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Abstract: The genus Listeria consists of a closely related group of Gram-positive bacteria that commonly occur in the environment and 
demonstrate varied pathogenic potential. Of the 10 species identified to date, L. monocytogenes is a facultative intracellular pathogen 
of both humans and animals, L. ivanovii mainly infects ungulates (eg., sheep and cattle), while other species (L. innocua, L. seeligeri, 
L. welshimeri, L. grayi, L. marthii, L. rocourtiae, L. fleischmannii and L. weihenstephanensis) are essentially saprophytes. Within the 
species of L. monocytogenes, several serovars (e.g., 4b, 1/2a, 1/2b and 1/2c) are highly pathogenic and account for a majority of clinical 
isolations. Due to their close morphological, biological, biochemical and genetic similarities, laboratory identification of pathogenic and 
nonpathogenic Listeria organisms is technically challenging. With the development and application of various molecular approaches, 
accurate and rapid discrimination of pathogenic and nonpathogenic Listeria organisms, as well as pathogenic and nonpathogenic 
L. monocytogenes strains, has become possible.
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content. Taxonomically, the genus Listeria is classified 
in the family Listeriaceae, order Bacillales, class 
Bacilli, phylum Furmicutes, domain Bacteria, kingdom 
Prokaryotae. Apart from Listeria, the only other genus  
in the Listeriaceae family is Brochothrix. To date, 10 spe-
cies are recognized within the genus: L. monocytogenes, 
L. ivanovii (previously known as L. monocytogenes 
serotype 5), L. seeligeri, L. innocua, L. welshimeri, 
L. grayi, L. marthii, L. rocourtiae, L. fleischmannii and 
L. weihenstephanensis.4–9 Of these, L. monocytogenes 
is a facultative intracellular pathogen of both humans 
and animals, L. ivanovii primarily infects ungulates  
(eg, sheep and cattle), and the other 8 species are free-liv-
ing saprophytes.10–17 Nonetheless, non-monocytogenes 
Listeria species including L. ivanovii,18–21 L. seeligeri,22 
L. innocua,23 L. welshimeri,24 and L. grayi25–27 have 
been occasionally implicated in human clinical cases, 
mainly in individuals with suppressed immune func-
tions and/or underlying illnesses.

Since L. monocytogenes strains display notable 
variations in virulence, attempts have been made to 
develop and use laboratory procedures to differentiate 
pathogenic from nonpathogenic strains, and to moni-
tor the strains involved in the listeriosis outbreaks. 
Serotyping on the basis of immunological reactions 
between listerial somatic (O)/flagellar (H) antigens 
and specific antibodies represents an early approach 
to identifying and tracking Listeria bacteria. Using  
this approach, Listeria is separated into at least 
16 serovars, including 13 for L. monocytogenes 
(serovars 1/2a, 1/2b, 1/2c, 3a, 3b, 3c, 4a, 4ab, 4b, 4c, 4d, 
4e and 7), 1 for L. ivanovii (serovar 5), 3 for L. innocua 
(serovars 1/2b, 6a and 6b), 3 for L. welshimeri (sero-
vars 1/2b, 6a and 6b), 6 for L. seeligeri (serovars 1/2a, 
1/2b, 3b, 4a, 4b, 4c and 6b), and 1 for L. grayi (serovar 
Grayi).28–32 The determination of L. monocytogenes 
serovars has clinical implications, as serovar 4b strains 
have been shown to cause endemic human listeriosis, 
and serovars 1/2a, 1/2b and 1/2c are responsible for 
sporadic listeriosis in humans. Indeed, according to a 
French study conducted in 2006, L. monocytogenes 
serovars 4b, 1/2a, 1/2b and 1/2c account for over 98% 
isolations from clinical cases of human listeriosis, 
with serovar 4b alone causing 49% of Listeria-related 
endemic foodborne diseases (Table 1).33 Similarly, in 
experimental mouse models, L. monocytogenes sero-
vars 4b, 1/2a, 1/2b and 1/2c show a heightened infec-
tivity through intragastric inoculation.34,35 However, 

Introduction
Listeria was first described by E.G.D. Murray in 1926 
in Cambridge, England, who referred to the caus-
ative agent for monocytosis in laboratory rodents as 
 Bacterium monocytogenes. In 1927, a bacterium caus-
ing mortality in gerbils was identified in Johannes-
burg, South Africa, and named Listerella hepatolytica 
in honor of Joseph Lister, a surgeon who pioneered 
antiseptic surgery. With the realization that Bacterium 
monocytogenes and Listerella hepatolytica were in 
fact the identical bacterium and that the name List-
erella had been already taken for a slime mold and 
a protozoan, the organism was renamed Listeria mono-
cytogenes in 1940.1 In addition to L. monocytogenes,9 
other species (L. ivanovii, L. innocua, L. seeligeri, L. 
welshimeri, L. grayi, L. marthii, L. rocourtiae, L. fleis-
chmannii and L. weihenstephanensis) have since been 
identified within the genus.

Although L. monocytogenes was implicated in 
human disease from the late 1920s, it was not until 
1979 that the link of this bacterium to serious food-
borne listeriosis in humans was established.1 In immu-
nocompetent individuals, L. monocytogenes tends to 
cause gastrointestinal symptoms that are transient in 
nature and often disappear within a short period. In 
the immunocompromised individuals such as preg-
nant women, neonates, and the elderly, L. monocyto-
genes infection may lead to severe clinical diseases, 
with abortion and death being usual outcomes.2,3

Considering their close morphological and bio-
logical similarities and their varied pathogenicity, it 
is important that pathogenic and nonpathogenic List-
eria species/L. monocytogenes serovars/strains are 
correctly identified. Over the years, a number of phe-
notypic procedures have been developed and used for 
identification and differentiation of Listeria organ-
isms. However, given their variable performance 
and slow turnover, phenotypic tests for Listeria diag-
nosis have been largely superseded by molecular 
approaches. The purpose of this article is to provide 
an update on the utility of molecular techniques for 
the improved determination of pathogenic and non-
pathogenic listeriae.

Listeria Classification
The genus Listeria covers a group of Gram-positive, 
non-spore-forming, rod-shaped bacteria of 0.4–0.5  
µm × 1–1.5 µm in size and between 36–39% in G + C 
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Table 1. L. monocytogenes serovars causing human listeriosis.*

serotype No. of isolates (%) Tendency to cause
4b 294/603 (49%) CNS infections . M/N diseases . Bacteremia
1/2a 163/603 (27%) Bacteremia . M/N diseases . CNS infections
1/2b 120/603 (20%) M/N diseases . Bacteraemia . CNS infections
1/2c 22/603 (4%) Bacteremia  . CNS infections . M/N diseases
3a/3b 4/603 (,1%) Bacteremia

*Adapted from Goulet et al33, which was based on the analysis of 603 L. monocytogenes isolates from 603 French patients during 2001–2003.
Abbreviations: M/N diseases, maternal-neonatal diseases; CNS infections, central nerve system infections.

all L. monocytogenes serovars except 4a are capa-
ble of inducing mouse mortality via intraperitoneal 
route.36–39

In light of the extensive antigenic sharing among 
Listeria serovars (e.g., serovars 1/2a and 3a both con-
tain H antigens A and B; serovars 1/2c and 3c both 
possess H antigens B and D; serovars 1/2b, 3b, 4a, 
4b, 4c, 4d, 5, 6a, 6b and 7 all have H antigens A, B, 
and C; serovars 1/2a.1/2b, 1/2c, 3a, 3b and3c all share 
O antigen II; serovars 4a, 4ab, 4b, 4c, 4d, 4e, 5, 6a 
and 6b all have O antigen V), serotyping lacks desired 
specificity.40,41 As a consequence, genotyping tech-
niques have been developed to improve the identifica-
tion and epidemiological tracking of Listeria bacteria.42 
This has facilitated the separation of L. monocytogenes 
bacteria into 4 genetic lineages (I–IV) (Table 2).43–50 
While lineage I encompasses serovars 1/2b, 3b, 4b, 4d 
and 4e; lineage II covers serovars 1/2a, 1/2c, 3a and 

3c; lineage III includes serovars 4a and 4c. In addition, 
lineage III has been further distinguished into sub-
group IIIA (containing typical rhamnose-positive 
avirulent serovar 4a and virulent serovar 4c strains), 
subgroup IIIC (consisting of atypical rhamnose-neg-
ative virulent serovar 4c strains), and subgroup IIIB 
(which is now known as lineage IV) (covering atypical 
rhamnose-negative, virulent non-serovar 4a and non-
serovar 4c, as well as serovar 7 strains).51

Genus-Specific Identification
Being small, Gram-positive rods, listeriae resemble 
other Gram-positive bacteria such as streptococci 
and corynebacteria morphologically. To differentiate 
the genus Listeria from other bacterial genera, 
a batch of biochemical tests has been traditionally 
employed.32,52,53 Recent application of molecular tech-
niques has simplified the genus-specific identification 

Table 2. Characteristics of L. monocytogenes lineages I–Iv.*

Lineage serovar Rhamnose 
activity

pcR reactivity

inlA lmo0733 lmo2672 inlJ inlC** lmo1134 ORF2819 ORF2110 lmo0737 lmo1118
I 1/2b + + + + + + + + - - -

3b + + + + + + + + - - -
4b + + + + + + + + + - -
4d + + + + + + + + + - -
4e + + + + + + + + + - -

II 1/2a + + + + + + + - - + -
1/2c + + + + + + + - - + +
3a + + + + + + + - - + -
3c + + + + + + + - - + +

IIIA 4a + + + - - - - - - - -
4c + + + - + -/+ - - - - -

IIIC 4c - + + + + + - - - - -
Iv (IIIB) 7 and  

unusual 
4a,4b,4c

- + - + - + - + - - -

*Summarized from Liu et al36–39; Doumith et al54; Roberts et al.122

**inlC is also found in some L. ivanovii strains.38
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An added benefit of incorporating a genus-specific 
primer set in a PCR assay for listerial identification 
lies in the fact that it also functions as an internal con-
trol for the assay.

Species-Specific Identification
Correct identification of Listeria species is critical for 
effective control and prevention of listeriosis. Previ-
ously, phenotype-based methods (such as biochemical 
and serological tests) have been employed for the spe-
ciation of Listeria bacteria.61–63 In view of their superior 
sensitivity and specificity over the phenotypic meth-
ods, molecular techniques have been widely adopted 
in clinical and research laboratories for discrimina-
tion between pathogenic and nonpathogenic Listeria 
organisms.64,65 Evolving from non-amplified proce-
dures (eg., DNA hybridization), molecular detection 
of Listeria bacteria has increasingly moved towards 
nucleic acid amplification and real time detection.66–69

The identification of a range of gene targets has fur-
ther enhanced the appeal and versatility of molecular 
procedures for Listeria species-specific determination. 
While several shared genes such as 16S and 23S rRNA 
genes, their intergenic spacer regions, ssrA gene  
(which encodes a transfer-messenger RNA or tmRNA), 
and iap (which encodes invasion associated protein) 
have proven valuable for identification of all Listeria 
species,56,58,59,70–77 many Listeria species-specific genes  
have been described. For instance, the following genes 
 targets may be used for specific determination of 
L. monocytogenes: hly,78,79plcA,80 plcB,80 actA,81 inlA,82,83 

inlB,83,84 lmaA/lmaB,85 flaA,86 pepC,87 clpE,81 fbp,88 

lmo0733,89 and lmo223490 Similarly, liv22–22891 and 
smcL92 have been specifically targeted for L. ivanovii, 
lse24–31593 for L. seeligeri, lin046494 and lin248395 
for L. innocua, fbp,88 lwe7–57196 and lwe180197 for 
L. welshimeri, and lgr20–24698 for L. grayi.

Lineage Delineation
As L. monocytogenes lineages I (particularly serovars 
1/2b and 4b) and II (especially serovars 1/2a and 1/2c) 
strains are commonly associated with human clinical 
cases, it is important that they are accurately identi-
fied and subtyped.99–101

Similar to species-specific identification, 2 major 
approaches are used for L. monocytogenes lineage 
delineation and subtyping: phenotypic and genetic.102 
The phenotypic subtyping approach utilizes serotyping, 

of listeriae, with the following gene targets being 
commonly exploited:

(i)  the house-keeping genes prs and ldh flanking the  
prs-prfA-plcA-hly-mpl-actA-plcB-orfX-orfZ-orf 
B-orfA-ldh cluster, which consists of the well 
known 9.6 kb PrfA-regulated virulence gene clus-
ter (or Listeria pathogenicity island 1, LIPI-1). 
While the ldh gene codes for lactate dehydroge-
nase (~310 amino acids), the prs gene encodes 
phosphoribosyl pyrophosphate synthetase (318  
amino acids).54 Additionally, the underlying gene 
encoding VclB (Lmo0209/Lin0289), a conserved 
protein of unknown function, is also found in 
all Listeria species and can be used for Listeria 
determination.

(ii)  the 23S rRNA-16S rRNA locus (consisting of 
about 1500 and 2500 bp, respectively), which is a 
highly conserved gene region encoding ribosomal  
RNA molecules (rRNA). The key functions of 
rRNA are to decode messenger RNA (mRNA) 
into amino acids and to interact with the transfer 
RNA (tRNA) during translation by providing peti-
dyltransferase activity. Because of its conserved 
nature, the 23S rRNA-16S rRNA locus offers a 
valuable target for phylogenetic analysis.30,55–58 
Paillard et al58 employed primers S2F and S2R 
to generate an 890 bp fragment from the 5' end 
of Listeria rRNA 23S gene. Subsequent diges-
tion of this fragment with restriction enzyme 
XmnI enabled distinction of L. monocytogenes,  
L. ivanovii and L. seeligeri (forming 770 and 
120 bp bands) from L. innocua, L. welshimeri and 
L. grayi (forming 650, 120 and 120 bp bands). 
Moreover, digestion of the 890 bp fragment with 
restriction enzyme CfoI facilitated differentiation 
of L. ivanovii, L. seeligeri and L. grayi (forming 
600, 170 and 120 bp bands) from L. monocyto-
genes, L. innocua and L. welshimeri (forming 
470, 170, 130 and 120 bp bands).

(iii) the iap gene. This gene encodes the ‘‘invasion-
associated protein’’ (IAP, also known as P60 
reflecting its molecular size of 60 kDa), which is 
involved in host cell invasion by pathogenic list-
eriae and acts in all Listeria species as a murein 
hydrolase necessary for proper cell division. The 
iap gene has been successfully incorporated in 
PCR for Listeria genus specific detection.59,60
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sequencing analysis of the ascB-dapE internalin 
cluster, Chen et al125 showed that L. monocytogenes lin-
eage II can be distinguished into 3 distinct sublineages, 
IIA, IIB, and IIC, with inlGHE, inlGC2DE, and inl-
C2DE for IIA, IIB, and IIC, respectively. While 
IIA and IIC displayed a higher frequency of recombi-
nation, IIB was more notably affected, leading to high 
nucleotide diversity. Furthermore, internalin profiling 
of 13 L. monocytogenes lineage III strains identified 
10 internalin types that are clustered in 4 subpopula-
tions IIIA–1, IIIA–2, HIB, and IIIC. Whereas lineage 
IIIA–2 strains had reduced pathogenicity, the other 
lineage III strains had comparable virulence to lin-
eages I and II. Because of its phylogenetical distinc-
tion from other sub-populations, HIB may represent 
a novel lineage.126 Similarly, examination of interna-
lin genes of L. innocua resulted in the identification 
of 4 subgroups within the species.127

Group-Specific Identification
Given the predominance of L. monocytogenes serovars 
4b, 1/2a, 1/2c and 1/2b in human clinical isolations, the 
availability of methods to determine the serotype of a 
particular strain is vital for its epidemiological track-
ing and therapeutic monitoring (Table 3). Although 
conventional serotyping methods have played a valu-
able role in the tracking of L. monocytogenes isolates 
involved in listeriosis, they are sometimes unable to 
correlate serovars directly with species identities, and 
are expensive to set up and maintain.40,128,129 Without  

phage typing, multilocus enzyme electrophoresis 
(MLEE) and esterase typing techniques.103 The genetic 
subtyping approach ranges from pulsed-field gel elec-
trophoresis (PFGE), ribotyping, PCR-based subtyp-
ing [e.g., random amplification of polymorphic DNA 
(RAPD), amplified fragment length polymorphism 
(AFLP), PCR-restriction fragment length polymorphism 
(PCR-RFLP), repetitive element PCR (REP-PCR)], to 
DNA sequencing-based subtyping techniques [such as 
multilocus sequence typing (MLST)].30,43–45,55,57,104–118 
With its high sensitivity, discriminatory power and 
reproducibility, the genetic subtyping approach offers 
a method of choice for the laboratory determination of 
L. monocytogenes lineages and subtypes. In particular, 
a combination of 2 or more subtyping techniques helps 
clarify the ambiguity that can be encountered when a 
single typing method is used.119–121

Due to their sequence divergences among Listeria 
serovars, the actA and plcB genes have been often 
targeted for the determination of L. monocytogenes 
lineages and genotypes.44,113,120,122 Analyses of 2 house-
keeping genes (ribC and purM) together with 2 viru-
lence genes (actA and inlA) uncovered evidence of 
a more prevalent recombination in lineage II than in 
lineage I.123 Moreover, comparisons of the actA gene 
sequences of L. seeligeri isolates from different habi-
tats permitted discrimination of 2 different actA sub-
types forming 2 phylogenetic lineages.124

Another important group of gene targets for Listeria 
lineage determination is internalin genes. Through 

Table 3. L. monocytogenes group-specific gene targets.

Gene Specificity Reference
inlJ (lmo2821) All L. monocytogenes serovars but 4a Liu et al36–39

lmo2470 All L. monocytogenes serovars but 4a and some 4c Liu et al36

inlC All L. monocytogenes serovars but 4a and some 4c Liu et al38

lmo2672 All L. monocytogenes serovars but 4a and some 4c Liu et al36,37

lmo1134 All L. monocytogenes serovars but 4a and 4c Liu et al36

lmaA All L. monocytogenes serovars but 4a and 4c Schaferkordt and Chakraborty79

lmaB All L. monocytogenes serovars but 4a and 4c Schaferkordt and Chakraborty79

lmo0038 All L. monocytogenes serovars but 4a and 4c Chen et al100

ORF2819 L. monocytogenes serovars 1/2b, 3b, 4b, 4d, 4e and 7 Doumith et al54

ORF2110 L. monocytogenes serovars 4b, 4d and 4e Doumith et al54

ORF2372 L. monocytogenes serovars 4b, 4d and 4e Zhang and Knabel135

lmo0737 L. monocytogenes serovars 1/2a, 1/2c, 3a and 3c Doumith et al54

lmo0171 L. monocytogenes serovars 1/2a, 1/2c, 3a and 3c Zhang and Knabel135

lmo1118 L. monocytogenes serovars 1/2c and 3c Doumith et al54

Gene region flanking gltA-gltB L. monocytogenes serovars 1/2b and 3b Borucki and Call133

flaA L. monocytogenes serovars 1/2a and 3a Borucki and Call133
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PCR, L. monocytogenes naturally avirulent serovar 
4a strains were rapidly differentiated from other sero-
vars that have the potential to cause mouse mortality 
via the intraperitoneal route.37

Identification of Epidemic Clones
Although a variety of L. monocytogenes strains have 
been isolated from environments and foodstuff, only a 
limited number of virulent strains are known to cause 
listeriosis epidemics, particularly of those belonging 
to serovars 4b, 1/2a, and 1/2b.138–141 The term “epi-
demic clone” refers to a group of genetically related 
isolates of a common ancestor that are implicated in 
geographically and temporally unrelated outbreaks.142 
To date, 5 epidemic clones (ECs) of L. monocyto-
genes (ECI, ECII, ECIII, ECIV, and ECV) have been 
defined (Table 4).60,142–146

Identification and tracking of L. monocytogenes 
epidemic clones are critical to understanding the 
long-term transmission of L. monocytogenes and to 
establishing efficient surveillance systems for this 
pathogen.147–149 The methods for the identification of 
L. monocytogenes epidemic clones have evolved over 
the years from the phenotypic (e.g., serotyping and 
phage typing) to genotypic methods.150–153 The latter 
include the fragment-based typing methods, which 
range from (i) restriction digestion-based methods 
such as ribotyping (RT) and pulsed-field gel electro-
phoresis (PFGE) and (ii) PCR-based methods such 
as randomly amplified polymorphic DNA and repeti-
tive sequence-based PCR to (iii) combined amplifica-
tion-restriction methods such as amplified fragment 
length polymorphism (at endonuclease restriction or 
primer annealing sites) and PCR-restriction fragment 
length polymorphism. This was followed by DNA 
sequence-based methods such as multilocus sequence 
typing (MLST) that combines PCR and automated 
DNA sequencing to analyze slowly diversified house-
keeping gene sequences.154 More recently, multi-
virulence-locus sequence typing (MVLST, targeting 
virulence genes prfA, inlB, inlC, dal, clpP, and lisR) 
was developed to overcome the limited discrimina-
tory power associated with MLST, allowing categori-
zation of L. monocytogenes isolates into higher-level 
groups, such as evolutionary lineages, clonal com-
plexes, and epidemic clones.90,155 Indeed, Knabel 
et al145 employed multilocus sequence typing (MLST) 
and multi-virulence-locus sequence typing (MVLST) 

these obvious shortcomings, molecular techniques 
provide a precise and low-cost alternative for deter-
mination of L. monocytogenes serovars/groups.130,131

Jinneman and Hill132 reported a mismatch ampli-
fication mutation assay (MAMA) targeting a 446-bp 
region within the hly gene for rapid screening and char-
acterization of L. monocytogenes lineage types I–III. 
Borucki and Call133 utilized primers from an iron trans-
port protein gene, GLT primers (from a 1/2b serotype-
specific region flanking the gltA-gltB cassette), the 
MAMA-C PCR primers,132 and primers from the flaA 
gene (encoding the L. monocytogenes flagellin pro-
tein) to identify L. monocytogenes serotypes. Doumith 
et al54,134 developed a multiplex PCR that incorporates 
L. monocytogenes lmo0737 gene primers for recogni-
tion of serovars 1/2a, 1/2c, 3a, and 3c; lmo1118 gene 
primers for detection of serovars 1/2c and 3c; ORF2819 
primers for serovars 1/2b, 3b, 4b, 4d, and 4e; ORF2110 
primers for serovars 4b, 4d, and 4e; and prs primers as 
an internal amplification control covering all L. mono-
cytogenes serovars. Zhang and Knabel135 described a 
multiplex PCR assay for rapid identification and eas-
ily interpretable differentiation of serovars 1/2a and 
4b from other serovars of L. monocytogenes by simul-
taneously targeting 2 virulence genes (inlB and inlC ) 
and 2 serovar-specific genes (ORF2372 and lmo0171). 
Nightingale et al136 combined a multiplex PCR with 
sigB allelic typing to classify the 4 major serovars (i.e., 
1/2a, 1/2b, 1/2c, and 4b) into unique genetic subgroups, 
and to differentiate lineage I serovar 4b isolates from 
the genetically distinct lineage III serovar 4b isolates. 
More recently, Kérouanton et al137 designed 2 multi-
plex PCR assays to cluster L. monocytogenes strains 
into 5 molecular serogroups: IIa, IIb, IIc, IVa, and IVb. 
The first multiplex PCR recognizes L. monocytogenes 
serotypes 1/2a, 1/2c, 1/2b and 4b, together with the 
prfA gene primers for L. monocytogenes species con-
firmation. The second multiplex PCR incorporating 
the flaA gene primers (specific for 1/2a and 3a strains) 
and prs gene primers (specific for Listeria genus) 
resolves a small number of IIa and IIc molecular sero-
group strains (consisting of serotypes atypical 1/2a, 3a 
and 1/2c strains) that give equivocal results in the first 
multiplex PCR, leading to a total agreement between 
molecular and conventional serotyping methods.

In addition, by using primers from inlA for species-
specific recognition, and those from inlJ (or lmo2821) 
and inlC for virulence determination in a multiplex 
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Table 4. Listeria monocytogenes epidemic clones.

epidemic  
clone (EC)

serovar Ribotype MVLST  
ST (VT)#

Molecular marker Outbreak involved Reference

eCI 4b DUP-1038B 20 LMOf2365_2798 
(AATAGAAATAAGCGGAAGTGT/ 
TTATTTCCTGTCGGCTTAG) 303 bp

Nova Scotia, 1981
California, 1985
Switzerland, 1983–1987
Denmark, 1985–1987
France, 1992

Chen and  
Knabel60;  
Yildirim et al151

eCII 4b DUP-1044A 19 LMOh7858_0487.8 to inlA 
(ATTATGCCAAGTGGTTACGGA/ 
ATCTGTTTGCGAGACCGTGTC) 889 bp

USA, 1998–1999
USA, 2002

Chen and  
Knabel60;  
evans et al138

eCIII 1/2a DUP-1053A 1 LMOF6854_2463.4 
(TTGCTAATTCTGATGCGTTGG/  
GCGCTAGGGAATAGTAAAGG) 497 bp

USA, 2000 Chen and  
Knabel60

eCIv  
(formerly  
eCIa)

4b DUP-1042B 21 Reactive with 4b-specific primers  
(ORF2110), but not with LMOf2365_2798  
and LMOh7858_0487primers

Boston, 1979,1983
UK, 1989

Chen and  
Knabel60

eCv 1/2a 59 LM5578_2229 
(TTGTTGAAGGAAGAGGTGGTC/
TCTTTTCGGCTCATTTTCGT) 191 bp
LM5578_2228_30 
(CTGGTGTTGCCTCCTTTGTT/
AGCACAGGGTTCCTTTGACA) 982 bp

Canada, 1988–2000 Knabel et al145

#Multi-virulence-locus sequence typing (MvLST) sequence types (virulence Types, vTs) were assigned according to Chen et al.60

sources: Chen Y, Zhang w, and Knabel SJ. J Clin Microbiol. 2007;45:835. Knabel SJ, et al. J Clin Microbiol. 2012;50:1748.

to identify a predominant clone (clonal complex 8; 
virulence type 59; proposed epidemic clone 5 [ECV]) 
belonging to serotype 1/2a that has caused human ill-
ness across Canada for more than 2 decades.

To further streamline the identification of 
L. monocytogenes epidemic clones, Chen and Knabel60 
developed a multiplex PCR assay that facilitated 
simultaneous detection of Listeria genus, L. monocy-
togenes serovar 1/2a and 4b, and L. monocytogenes 
epidemic clones I, II, and III. This multiplex PCR 
assay offers a powerful tool to screen and subgroup 
L. monocytogenes cultures and significantly reduces 
the number of isolates that need to be subtyped by 
more expensive and discriminatory molecular meth-
ods, such as PFGE and sequence-based typing.

conclusion
The genus Listeria contains 10 closely related Gram-
positive bacterial species with ubiquitous distribution. 
Although a majority of Listeria species are nonpatho-
genic, L. monocytogenesis is a well known pathogen 
of both humans and animals, and L. ivanovii causes 
severe diseases in ungulates. For the epidemiological 
tracking and control of listeriosis outbreaks, it is 

 important to distinguish beween pathogenic and non-
pathogenic Listeria species, as well as between patho-
genic and nonpathogenic L. monocytogenes strains. 
While traditional phenotypic methods have contrib-
uted to the identification and detection of Listeria 
organisms in the past, they are largely overtaken by 
new generation molecular techniques that demonstrate 
superior sensitivity, specificity and speed. It is envis-
aged that continuing innovations such as microarrays, 
biosensors, and next generation sequencing will offer 
promise to further improve the sensitivity, rapidity 
and specificity of laboratory characterization of List-
eria genus, species, lineages, serovars and epidemic 
clones.
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