resources, 
authorized data access requests, and study attribu-
tion (principal/co-investigators and funding source). 
We focused on journal publications, MeSH terms, 
principal/co-investigators, and funding source as 
these features have been shown to increase classifica-
tion accuracy in previous studies.8–10

n-gram and metadata experiments
The first set of experiments used n-gram document rep-
resentation derived from study titles and descriptions in 
addition to selected metadata. n-grams provide a means 
of facilitating statistical analysis by characterizing text 
in terms of n-consecutive sequences of tokens. For 
example, performed pulmonary function test separates 

into unigrams of performed, pulmonary, function, and 
test and bigrams of performed pulmonary, pulmonary 
function, and function test, which assists identification 
as a pulmonary test. Another test, such as cardiac func-
tion stress test, can be differentiated by unigrams of 
cardiac, function, stress, and test and bigrams cardiac 
function, function stress, and stress test.

Metadata for each study was automatically 
extracted from the dbGaP website (http://www.ncbi.
nlm.nih.gov/gap) using Python scripts. For our first 
set of experiments we employed unigrams, bigrams, 
and the study metadata (journals, MeSH terms, 
principal and co-investigators, and funding source). 
Accuracy, precision, recall, and F-measure were cal-
culated using Weka.

Table 1. Contingency table and measurement definitions.

correct label Incorrect label
Assigned label a b
Not assigned label c d
Accuracy = a + d/a + b + c + d
Precision = a/a + b
recall = a/a + c
F-measure = 2 × precision × recall/precision + recall

Table 2. dbgaP keyword search results.

Heart Lung Blood
Accuracy 0.64 0.66 0.41
Precision 0.31 0.14 0.07
recall 0.72 0.75 0.76
F-measure 0.43 0.23 0.13

notes: dbgaP manual keyword search results of heart, lung and blood 
studies based on gold-standard label assignment by investigators MKr 
and KWL.

Study title and dbGaP study accession number

•  Study type (case-control, case series, etc)

•  Consent group and IRB requirements
•  Use restrictions

•  Link to public download site

•  List of criteria

•  Type of sequencing (whole genome, genome-wide
   association study, etc)

•  List of publication related to study
•  PubMed link provided

•  MeSH terms listed
•  Link to more detail of term is provided

•  Resources such as PubMed, BioProject, BioSample,
    MeSH terms

•  Demographic information about those who requested
    access

•  Principal and co-investigators
•  Funding sources

•  Number of subjects with individual data
•  Some phenotypic information

Study description

Authorized access

Molecular data

Links to other NCBI
resources

Diseases related to study
(MeSH terms)

Authorized data access
requests

Selected publications

Study attribution

Publicly available data
(public ftp)

Study inclusion/exclusion
criteria

Figure 1. Metadata features of studies in dbgaP.
note: each dbgaP study is organized into descriptive sections. 
Abbreviations: dbgaP, Database of genotypes and Phenotypes; IrB, 
Institutional review Board; ftp, File Transfer Protocol; MeSh, Medical 
Subject headings; NCBI, National Center for Biotechnology Information.
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Feature selection experiment
Our next experiment focused on feature set 
optimization. Yang and Pedersen have shown that 
feature selection (in particular the χ2 and informa-
tion gain feature selection algorithms) can improve 
classification accuracy for some text classification 
tasks.11,12 We used the Weka implementation of the χ2 
feature selection algorithm in this work. All n-grams 
 (unigrams/bigrams) and metadata features were com-
bined and the feature selection threshold (optimal 
number of features for best performance) was deter-
mined experimentally by incrementing the number of 
features by 100 until the maximum number of features 
had been reached. We ran feature selection experi-
ments using the NB and SVM algorithms. Accuracy, 
precision, recall, and F-measure were calculated for 
each additional feature combination and the optimal 
threshold was determined.

PubMed experiment
Due to the relative paucity of training data in dbGaP, 
our last experiment examined feasibility of using 
study-associated PubMed indexed articles as a rep-
resentation for topicality (eg, if 20 PubMed heart 
studies are associated with a dbGaP study, but only 
one lung study, then the study is likely to be a heart 
study). A similar method was applied to classifying 
company and university websites with some success 
by Ghani et al.13 To develop our training corpus, MKR 
manually chose 100 PubMed articles associated with 
dbGaP studies at random in each category of heart, 
lung, and blood and 300 PubMed studies unrelated to 
heart, lung, or blood topics for a total of 600 PubMed 
studies. A binary classifier was used for each cate-
gory. For example, a study would be categorized as 
heart or other, lung or other, and blood or other. In 
each dbGaP study, the associated PubMed studies 
are found in the selected publications section under 
which the study authors, title, and journal article are 
recorded with a PubMed hyperlink. Of the chosen 
studies, approximately 60 PubMed studies directly 
associated with dbGaP studies in each category of 
heart, lung, and blood. However, not all dbGaP stud-
ies have an associated PubMed study; therefore, 
40 studies with the same topicality were chosen at 
random from the PubMed database (with same search 
terms used in the keyword experiments), for a total 
of 100 studies per heart, lung, and blood category. 

MC and KWL categorized MKR’s chosen studies 
and inter-rater reliability was calculated using Fleiss’ 
Kappa for three raters. Each discrepant classification 
was assigned a label after discussion and majority 
vote. A corpus was created from the PubMed study 
title and abstract and categorized using NB and SVM 
classifiers with n-gram (unigram and bigram) based 
feature representation.

Results
We detail our results in four sections. First, we report 
on some salient characteristics of the dbGaP metadata. 
Second, we describe the n-gram and metadata classi-
fication experiments. Third, we present results from 
the feature selection experiment. Finally, we state the 
findings from our PubMed proxy article experiment.

Metadata features
In this section we report details of four types of 
metadata associated with dbGaP studies: journals, 
MeSH terms, principle and co-investigators, and 
funding sources.

Journals
There were 4707 journals publications linked to all 
dbGaP studies. Of these, 606 were unique instances. 
The mean number of articles per dbGaP study was 
15.4 ± 101.81, ranging from 0–1514. The journals 
most frequently linked to dbGaP studies were of gen-
eral topicality, cardiology, epidemiology, or stroke 
(Table 3).

Medical Subject heading terms
On average, dbGaP studies are associated with 
2.24 ± 5.46 Medical Subject Heading (MeSH) 
terms, ranging from 0–69. There were 771 total 
terms, with cardiovascular disease, stroke, obesity, 
and smoking being the most common topics. Terms 
with a frequency of at least six are represented in 
Table 4.

Principal and co-investigators
There were 903 principal investigators and 
 co-principal investigators associated with studies in 
dbGaP. On average each investigator was associated 
with a mean of 3.99 ± 8.22 distinct studies.  Fifty-one 
investigators were associated with three or more 
dbGaP studies.
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Table 3. Most frequent journals linked to dbgaP studies.

Journal name Frequency percentage 
(n = 4707)

American Journal of 
epidemiology

269 5.7

Circulation 228 4.8
American Journal of 
Cardiology

146 3.1

JAMA: Journal of the 
American Medical 
Association

127 2.7

Atherosclerosis 125 2.7
Stroke 124 2.6
American heart Journal 118 2.5
The New england  
Journal of Medicine

116 2.5

Nature genetics 110 2.3
Diabetes Care 100 2.1
Annals of epidemiology 91 1.9

note: Cardiovascular-related subject matter was most common among 
journals.

Table 4. Most frequent MeSh terms in dbgaP.

MesH terms Frequency percentage 
(n = 771)

Myocardial infarction 22 2.9
Cardiovascular diseases 20 2.6
Stroke 20 2.6
Obesity 15 2.0
Smoking 10 1.3
Diabetes mellitus, type 2 8 1.0
Prostatic neoplasms 7 0.9
Breast neoplasms 6 0.8
Cardiovascular system 6 0.8
Cholesterol 6 0.8
Dementia 6 0.8
Diabetic nephropathies 6 0.8
heart disease 6 0.8
Intermittent claudication 6 0.8
Lung neoplasms 6 0.8
Osteoporosis 6 0.8
Parkinson disease 6 0.8
risk factors 6 0.8

notes: Medical Subject heading (MeSh) terms utilized with frequency 
of least six in dbgaP. The most frequent terms are those relating to 
cardiovascular disease, obesity, and smoking.

Table 5. Most frequent funding sources in dbgaP.

Funding source agency Frequency percentage 
(n = 359)

National human genome 
research Institute

111 36.4

National heart, Lung, and  
Blood Institute

38 12.5

National Cancer Institute 21 6.9
National Institute on Aging 7 2.3
Carlos Slim health Institute 7 2.3
geisinger Clinic 4 1.3
National Center for  
research resources

4 1.3

National Institute of  
Diabetes and Digestive  
and Kidney Diseases

4 1.3

National Institute  
of Drug Abuse

4 1.3

National Institute of  
Neurological Disorders  
and Stroke

4 1.3

The Canadian Institutes  
for health research

4 1.3

Prostate Cancer  
Foundation

3 1.0

Wellcome Trust 3 1.0
National Institute of  
Allergy and Infectious  
Diseases

3 1.0

Amyotrophic Lateral  
Sclerosis Association

3 1.0

notes: Of the most frequently encountered funding sources in dbgaP, the 
majority are from the National human genome research Institute, the 
National heart, Lung, and Blood Institute, and the National Cancer Institute.

Funding sources
The funding agency most frequently linked to dbGaP 
studies supported 111 studies. The mean number of stud-
ies supported per funding body was 3.44 ± 0.93 ranging 
from 1–111. Studies were predominately funded by the 
National Human Genome Research Institute (36%) and 

the National Heart, Lung, and Blood Institute (12%). 
The most frequent funding sources are listed in Table 5.

n-gram and metadata experiments
Results from the n-gram (unigram and bigram) and 
metadata feature experiments were favorable. We 
constructed our training corpus from dbGaP study 
descriptions, titles and histories. With all corpus study 
descriptions combined, there were a total of 78,709 
words with an average of 258.06 words ± 229.63 (range 
0–1419) per study. The study histories contained a total 
of 24,706 words with a mean of 81 ± 186.97 (range 
0–1822). We considered unigrams (one word units) and 
bigrams (two-word units) as potential features.

Inter-rater agreement
MKR and KWL manually classified dbGaP stud-
ies into the categories of heart, lung, and blood. 
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Cohen’s Kappa score was 0.86, 0.72, and 0.77, respec-
tively indicating acceptable agreement. The discrep-
ancies were reviewed, discussed and a final category 
was determined.

heart studies
There were 46 heart studies in the database. The best 
performing algorithm was the C4.5 approach with 
accuracy of 92.5% and F-measure of 76.3. The sec-
ond-best performing algorithm was SVM with 90.2% 
accuracy and F-measure of 65.9. The unigram fea-
ture yielded the best result regardless of the metadata 
feature combination (Table 6). This is substantial 
improvement over the keyword search accuracy of 
64% and F-measure of 43.

Lung studies
There were 20 studies classified as lung in the dbGaP 
database. In this case, the C4.5 algorithm performed 
adequately with regards to accuracy, but was not the 
highest overall performing learning algorithm in terms 
of F-measure. The SVM classifier achieved the high-
est overall score of 95.1% for accuracy and 44.4 for 
F-measure when the metadata features funds, MeSH 
terms, and journals were combined (Table 7). Similar 
to heart studies, this was a noticeable improvement 
over keyword search for lung studies, which provided 
an accuracy of 66% and F-measure of 23.

Blood studies
There were 28 blood studies in the training set. The 
best performing classifier was SVM in conjunction 

with MeSH features, with 92.1% accuracy and 33.3 
F-measure. The best performing combination of fea-
tures was unigrams, funds, and journals with an accu-
racy of 92.1% and F-measure of 29.4 as shown in 
Table 8. The scores decreased as increasing features 
were added likely due to over-fitting of the model. 
While the results did not increase to the degree of the 
heart and lung cases, there was an improvement over 
keyword accuracy of 41% and F-measure of 13.

Feature selection experiment
Although the unigrams and metadata feature-based 
classifiers out-performed the keyword search avail-
able in dbGaP, we continued with the feature selection 
experiment to attempt further performance increase. 
The 20 most discriminating features in each category 
as determined by the χ2 feature selection algorithm are 
noted in Table 9. Performance of the SVM and NB 
learning algorithms was improved by determining the 
optimal number of features in cross-validation experi-
ments (Table 10). For heart studies, the threshold was 
500 features with best performance by SVM algorithm 
(F-measure, 83.1). In lung studies the threshold was 2400 
features with best results by NB algorithm (F-measure, 
78.8). The blood study threshold was 2200 features with 
best performance by NB algorithm (F-measure, 72.7). 
All groups achieved substantial improvement, particu-
larly over keyword search (Fig. 2).

PubMed experiment
We found PubMed studies effective metadata to 
represent topicality of dbGaP studies (Table 11). 

Table 6. results from n-gram and metadata experiments: heart studies.

Feature combination Accuracy F-measure
c4.5 sVM nB c4.5 sVM nB

Unigrams 92.5 90.2 85.6 76.3 65.9 48.8
Bigrams 88.9 89.8 83.6 59.5 58.7 24.2
Funding Sources 83.3 83.2 79.7 0.0 10.5 3.1
Journals 83.6 82.0 82.6 16.7 20.3 34.6
MeSh 89.8 89.8 84.6 56.3 58.7 27.7
Principal Investigator 86.2 86.6 78.7 30.0 34.9 90.2
Unigrams_Funding Sources_Journals 92.5 89.8 85.6 76.3 47.6 65.2
Unigrams_Funding Sources 92.5 90.2 85.6 76.3 65.9 47.6
Unigrams_Journals 92.5 89.8 85.6 76.3 65.2 47.6
Unigrams_MeSh_Journals 92.5 89.8 85.6 76.3 65.2 47.6

notes: Best-performing combinations of metadata (Journals, MeSh Terms, Principal and Co-Investigators, Funding Sources) and n-grams (Unigrams and 
Bigrams) featured in heart category. The underscore separates each feature. In addition to results highlighted in table, all other combinations of features 
involving unigrams with C4.5 algorithm provided good performance with accuracy of 92.5% and F-measure of 76.3. MeSh = Medical Subject headings. 
The highest accuracies and F-measures are in bold typeset.
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Table 7. results from n-gram and metadata experiments: lung studies.

Features Accuracy F-measure
c4.5 sVM nB c4.5 sVM nB

Unigrams 91.8 94.1 90.8 24.2 25.0 6.7
Bigrams 91.5 94.1 91.2 13.3 25.0 0.0
Funding Sources 93.4 93.4 90.5 0.0 0.0 0.0
Journals 93.8 93.8 88.5 17.4 17.4 14.6
MeSh 94.1 94.8 91.5 35.7 38.5 7.1
Principal and Co-Investigators 94.4 94.8 90.2 26.1 33.3 0.0
Funding Sources_Principal and Co-Investigators 94.4 94.8 94.8 33.3 26.1 33.3
Funding Sources_MeSh_Journals 93.4 94.8 91.5 33.3 23.1 7.1
Funding Sources_MeSh 94.1 95.1 91.8 35.7 44.4 7.4
MeSh_Principal and Co-Investigators 94.8 94.8 91.5 38.5 38.5 7.1

notes: Best-performing combinations of metadata (Journals, MeSh Terms, Principal and Co-Investigators, Funding Sources) and n-gram (Unigrams and 
Bigrams) features in lung category. The underscore separates each feature. MeSh = Medical Subject headings. The highest accuracies and F-measures 
are in bold typeset.

Table 8. results from n-gram and metadata experiments: blood studies.

Features Accuracy F-measure
c4.5 sVM nB c4.5 sVM nB

Unigrams 89.5 91.8 87.21 33.3 24.2 4.9
Bigrams 89.2 91.2 88.2 26.7 12.9 0.0
Funding Sources 90.2 88.9 86.9 0.0 0.0 0.0
Journals 90.5 90.2 84.9 0.0 0.0 8.0
MeSh 91.2 92.1 89.8 12.9 33.3 16.2
Principal and Co-Investigators 90.8 91.5 85.3 0.0 23.5 0.0
Unigrams_Funding Sources_Journals 89.5 92.1 87.9 33.3 29.4 5.1
Unigrams_Funding Sources 89.5 91.8 87.5 33.3 24.3 5.0
Unigrams_Journals 89.5 91.8 87.9 33.3 24.2 5.1
Funding Sources_MeSh_Principal and  
Co-Investigators

91.2 92.1 87.9 33.3 9.8 12.9

notes: Best-performing combinations of metadata (Journals, MeSh Terms, Principal and Co-Investigators, Funding Sources) and n-gram (Unigrams and 
Bigrams) features in blood category. The underscore separates each feature. MeSh = Medical Subject headings. The highest accuracies and F-measures 
are in bold typeset.

The SVM algorithm using unigrams achieved the 
highest F-measure for heart, lung, and blood studies 
(98.2, 97.1, and 95.7, respectively). Accuracy was 
also highest with the SVM algorithm and unigrams 
(97.0, 95.1, and 92.6, respectively).

Inter-rater agreement
Inter-rater agreement was calculated across three rat-
ers (MKR, KWL, and MC). Both MKR and KWL 
have a background in clinical medicine, while MC’s 
background is in informatics. The Fleiss’ Kappa for 
m raters was 0.97 with percent-agreement of 95.9.6 
Cohen’s kappa statistic was applied for pairwise com-
parison. The Cohen’s Kappa and percent-agreement 
between MKR/KWL, MKR/MC, and KWL/MC 

were 98.7 and 99, 95.7 and 96.7, and 94.9 and 96.1, 
respectively. The discrepancies were examined. Most 
were about classification of diagnosis that fall into 
multiple categories. For example, stroke and hyper-
tension were classified by some raters as other because 
they were considered neurologic disease rather than 
cardiovascular disease.

Discussion
For all categories—heart, lung, and blood—we found 
that text classification methods improved document 
identification compared to keyword based approach. 
By utilizing n-grams and metadata, the highest 
F-measures achieved for heart, lung, and blood studies 
were 65.9, 44.4, and 33.3, respectively. With feature 
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Table 9. Most frequently encountered discriminating features.

Heart Lung Blood
coronary lung LeUKeMIA
infarction pulmonary leukemia
myocardial infarction the_lung leukemia_all
coronary_artery of_smoking acute
artery of_lung tumor
myocardial pulmonary_disease lymphoblastic_leukemia
heart_disease lung_cancer lymphoblastic
nhlbi controlled clinical trials acute_lymphoblastic
heart esp transformation
MYOCArDIAL INFArCTION was_evaluated altered_in
hypertension cessation_and patient_samples
cardiovascular expiratory ACUTe LYMPhOBLASTIC LeUKeMIA
institute_nhlbi seattlego_the ACUTe MYeLOID LeUKeMIA
atherosclerosis trial_with number_analysis
STrOKe lung_function leukemia_cll
Stroke SMOKINg CeSSATION ChrONIC LYMPhOCYTIC LeUKeMIA
risk_factors smoking_cessation platelet
atherosclerosis_risk into_two cll
in_communities obstructive_pulmonary landscape_of
of_atherosclerosis bronchodilator we_performed

notes: Notable discriminating features in heart, lung, and blood categories. Words in capital letters are MeSh terms. Underscore indicates bigram.
Abbreviations: esp, exome Sequencing Project; Seattlego_the, participating group in eSP; cll, Chronic Lymphocytic Leukemia; all, Acute lymphoblastic 
Leukemia; nhlbi, National heart, Lung, and Blood Institute.

Table 10. Optimal number of features.

Optimal # of  
features

F-measure  
(feature selection)

F-measure  
(keyword search)

F-measure (n-grams  
and metadata)

heart 500 83.1 (SVM) 43.0 65.9
Lung 2400 78.8 (NB) 23.0 44.4
Blood 2200 72.7 (NB) 13.0 33.3

notes: Comparison of experiment results for heart, lung, and blood studies reported based on highest scoring learning algorithm and F-measure. 
Abbreviations: SVM, Support Vector Machines; NB, Naïve Bayes.

selection threshold implemented, the best F-measures 
were 83.1, 78.8, and 72.7, respectively.

Text classification of biomedical-related documents 
is an active area of research and our dbGaP database 
results are comparable to previous approaches in the 
literature. Donaldson et al14 identified PubMed litera-
ture on the topic of protein-protein interactions using 
an SVM algorithm, gaining a classification accu-
racy of 90%.14 Dobrokhotov et al15 used probabilistic 
classification to classify and rank PubMed literature 
according to human genes of interest, achieving 59% 
precision and 69% recall.15 Miotto et al16 applied 
classification and regression trees (CART) and arti-
ficial neural networks (ANN) machine learning 
algorithms to PubMed abstracts to identify allergen 
cross-reactivity papers, finding that a bag-of-words 

document representation performed best overall.16 
In 2007, Wang et al9 used a NB text classifier to dem-
onstrate improved automated document classification 
in an immune epitope database. Features used were 
authors, journal, and MeSH headings with a sensitiv-
ity (precision) of 95% and specificity of 51.1%.9 In 
2008, Poulter et al17 created an information retrieval 
system for Medline with a NB classifier incorporat-
ing MeSH terms and journals titles to retrieve articles 
of interest in specific domains. The average precision 
varied from 0.69 to 0.92 depending on the topic.17 In 
2009, Conway et al18 demonstrated that a combination 
of n-gram and semantic features in conjunction with 
a NB classifier yielded the best classification results 
for disease outbreak reports.18 Botsis et al19 identi-
fied cases of anaphylaxis to influenza vaccine from a 
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 database of adverse events using a rule-based classi-
fier that incorporated keywords of anaphylaxis as part 
of the feature set with sensitivity of 79% and specific-
ity of 94%. The standard machine learning classifiers 
resulted in F-measures ranging from 0.70 to 0.81.19 
In 2009, Denecke and Baehr20 utilized additional 
document metadata such as keywords, titles, jour-
nal, and conference information to achieve favorable 
results for a document classifier.20 More recently Wei 
and Collier10 demonstrated that for the task of clas-
sifying full-text research papers according to model 
organism, a NB classifier using features derived from 
MeSH terms, journal and gene names, provided the 
best classification accuracy.10

In our experiments, the highest accuracy and 
F-measure overall for heart studies was based upon 
the unigram feature alone. This was attributed to the 
fact that the heart category contained the highest num-
ber of studies and the most homogenous diagnoses, 
such as coronary artery disease and myocardial infarc-
tion. For lung studies, the funding source was the most 
discriminating attribute. One possible explanation for 
this was the relatively small size of the lung document 
training set, and to explore this we reviewed the C4.5 
classifier output. We discovered many terms used to 
determine decision nodes were not specific to lungs 
such as the name of the clinical trial, whereas the heart 
study output better captures cardiac medical terms 
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Figure 2. F-Measure feature selection thresholds: heart, lung, blood.
notes: Best performing χ2 feature selection algorithm results for heart, lung and blood studies. The arrow indicates the cutoff for best performance: 
heart = 500 features, lung = 2400, and blood = 2400. 
Abbreviations: NB, Naïve Bayes; SVM, Support Vector Machines.

Table 11. PubMed metadata.

Heart Lung Blood
Accuracy F-measure Accuracy F-measure Accuracy F-measure

Unigrams NB 89.5 94.0 85.4 91.9 87.5 92.9
Bigrams NB 83.4 91.0 83.6 91.1 83.4 90.9
Unigrams SVM 97.0 98.2 95.1 97.1 92.6 95.7
Bigrams SVM 95.9 97.6 88.7 93.6 87.5 93.0

notes: Support Vector Machine (SVM) algorithm performed best with unigram features to identify topicality of the database of genotypes and Phenotypes 
(dbgaP) studies based on related PubMed studies. The highest accuracies and F-measures are in bold typeset.
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(Fig. 3). In regard to the blood studies, we speculate 
that the lower performance was because their topical-
ity is comprised of heterogeneous terms including 
clotting disorders, leukemia, and platelets.

In regard to the inter-rater reliability of classifying 
the PubMed experiments, MKR and KWL’s scores 
were more aligned because of their clinical back-
grounds and experience with manual classification. The 
categorization of studies is not straightforward. There 
are diagnoses that may belong to multiple categories 
and require clinical expertise to determine appropriate 
classification. For example, although stroke involves 
the neurologic system, it is generally thought of as 
a cardiovascular disorder. Other indistinct diagnoses 
are pulmonary embolism and pulmonary hyperten-
sion. Although the root cause of embolism is typi-
cally a blood coagulation abnormality, and pulmonary 
hypertension is vascular in origin, these can be con-
sidered lung diseases as recognized by the American 
Lung Association. This concept of classifying studies 
into only one category when in reality diagnoses may 
fall under multiple categories, is a shortcoming of our 
methods. This is something to be addressed in the 
future as we optimize the algorithms and is important 
to consider when deciding which researchers will per-
form manual categorization of training corpus docu-
ments as domain knowledge has a decisive role.

conclusion
Although relatively small, the number of studies in 
dbGaP is rapidly increasing. We demonstrated that 

using a document classifier based on n-grams and 
structured metadata yields better document retrieval 
results than the keyword-based search currently avail-
able in dbGaP. Without feature selection for heart 
studies, which had the largest amount of data in the 
training set, the C4.5 algorithm with unigrams had 
the best performance. For lung studies, the SVM clas-
sifier with funding sources and MeSH terms contrib-
uted the most to successful classification. The SVM 
algorithm was most effective when MeSH terms were 
utilized to identify blood studies, closely followed by 
the combination of unigrams, funding sources, and 
journals.

In future work, we plan to employ features 
derived from MetaMap21 and other natural lan-
guage processing tools in order to further improve 
classification accuracy and integrate this into the 
 PhenDisco system. We plan to expand these experi-
ments in topicality and build classifiers for other 
conditions of interest to dbGaP users (eg, asthma, 
chronic obstructive pulmonary disease, myocardial 
infarction, diabetes, etc.). The methods presented in 
this paper are not only suitable for dbGaP, but can 
also add structure to new databases or retrofit exist-
ing databases.
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