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Abstract: Proteins may be related to each other very specifically as homologous subfamilies. Proteins can also be related to diverse
proteins at the super family level. It has become highly important to characterize the existing sequence databases by their signatures to
facilitate the function annotation of newly added sequences. The algorithm described here uses a scheme for the classification of odorant
binding proteins on the basis of functional residues and Cys-pairing. The cysteine-based scoring scheme not only helps in unambigu-
ously identifying families like odorant binding proteins (OBPs), but also aids in their classification at the subfamily level with reliable
accuracy. The algorithm was also applied to yet another cysteine-rich family, where similar accuracy was observed that ensures the
application of the protocol to other families.
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Introduction

The role of olfaction is the major source for host
identification among mosquitoes. The molecular
basis of this chemical signal recognition is systemati-
cally encoded by a series of proteins. Odorant bind-
ing proteins are thought to be the primary proteins
involved in the transport of odorants and pheromones
to the olfactory receptors.!> Members of this protein
family have been identified in a number of insect
species, including four dipterian species Drosophila
melanogaster.** Anopheles gambiae,* Aedes aegypti®
and Culex quinquefasciatus.” Since their identifica-
tion, this family of proteins has been of immense focus
in the field of biology, as they could act as important
target proteins. However, the sequence divergence of
this family is very high in comparison to their func-
tion, which is to bind to a wide range of odorant mol-
ecules. It has been difficult to classify these proteins
into different subfamilies for this reason. 3 major sub-
families have been defined previously in this family
of proteins, which are Classic, PlusC and Atypical
based on their cysteine conservation patterns.

In general, biological sequence data are accumulat-
ing rapidly as a result of advanced sequencing tech-
nology and concerted genome projects, at a greater
rate than growth in computing efficiency.® The prob-
ability that a new protein can be classified as part of a
sequence family is already near 30%.° Encouragingly,
evolutionary constraints on protein sequences are
imposed by requirements of 3-dimensional struc-
ture and biological function, which are main aspects
employed for the classification of proteins. Generally,
functional requirements are known to be more pro-
nounced in terms of residue conservation, where an
occurrence of completely conserved residues indi-
cates a specific biological function. Many examples
of such occurrences have been reported in protein
sequences; 2 examples are the Ser-His-Asp triad of
serine proteases'® and the zinc finger motif of deoxy-
ribonucleic acid (DNA)-binding proteins.!! Muta-
tion of such residues generally renders the protein
inactive. Such residues can be either spread across
the entire stretch of the protein or can be observed
as conserved contiguous patterns termed “functional
motifs”. Such conservation status has been employed
in annotating protein sequences by different methods
reviewed by Ouzounis et al."> Though many of these
methods fare well at assigning an unknown protein

at a family level, the accuracy fails when a classifi-
cation is required at a subfamily level. Several such
function prediction algorithms require the availability
of structural information, namely spatial interactions
of residues of query sequences, in order to recog-
nize preservation of geometry of functional residues.
These include methods like Conserved functional
group (CFG)."*!'* Whereas such methods could be
quite applicable for proteins of unknown function,
determined by structural genomics initiatives, struc-
tural information is either not available for most
query sequences or the quality of models, derived by
homology, could be limited. Residues near the active
site might play an auxiliary role and are less easy
to identify as part of “functional motifs”. Sequence
conservation of functional residues is therefore less
obvious for residues that modulate the specificity of
biological function. These residues change as a pro-
tein evolves to satisfy modified functional constraints,
while the basic biochemical mechanism and the over-
all three-dimensional fold remain unaltered. In such
cases, representative residues, associated with struc-
tural aspects of a protein, serve as better classifiers.
Cysteine, as a sulphur containing non-essential
biogenic amino acid, plays critical roles in a num-
ber of metabolic processes. It is found as a part of
a number of biological important proteins associated
with important roles starting from folding to main-
taining the integrity of structure to function. One of
the most important roles of cysteines is the forma-
tion of disulphide bridges involved in the folding of
proteins to form 3-dimensional structures. Disulphide
bonds, which are formed by cysteines that may be
sequentially apart but spatially proximate," define
the rigidity of large globular proteins. These disul-
phide bonds are generally conserved among related
proteins'®'® and the connectivity patterns can be used
to identify proteins of similar 3-D structure.!’ The
conservation of disulphide bond connectivity pattern
enables the identification of remote homologues even
when most of popular sequence search methods fail to
do so. Such approaches, however, are complicated by
observations of topologically equivalent disulphide
bonds in non-homologues and also by non-equivalent
numbers of disulphide bonds in close homologues.?
Owing to the fact that disulfide connectivity pat-
tern formation in a protein is a directed (ie, non-
random) process,”! this property can be used to obtain
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a structural classification of proteins. A large variety
of connectivity patterns are found in disulphide-
containing proteins.?"*? In proteins with low sequence
similarity, identical connectivity patterns can indi-
cate high structural homology. Proteins that share a
disulfide bonding pattern usually belong to the same
structural family. Therefore, disulfide connectiv-
ity patterns provide a rapid and simple method for
structural characterization of protein sequences and
for examining structural properties, such as protein
topologies.?! entropic effects of cross-linkage,? struc-
tural superimposition of proteins by means of their
disulfide bridge topology®® and taxonomy of small
disulfide-rich protein folds.?* In addition, methods that
classify proteins based on their connectivity patterns
have also been established.” A systematic method for
the classification of disulphide-rich proteins based
on cysteine conservation is thus worth undertaking.
Previous attempts on cysteine-based classification
of proteins included approaches based on cysteine
pairing,” identification of odorant binding proteins
based on cysteine motifs,* conotoxin superfamily clas-
sification using pseudo amino acid composition and
multi class support vector machines,* and classifica-
tion of peroxiredoxins using regular expressions.?
An algorithm has been devised that can efficiently
classify a new protein as an odorant binding protein
belonging to a particular class by capturing specific
information in terms of (1) functional residue con-
servation and (2) cysteine conservation and disul-
phide connectivity. The functional residue-based
scoring scheme relies on the conservation of residues
at functionally important sites (only sequence infor-
mation) and a flexible distance-based scheme (also
structural data). The functionally important sites
were determined by the mapping of ligand binding
residues on the structural alignment of the available
structural members. The test sequences were aligned
to the structural alignment and scores were assigned
based on the residue conservation at these functional
sites. The scoring of the distance-based scheme was
based on a distance criterion between the residues
at these positions. The distance criteria were estab-
lished by observing the distances between the resi-
dues in the functional sites, including the ‘fuzziness’;
ie, the variation in distances observed among the
crystal structures. The scores were calculated by a
fit criterion after examining the distances within the

models of unknown sequences. In our approach, for
the queries whose structure is not yet available and
homology modeling is unreliable due to relationship
distance, a simple amino acid conservation-based
scoring scheme is adopted that objectively measures
the extent of conservation of functionally important
residues (please see ‘Scoring of query sequences’
within the Methods section for details). Distances
between such residues are not required or employed
in this novel option. For the cysteine-based scheme, a
“disulphide profile” of aligned sequences' has been
employed of the various classes. The query sequences
are aligned with these disulphide profiles followed
by assigning a score based on the conservation of the
cysteines in the query and further classifying them
based on a composite classification scheme. These
classification methods were primarily developed for
the classification of odorant binding proteins in the
mosquito genome. However, the functional residue-
based classification was further extended to the ser-
ine protease family, where the classification of query
sequences using the method into 3 subfamilies has
been described. The cysteine-based classification
was also implemented on the conotoxin family of
proteins to extend the use of this method for the clas-
sification of disulphide-rich protein families at the
subfamily level.

Methodology

Datasets

7 structural entries of odorant-binding proteins
(OBPs; PDB ID: 1dqge, 2wcj, 2gte, 2erb, 3kle, 3bth,
low4), available then, were used for the construction
of the structural alignment. The dataset used in this
analysis is comprised of 116 conotoxin sequences
and 284 odorant binding proteins from mosquito
genomes.”® The conotoxins are classified into
7 classes. The odorant binding proteins are classified
into 3 major classes including Classic, PlusC and
Atypical; the Atypical are further divided into 4 sub-
types (MAtypel-4). Representative sequences were
chosen from the different classes for the construction
of the training profile and the other sequences were
used in the test set (Table 1).

Construction of profiles
A structural alignment constructed using COM-
PARER? was used as a profile for the functional
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Table 1. Datasets used as training and test sets to build
and assess scoring schemes for the identification of
OBPs. (A) The OBP family dataset representing number
of representative sequences used in constructing the pro-
file (training dataset) and test set in the different classes
respectively. (B) The conotoxin family dataset represent-
ing number of representative sequences used in con-
structing the profile (training dataset) and test set in the
different classes respectively.

Protein subfamily = Training dataset Test dataset

(A)

Classic 18 104
Plus C 9 49
Minus C 18 (Classic OBPs) 17
Atypical 1 6 0
Atypical 2 6 26
Atypical 3 6 4
Atypical 4 6 33
(B)

Class A 6 19
Class M 6 7
Class O 6 55
Class T 6 11

residue-based scoring scheme (Fig. 1). For the cysteine-
based scoring scheme, representative sequences from
each class, which have conserved cysteines at all the
positions under consideration, were aligned separately
using ClustalW.?® This alignment of representative
sequences was used as a training profile for the classi-
fication of query sequences. The number of sequences
in the training profile and the number of cysteine posi-
tions under consideration vary for the different classes
of the protein. Thus, a number of training profiles
equal to the number of classes was generated.

Construction of fuzzy functional template
For the functional residue-based scoring scheme
based on functional residues, a fuzzy functional tem-
plate was constructed. Ligand binding residues, for
each of the ligand-bound forms of each of the struc-
tural entries of OBPs mentioned above, were identi-
fied using LIGPLOT. These residues were mapped on
the structural alignment (Fig. 1). 12 residue positions
were considered as functionally important as marked
in Figure 1. CP~CP distances between residues at these
positions for each of the structural entries were cal-
culated and averaged. The upper and lower limit for
the distances were set to 2 standard deviations (SD)
from the average distance and represented in the form

of a matrix (Fig. 2). This logic of inscribing distance
variation amongst functionally important residues is
the same as that adopted by Skolnick’s group in an
earlier study.”

For the serine protease family, 11 structural
entries from the thrombin subfamily (1ai8, lavg,
lhao, 1mkx, lucy, 2hpp, 3hk3, 3k65, 3nxp, 3pma,
3qlp), 15 structural entries from the trypsin family
(laoj, laks, lanl, 1fxy, 1hj8, 1jrs, 1pq7, 2a3l,
2eek, 2191, 2ra3, 3beu, 3fp7, 3mi4, 3p95) and
4 structural entries from the plasminogen activa-
tor (1a5h, 1a5i, 1bqy, 1rtf) subfamily were used for
the construction of the structural alignment. The
functional positions were adopted in a similar man-
ner to the functional sites described by Skolnick
et al* 125 annotated query sequences from all 3
subfamilies (derived from SWISSPROT) were
aligned to each of the subfamily profiles and the
scores were checked for every query sequence
against each profile.

Scoring of query sequences

Functional residue based scoring scheme
Different scoring functions were defined for scoring
the conservation of residues in the functional posi-
tions based on their occurrence, probability of occur-
rence and by consulting the Dayhoff matrix.

Majority-based scheme: In this scheme, a score
of 1 is given to a position in the query sequence if it
has the amino acid which occurs majority of times at
that position in the structural alignment (from known
observations) and finally these scores are averaged
for all the 12 positions.

Probability-based scheme: A score is given to
each amino acid at a position in the query sequence
equal in magnitude to its probability of occurring at
that position. In one scheme (PROB 1), the scores
are finally averaged for all the 12 positions, and in
the second scheme (PROB_2), the sum of scores is
divided by the sum of the maximum probabilities of
occurrence each position.

Dayhoff matrix-based scheme: For each posi-
tion in the query sequence, the score is calculated
as the product of probability of each amino acid
occurring at that position in the template and the
Dayhoff Matrix score for the amino acid substi-
tution from that AA to the residue present in the
query. Finally, the scores are averaged for all the
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Figure 1. Alignment of available structures of odorant binding proteins using COMPARER.
Notes: The conserved cysteines are colored in blue ad functional residues are colored in red and the 12 positions used as functional sites for the scoring

scheme are labeled respectively from 1-12 above the alignment. The functional residues are as shown on one example structure: 2erb.

12 positions. However, this matrix of amino acid
exchanges are recorded and normalized as observed
for large numbers of unrelated protein families and
are also not position-specific in nature.

Given a query string Q with amino acid Qi at
functional position i, where 0 = i = p and a train-
ing profile T which is an alignment with i functional
positions.

The scores according to the different schemes are
defined as follows:

Majority based score:
P

2 Is Equal (P(Q,),m,)
i=1

p
X (Is Equal (P(Q,),m;,)=1if P(Q,)=m, otherwise0)
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Figure 2. Fuzzy functional template investigated to score the dissimilarity between OBPs.
Notes: The matrix represents the distance criteria threshold between the 12 functional sites averaged over data from the available structural members.

The distances between pairs which have an SD < 2 are colored yellow.

Probability 1 based score:

S M(T,.0)

i=1 j=I

p

Probability 2 based score:

£(9)

p

Dayhoff Matrix based score:
p
Q)
i=1

V4

2,

i=1

where:

p = # of functional positions under consideration

n = # of sequences in the training profile (Structure
alignment)

T, = Amino acid at position i in the sequence j of the
training profile

Q.= Amino acid at position i of the query sequence
m, = Maximum probability of occurrence of any
amino acid at position i

M(A,B) = Entry in substitution matrix for amino acid
A being substituted by B

P (A) = Probability of amino acid A occurring at posi-
tion i in the training profile.

Functional residue distance-based

scoring scheme

CP—CP distances of the residues at the functional posi-
tions were calculated from the models of 131 classic
OBP sequences (data not shown). The distances in the
fuzzy functional template (FFT) residue pairs with
SD < 2 were considered for the final scoring scheme.
The query sequences were aligned to the structure
alignment profile and the distances between residues
corresponding to the functional position were calcu-
lated in their respective models. If the distance of the
residue pairs fall within the upper and lower limits
assigned for those residue pairs in FFT, a score of 1
was awarded (else score is 0) and averaged for the 12
functional positions.
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Cysteine-based scoring scheme

Each query sequence was aligned separately with
each of the training profiles using the sequence to pro-
file alignment method in ClustalW?* and checked for
the conservation of cysteines. If a cysteine was found
at a position, a score of ‘1’ was given; otherwise a
score of ‘0’ was given. In this study, a cysteine in the
query is assumed to be ‘strictly conserved’ if it aligns
perfectly with the cysteine position in the training
profile. However, according to the ‘relaxed criterion’,
an arbitrary shift of 2 residues on either side of the
cysteine positions in the training profile is allowed for
uncertainties in the sequence alignment. In addition
to the scores for cysteine conservation, an extra score
of ‘1’ is added for the conservation of each cysteine
pair involved in disulphide bond formation. Such
position-scores are normalized for all the positions
within that class and an average score is obtained
for each class for each query sequence (Supplemen-
tary Fig. 1). Thus, score of a query with the training
profile of each class is a measure of its likelihood of
belonging to that class.

Composite classification scheme

A composite classification scheme was devised for
the classification of OBPs and conotoxins based on
the scores for each class, the length of the query and
the distance between the cysteines involved in dis-
ulphide formation (loop spacing; Supplementary
Figs. 2 and 3). Thus, if it is an ‘N’-class problem,
then for each query, there will be ‘N’ score param-
eters (one for each class), a length parameter and a
variable number of loop spacing (depending upon the
classes). The loop spacing (number of amino acids
along the sequence between the 2 cysteines involved
in disulphide bonding) parameter would be extremely
useful to distinguish between classes with the same
cysteine motif but different disulphide connectivity
patterns. This flexibility was introduced since it is
expected that the loop spacing is more or less con-
served throughout the members of a family, even if
other inter-cysteine distances are not.

Re-substitution test of the cysteine

based classification scheme

The re-substitution test is one of the important
methods of evaluating predictive accuracy. In this
test, the training set used to generate the classifier is

itself used to test the classification model. In other
words, the test set is the same as the training set. The
re-substitution test is extremely important because
it reflects the self-consistency of an identification
scheme, and most importantly, the algorithm.

Results and Discussion
Functional sites and fuzzy functional

template

Functional residues of proteins involved in ligand
binding are generally conserved through the evolu-
tion of proteins and generally considered as good
classifiers of protein families and for function
annotation."® The ligand-binding residues from the
bound complexes of the available PDB entries were
mapped to the structural alignment generated by
COMPARER.”

For the family of insect odorant binding proteins,
the positions of the alignment, which had ligand-
binding entries in at least 4 of the 7 PDB entries,
were considered to be significant functional residue
positions. 12 such positions were considered to be
components of the functional template (Fig. 1). The
CP—CP distance between these 12 residues were cal-
culated and averaged in the form of a matrix called
the ‘fuzzy functional template’ (FFT). The distance
limits were set by indicating the average +2 SDs,
since the distances between the residues pairs were
quite variable. The distances in the matrix that were
less than 2 SDs from the mean were considered for
the calculation of the scores. 12 such distances were
identified involving 12 residue pairs in the matrix
(Fig. 2). These distances were used for the scoring
function.

Structure-based scoring scheme

The structure-based scoring scheme shows a good
range of scores (0.3—1.0). However, there were low
scoring sequences observed in the test cases. The
scores were independent of the sequence identity to its
template (Fig. 3). However, a limitation of this method
is the fact that the test set consisted of models derived
from members of the training set used as templates.
This method could be applied only to proteins that
have a structural entity or for query sequences for
which a homology model could be derived, and thus
the method was applied only on the classic odorant-
binding proteins.
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Figure 3. Scatter plot representing the effect of sequence identity on the sequence-based scores with sequence identity on the X-axis and scores on the
Y-axis. (A) Effect of sequence identity on sequence-based scoring scheme. (B) Effect of sequence identity on structure based scoring scheme.

Functional residue-based scoring scheme

The ‘PROB_2’ scoring scheme, with the addition of
homologues, achieves the best range and correlation.
The scores were based on the occurrence, probability of
occurrence and Dayhoff matrix as described in the Meth-
ods section. For the family of insect odorant-binding
proteins, different training datasets were analyzed that
include (1) a 7-member training set, which is the initial
structure alignment, (2) a 25-member dataset where
the 7-member dataset was populated (to include evo-
lutionary data) with one additional close homologue
from each of the mosquito genomes to every member
in the 7-member dataset, (3) a S-member dataset where
the 2 mosquito crystal structures 2erb and 3kle were
removed to avoid potential bias in scoring the mod-
els (since these 2 structures served as templates for

modeling) and (4) an 18-member dataset from which
the 2 mosquito crystal structures and their homologues
were excluded. The range of scores for each of the
methods on every training set were analyzed and it was
observed that the probability score PROB_2 achieved
the best range, followed by the majority-based scores
(Table 2A), and that they also achieved the best corre-
lation when compared to other 2 methods (Table 2B).
It was also observed that addition of homologues to
the initial dataset significantly improved the range and
correlation.

All 12 positions in the scoring scheme

are equivalent in importance
It was important to analyze whether certain functional
site positions contributed more to the scores in order
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Table 2. Correlation and distribution of scores by the different schemes. (A) Distribution of the scores obtained from
each of the different schemes based on each training set showing that the Prob_2 scheme achieves the highest range
among the 4. (B) Correlation between the scores of the different schemes tested on various training sets showing that the
Probability based scores have higher correlation with the other 2 types of scores.

7 member 25 member 5 member 18 member
training set training set training set training set
(A) Scoring scheme
Majority 0.08-0.75 0.0-0.92 0.0-0.33 0.0-0.67
Prob_1 0.01-0.35 0.03-0.42 0.02-0.27 0.05-0.25
Prob_2 0.03-0.88 0.08-0.98 0.02-0.59 0.2-0.95
Dayhoff 0.3-0.75 0.3-0.54 0.33-0.44 0.28-0.41
(B) Score
Prob. vs. Maj. 0.87 0.96 0.76 0.81
Day vs. Maj. 0.84 0.86 0.63 0.66
Day vs. Prob. 0.72 0.81 0.46 0.6

to provide different weights on the positions. This
was done by jack-knifing each of the 12 individual
positions and recalculating the scores for the initial
7-member dataset. The Pearson correlation coeffi-
cient between the scores were calculated after remov-
ing each of the 12 residue positions (Table 3) and it
was observed that the removal of any one position
from the scoring scheme did not significantly alter the
scores.

The scores are independent
of the sequence identity of the query

sequence with the template

Since the scoring scheme is based on the probability
of occurrence of an amino acid, the effect of sequence
identify on the scores had to be considered carefully.
A histogram of the number of sequences versus the
sequence identity of the protein with the closest struc-
tural template in the dataset was plotted (Fig. 3). The
distribution of the graph indicated that the scores
are indeed independent of the sequence identity.
A histogram of the number of sequences versus the

percentage sequence identity of the query sequence
with the template was plotted and the consistently
high-scoring and low-scoring sequences were marked
on it (Fig. 4). It was observed that the distribution of
the low scoring and high scoring queries was inde-
pendent of sequence identity.

Comparison of the sequence-based
scoring scheme with sequence

searches and phylogenetic analyses

We find that our simple sequence-based objective
scoring scheme works better than domain-based sub-
family association or phylogeny-based associations;
for example, in the case of odorant binding pro-
teins, which fall into three major subfamilies the
Classic PlusC and Atypical as described earlier in
the manuscript. When each of these members are
searched against the conserved domain database it is
observed that in many cases cross-talk is seen with
respect to subfamily (Supplementary Table 1). For
example, most of the Plus C Obps are never identified
to carry the PBP. GOBP domain, and atypical OBPs,

Table 3. Pearson correlation co-efficient between the scores using all 12 functional positions and on jack-knifing each
position from the 7-member dataset to analyze the contribution of individual function positions on the score.

Score wio wio W/Oo wio W/Oo wW/o wW/o W/O wio wio wI/io wio
1 2 3 4 5 6 7 8 9 10 11 12
Maj. 0.95 0.96 0.98 0.99 0.97 0.95 0.95 0.96 0.98 0.99 0.97 0.95
Prob. 0.98 0.98 0.98 0.98 0.97 1.00 0.98 0.98 0.98 0.98 0.97 1.00
Day. 0.97 0.95 0.98 0.99 0.98 0.99 0.97 0.95 0.98 0.99 0.98 0.99

Note: All the scores are very similar after jack-knifing any of the positions, which leads to the conclusion that all the 12 positions in the profile are equivalent.
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Figure 4. Histogram of the number of sequences versus the % identity of the query sequence with the template.
Note: The sequences labeled in red are high scoring while those labeled in black are low scoring.

which should be predicted to have two PBP_GOBP
domains, are predicted to have only 1 PBP. GOBP
domain. In contrast, the current method is able to
exactly classify these proteins to their respective
subfamilies.

It is also difficult to infer sequence associations
from phylogenetic trees to provide a meaningful clas-
sification of the different subfamilies in the case of
the odorant binding proteins. The phylogenetic trees
were inferred separately for odorant binding pro-
teins from each of the mosquito genomes using the
neighbor-joining method in MEGA 4.0 26 (Supple-
mentary Fig. 4A—C). In the phylogenetic trees of
OBPs from Anopheles gambiae, Aedes aegpti and
Culex quinquifasciatus, the different subfamilies
were not clustered together with significant bootstrap
support due to the high sequence divergence that is
observed.

Application of sequence-based scoring
scheme on serine protease subfamilies
Serine proteases are one of the largest groups of pro-
teolytic enzymes with a nucleophilic serine residue
at the active site and are believed to constitute nearly

1/3 of all the known proteolytic enzymes. They
include exopeptidases and endopeptidases belong-
ing to different protein families grouped into clans.
They function as part of diverse biological processes
such as digestion, blood clotting, fertilization, devel-
opment, complement activation, pathogenesis, apop-
tosis, immune response, secondary metabolism, with
imbalances causing diseases like arthritis and tumors.
The current method was applied to 3 families to see
if the method can classify the sequences into these
3 subfamilies: Trypsin, Thrombin and Plasmino-
gen Activator. The method was tested on 125 ser-
ine protease sequences from the three subfamilies
(Supplementary Table 2). It was observed that the
method could classify the proteins into their respec-
tive subfamilies effectively.

Cysteine-based scoring scheme

Cysteine positions in protein sequences are the
other evolutionarily conserved sites in disulphide-
rich protein families. They can be used as effec-
tive regular expressions in protein sequences, even
among distantly-related proteins, whose classification
based on other methods would be quite challenging.
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However, a sequence-to-sequence alignment algo-
rithm, using one representative sequence for a family,
would not provide sufficient accuracy in terms of
accounting for the insertions and deletions observed
in diverse sequences. A disulphide profile, derived
from representative sequences, is more suitable for
compensating the occurrences of insertions and
deletions.!® The cysteine-based scoring scheme was
found to be a more direct way for the identification
of OBPs in insects and was used previously in the
use of identification of OBPs.* In this work, however,
the scheme has been further extended to classify the
OBPs in the mosquito genome. Hence, practically,
the algorithm not only predicts the chance of a query
sequence to be a putative OBP protein, but also facili-
ties its classification into 1 of the different classes of
OBPs that are described below. The OBPs are clas-
sified into 4 major classes (i) Classic, which carry 6
conserved cysteine motifs, (ii) PlusC OBPs, which
carry an additional 3 conserved cysteines, (ii1) Dimer
OBPs or Atypical OBPs, which carry 2 Classic OBP
domains and hence 12 conserved cysteines and
(iv) Minus-C OBPs, which lack 2 Cys residues in
comparison with Classic OBPs. The dimer OBPs can
be further classified as MAtypel-4; all of them hold 12
conserved cysteines except MAtype2. From the align-
ments used in the construction of phylogenetic trees,
it was observed that the cysteine conservation pat-
terns and spacing could play an important role in the
classification of OBPs. This was analyzed by observ-
ing the cysteine conservation patterns of sequences
in the test datasets when aligned to profiles that were
constructed using a training set of each of the classes
described above.

A training set for the 7 different classes of OBPs
(disulphide profiles) was prepared (as summarized
in Table 1A). A representative sequence was identi-
fied from a phylogeny of odorant binding proteins of
each class. For the Minus-C class, the same profile for
Classic OBPs was used, but only the 1st, 3rd, 4th and
6th cysteine positions were considered. A composite
classification scheme was devised for the family of
OBPs incorporating the 7 different scores and the
length of sequence as attributes. The protocol was
applied to a dataset of 284 mosquito OBP sequences
(from Anopheles gambiae, Aedes aegypti and Culex
quinquefasciatus) and the class predictions were

compared with the predictions of class association
independently made from phylogenetic analysis.
The ‘confusion matrix’ of the classes predicted by
the cysteine based classification scheme versus the
phylogeny-based classification is given in Figure SA.
The scheme provides an accuracy of 90.14% when
compared with the phylogeny-based classification for
the test set sequences. The effect of different classes
to this was tested using a re-substitution test.

The re-substitution test on the training set gave
accuracies of 100%, 100%, 0%, 100%, 66.66%
and 100% for Classic, PlusC, Atypicall, Atypical2,
Atypical3 and Atypical4 classes, respectively. The
sequences in Atypicall, however, form a small group
of 6 sequences and do not follow a strict conservation
of cysteines as the other classes of OBPs. Hence it
was difficult to classify these members by our scheme

A Cc P M | A1 | A2 | A3 | A4
C 97 1 3 0 1 0 2
P 3 45 0 0 1 0 0
M 2 0 15 0 0 0 0
A1 0 0 0 0 0 0 0
A2 0 1 2 0 21 2 0
A3 0 0 0 0 1 0 0
A4 0 0 4 1 3 3 25
B

Figure 5. Confusion Matrix of Classification. (A) Confusion matrix
between the phylogeny based classification of odorant binding proteins
and the cysteine scoring based classification scheme. (B) Confusion
matrix between the classification of conotoxins and the cysteine scoring
based classification scheme.
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explaining the poor performance of the re-substitu-
tion test for the A#ypicall class.

Application of cysteine-based scoring
schemes on well-known superfamily

of conotoxins

Since the accuracy of the classification scheme
needed further convincing, the algorithm was
extended to the well-known cysteine-rich super-
family of conotoxins. Conotoxins are small neuro-
toxic peptides found in the venom of the predatory
cone snails of the genus Conus that act primarily by
modulating the activity of specific ion channels. The
mature conotoxins are characterized by the presence
of multiple disulphide bonds and have been classified
into 7 families including A, M, O, I, P, T and S, again
on the basis of a highly conserved N-terminal pre-
cursor sequence, disulphide connectivity and mode
of action.?* Each family is characterized by the pres-
ence of 1 or 2 characteristic patterns of disulphide
cross-links.** The prominent disulphide connectivity
patterns in the 4 major families of conotoxins are
shown in Supplementary Figure 5, and these alone
were used for scoring purposes.

A classification scheme was developed for conotox-
ins as shown in Supplementary Figure 3, incorporating
the 4 scores corresponding to each of the 4 major fami-
lies. The classifier (constructed using the training set as
shown in Table 2) was tested on a dataset of 116 cono-
toxin sequences obtained from Mondal et al** and the
predictions made by the scheme were compared with
the known classes of the sequences in the study by
Mondal et al.** The scheme gave an accuracy of 93.1%
for the test set and the confusion matrix is presented in
Figure 5B. The re-substitution test on the training set
provided an accuracy of 100% for all 4 families.

Conclusion

Simple domain-finding techniques such as association
to Pfam families, can be helpful only to relate mos-
quito OBPs to the broad family of ‘odorant binding
proteins’ (PF01395), but cannot be distinguished as
Classic, PlusC and Atypical odorant binding proteins.
These subfamilies differ in their sequence features,
even though they carry the basic PBP/GOBP domain.
In the case of families where the sequence diver-
gence in very high, it is important that family-specific
classification methods are derived to obtain a more

meaningful functional classification of the family.
Evolutionarily-constrained functional and structural
entities/signatures, combined with family-specific
profile-based scoring, improve the function annotation
quality and can also be further extended to a subfamily
level classification. Fuzzy functional template-based
objective methods, encoded in our structure-based
scoring scheme, provide a clear representation of the
extent of spatial preservation of known functionally
important residues. Such scoring schemes provide an
early indication of family members with deviations
from the parent family in biological function or the
lack of function. Such structure-based scoring schemes
could be convenient to rapidly validate a large number
of gene products whose high-quality homology mod-
els can be automatically obtained.

Most popular function prediction methods
reported in the literature require structural informa-
tion or models of query sequences for scoring and
recognizing functionally important residues which
are only applicable for SGI targets or those sequences
where homology models can be obtained reliably. In
our approach, there is a novel option to employ only
sequence information to score the preservation of
functionally important residues. Our pure sequence-
based approach is different from other methods that
use sequence alignments (like the functional-residue-
clustering (FRC) method)*' that lead to abstract data
by defining amino acid alphabets and require a joint
alignment including subfamily members.

The above-described algorithms are shown to
work efficiently for protein families such as odorant-
binding proteins, serine proteases and conotoxins. We
demonstrate that it is possible to apply this approach
using large-scale annotation and classification by
applying it to new odorant-binding proteins, which are
indeed a diverse family of proteins and pose a lot of
challenges for regular identification and classification
algorithms.* This could be extended to other diverse
families of proteins. However, an in-depth analysis of
every superfamily for family-specific signatures and
the construction of a composite classification scheme
at the subfamily level is required.

Acknowledgements

Malini Manoharan was supported by an interna-
tional PhD fellowship from Conseil Regional de
La Reunion in the framework of the joint dual-

242

Bioinformatics and Biology Insights 2013:7


http://www.la-press.com

Enhanced function annotation of proteins

studentship program between Manipal University
and University of La Réunion. This work was in
part supported by a grant from Conseil Régional
de La Réunion, French Ministry of Research and
European Union in the framework of the GRI
Phase III project. SK thanks BITS Pilani Practice
School and RS thanks Universite de La ReUnion for
a Visiting Professorship. We thank NCBS (TIFR)
for infrastructural facilities.

Funding

We would like to thank Conseil Régional de La
Réunion, French Ministry of Research and European
Union for the funding and fellowship.

Author Contributions

Conceived and designed the experiments: SR, MM,
KS, BO. Analyzed the data: KS. MM. Wrote the first
draft of the manuscript: MM. Contributed to the writ-
ing of the manuscript: SR, KS, BO. Agree with man-
uscript results and conclusions: SR, MM, KS, BO.
Jointly developed the structure and arguments for the
paper: SR, MM. Made critical revisions and approved
final version: SR. All authors reviewed and approved
of the final manuscript.

Competing Interests
Author(s) disclose no potential conflicts of interest.

Disclosures and Ethics

As a requirement of publication the authors have pro-
vided signed confirmation of their compliance with
ethical and legal obligations including but not limited
to compliance with ICMJE authorship and competing
interests guidelines, that the article is neither under
consideration for publication nor published elsewhere,
of their compliance with legal and ethical guidelines
concerning human and animal research participants (if
applicable), and that permission has been obtained for
reproduction of any copyrighted material. This article
was subject to blind, independent, expert peer review.
The reviewers reported no competing interests.

References

1. Pelosi P, Maida R. Odorant-binding proteins in insects. Comp Biochem Phys-
iol B Biochem Mol Biol. 1995;111(3):503—-14.

2. Vogt RG, Callahan FE, Rogers ME, Dickens JC. Odorant binding protein
diversity and distribution among the insect orders, as indicated by LAP, an
OBP-related protein of the true bug Lygus lineolaris (Hemiptera, Heteroptera).
Chemical Senses. 1999;24(5):481-95.

12.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

. Hekmat-Scafe DS, Scafe CR, McKinney AJ, Tanouye MA. Genome-wide

analysis of the odorant-binding protein gene family in Drosophila
melanogaster. Genome Res. 2002;12(9):1357-69.

. Zhou JJ, Huang W, Zhang GA, Pickett JA, Field LM. “Plus-C” odorant-

binding protein genes in two Drosophila species and the malaria mosquito
Anopheles gambiae. Gene. 2004;327(1):117-29.

. Xu PX, Zwiebel LJ, Smith DP. Identification of a distinct family of genes

encoding atypical odorant-binding proteins in the malaria vector mosquito,
Anopheles gambiae. Insect Mol Biol. 2003;12(6):549-60.

. Zhou JJ, He XL, Pickett JA, Field LM. Identification of odorant-binding

proteins of the yellow fever mosquito Aedes aegypti: genome annotation
and comparative analyses. Insect Mol Biol. 2008;17:147-63.

. Pelletier J, Leal WS. Genome analysis and expression patterns of odor-

ant-binding proteins from the Southern House mosquito Culex pipiens
quinquefasciatus. PloS One. 2009;4:¢6237-7.

. Butte AJ. Challenges in bioinformatics: infrastructure, models and analytics.

Trends Biotechnol. 2001;19(5):159-60.

. Chothia C. One thousand families for the molecular biologist. Nature. 1992;

357:543-4.

. Kraut J. Serine proteases: structure and mechanism of catalysis. Annu Rev

Biochem. 1977;46:331-58.

. Miller J, McLachlan AD, Klug A. Repetitive zinc-binding domains in

the protein transcription factor IIIA from Xenopus oocytes. EMBO J.
1985;4(6):1609—-14.
Ouzounis CA, Coulson RM, Enright AJ, Kunin V, Pereira-Leal JB.
Classification schemes for protein structure and function. Nat Rev Genet.
2003;4(7):508-19.

. Innis CA, Anand AP, Sowdhamini R. Prediction of functional sites in proteins

using conserved functional group analysis. J Mol Biol. 2004;337(4): 1053-68.
Wangiker PP, Tendulkar AV, Ramya S, Deepali MN, Sarawagi S. Functional
sites in protein families uncovered via an objective and automated graph
theoretic approach. J Mol Biol. 2003;326(3):955-78.

Thornton JM. Disulphide bridges in globular proteins. J Mol Biol.
1981;151(2):261-87.

Richardson JS. The anatomy and taxonomy of protein structure. Adv Protein
Chem. 1981;34:167-339.

Srinivasan N, Sowdhamini R, Ramakrishnan C, Balaram P. Conformations
of disulfide bridges in proteins. /nt J Pept Protein Res. 1990;36(2):147-55.
Johnson MS, Overington JP. A structural basis for sequence comparisons.
An evaluation of scoring methodologies. J Mol Biol. 1993;233(4):716-38.
Thangudu R, Manoharan M, Srinivasan N, Cadet F, Sowdhamini R,
Offmann B. Analysis on conservation of disulphide bonds and their struc-
tural features in homologous protein domain families. BMC Struct Biol.
2008;8:55.

Mas JM, Aloy P, Marti-Renom MA, et al. Classification of protein disulphi-
de-bridge topologies. J Comput Aided Mol Des. 2001;15:477-87.

Benham CJ, Jafri MS. Disulfide bonding patterns and protein topologies.
Protein Sci. 1993;2(1):41-54.

Harrison PM, Sternberg MJ. The disulphide beta-cross: From cystine geom-
etry and clustering to classification of small disulphide-rich protein folds.
J Mol Biol. 1996;264(3):603-23.

Lenffer J, Lai P, El Mejaber W, et al. CysView: protein classification based
on cysteine pairing patterns. Nucleic Acids Res. 2004;32(Web Server issue):
W350-5.

Mondal S, Bhavna R, Mohan Babu R, Ramakumar S. Pseudo amino acid
composition and multi-class support vector machines approach for cono-
toxin superfamily classification. J Theor Biol. 2006;243(2):252—60.

Chon JK, Choi J, Kim SS, Shin W. Classification of peroxiredoxin subfami-
lies using regular expressions. Genomics Informatics. 2005;3:55-60.
Manoharan M, Ng Fuk Chong M, Vaitinadapoule A, Frumence E,
Sowdhamini R, Offmann B. Comparative genomics of odorant binding
proteins in Anopheles gambiae, Aedes aegypti and Culex quinquefasciatus.
Genome Biol Evol. 2013;5(1):163-80.

Sali A, Blundell TL. Definition of general topological equivalence in protein
structures. A procedure involving comparison of properties and relation-
ships through simulated annealing and dynamic programming. J Mol Biol.
1990;212(2):403-28.

Bioinformatics and Biology Insights 2013:7

243


http://www.la-press.com

Manoharan et al

28.

29.

30.

Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The
CLUSTAL X windows interface: flexible strategies for multiple sequence
alignment aided by quality analysis tools. Nucleic Acids Res. 1997;25(24):
4876-82.

Fetrow JS, Skolnick J. Method for prediction of protein function from
sequence using the sequence-to-structure-to-function paradigm with appli-
cation to glutaredoxins/thioredoxins and T1 ribonucleases. J Mol Biol.
1998;281(5):949-68.

Olivera BM. Conus venom peptides: Reflections from the biology of clades
and species. Annu Rev Ecol Syst. 2002;33:25-47.

31.

32.

Shah PK, Tripathi LP, Jensen LJ, et al. Enhanced function annotations
for Drosophila serine proteases: a case study for systematic annotation of
multi-member gene families. Gene. 2008;407(1-2):199-215.

Manoharan M. Genomic, structural and functional characterization of
odorant binding proteins in olfaction of mosquitoes involved in infectious
disease transmission. Ph.D. Thesis, Manipal University and Universite de la
ReUnion. 2011.

244

Bioinformatics and Biology Insights 2013:7


http://www.la-press.com

P

\

Enhanced function annotation of proteins

Supplementary data

Raw sequences

l l

Representative seq Representative seq Representative seq
from class 1 from class 2 from class n
Training profile - 1 Training profile - 2 Training profile - n

+ query + query +query
seq seq seq

Profile to sequence Profile to sequence Profile to sequence
alignment alignment alignment
| Score - 1 | | Score - 2 | | Score - 3 |

Composite
classification scheme

| Class |

Figure S1. Schematic representation of the cysteine based scoring scheme.
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Figure S2. Flowchart of the logistics used in the composite classification scheme of OBPs.
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Figure S3. Flowchart of the logistics used in the composite classification scheme of the conotoxin family.
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— —F— Table S1. (Continued)
¢ ¢ § C|C ¢ ?C ID CD-search Current method
A superfamily A B superfamily M AGAP011367 No family PlusC subfamily
AGAP011368 No family PlusC subfamily
| n AGAP006074 No family PlusC subfamily
c c c cC——cCC AGAP006760 No family PlusC subfamily
AGAP007281 No family PlusC subfamily
C superfamily O D superfamily T AGAP007282 No family PlusC subfamily
Figure S5. Cysteine connectivity patterns in the four major superfamilies AGAPO06759 No family PlusG SUbfam!Iy
of conotoxins, namely superfamily A (A), superfamily M (B), superfamily O AGAP007283 No fam!ly PlusC SUbfam!Iy
(C) and superfamily T (D). AGAP012659 No family PlusC subfamily
AGAP008793 No family Classic
Table S1. Sequences mispredicted by domain based égﬁgggggzg Hg ;:m::z E:Ezg :3522::5
methods and correctly predicted by the current method. CP1J004635 No family PlusC subfamily
ID CD-search Current method CP1J004630 No fam!ly PlusC subfam!ly
CPI1J002105 No family PlusC subfamily
AAEL000139 No family PlusC subfamily CP1J002109 No family PlusC subfamily
AAEL006109 No family PlusC subfamily CP1J002108 No family PlusC subfamily
AAEL006108 No family PlusC subfamily CP1J006608 No family PlusC subfamily
AAEL006103 No family PlusC subfamily CP1J002111 No family PlusC subfamily
AAEL010666 No family PlusC subfamily CP1J008867 No family PlusC subfamily
AAEL010662 No family PlusC subfamily CP1J008868 No family PlusC subfamily
AAEL011494 No family PlusC subfamily CP1J017524 No family PlusC subfamily
AAEL011499 No family PlusC subfamily CP1J007337 No family PlusC subfamily
AAEL011484 No family PlusC subfamily CPI1J017168 Classic Atypical
AAEL011490 No family PlusC subfamily CPI1J017169 Classic Atypical
AAEL011487 No family PlusC subfamily CPI1J017163 Classic Atypical
AAEL011491 No family PlusC subfamily CPI1J017165 Classic Atypical
AAEL011482 No family PlusC subfamily CPI1J017164 Classic Atypical
AAEL011481 No family PlusC subfamily CPI1J017166 Classic Atypical
AAEL015566 No family PlusC subfamily CPI1J017170 Classic Atypical
AAELO015567 No family PlusC subfamily CPI1J001690 Classic Atypical
AAEL011497 No family PlusC subfamily CP1J003867 Classic Atypical
AAEL011489 No family PlusC subfamily CP1J003863 Classic Atypical
AAEL006105 No family PlusC subfamily CP1J003865 Classic Atypical
AAEL006904 No family PlusC subfamily CP1J000653 Classic Atypical
AAEL004729 No family PlusC subfamily CP1J008154 Classic Atypical
AAEL004730 No family PlusC subfamily CP1J008160 Classic Atypical
AAEL011486 No family PlusC subfamily AGAP000641 Classic Atypical
AAEL011483 No family PlusC subfamily AGAP000642 Classic Atypical
AAEL014593 No family PlusC subfamily AGAP000643 Classic Atypical
AAEL000139 Classic Atypical AGAP000644 Classic Atypical
AGAP007287 No family PlusC subfamily AGAP011647 Classic Atypical
AGAP006065 No family PlusC subfamily AAEL001487 No family PlusC subfamily
AGAP006076 No family PlusC subfamily AAEL000837 Classic Atypical
AGAP006077 No family PlusC subfamily AAEL001153 Classic Atypical
AGAP006078 No family PlusC subfamily AAEL001189 Classic Atypical
AGAP006079 No family PlusC subfamily AAEL004516 Classic Atypical
AGAP006080 No family PlusC subfamily AAEL010875 Classic Atypical
AGAP006081 No family PlusC subfamily
(Continued)
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