
Evolutionary Bioinformatics 2013:9 263–273

doi: 10.4137/EBO.S12299

This article is available from http://www.la-press.com.

© the author(s), publisher and licensee Libertas Academica Ltd.

This is an open access article published under the Creative Commons CC-BY-NC 3.0 license.

Open Access
Full open access to this and
thousands of other papers at

http://www.la-press.com.

Evolutionary Bioinformatics

R A p i d C O m m u N i C A T i O N

Evolutionary Bioinformatics 2013:9 263

sARp: A novel Algorithm to Assess compositional Biases
in protein sequences

Kirill S. Antonets1 and Anton A. Nizhnikov1,2

1department of Genetics and Biotechnology, St. petersburg State university, St. petersburg, Russia. 2St. petersburg
Branch of N.i. Vavilov institute of General Genetics, Russian Academy of Sciences, St. petersburg, Russia.
Corresponding author email: ant.nizhnikov@gmail.com

Abstract: The composition of a defined set of subunits (nucleotides, amino acids) is one of the key features of biological sequences.
Compositional biases are local shifts in amino acid or nucleotide frequencies that can occur as an adaptation of an organism to an
extreme ecological niche, or as the signature of a specific function or localization of the corresponding protein. The calculation of
probability is a method for annotating compositional bias and providing accurate detection of biased subsequences. Here, we present a
Sequence Analysis based on the Ranking of Probabilities (SARP), a novel algorithm for the annotation of compositional biases based
on ranking subsequences by their probabilities. SARP provides the same accuracy as the previously published Lower Probability Sub-
sequences (LPS) algorithm but performs at an approximately 230-fold faster rate. It can be recommended for use when working with
large datasets to reduce the time and resources required.

Keywords: algorithm, protein, sequence analysis, probability, composition

http://dx.doi.org/10.4137/EBO.S12299
http://www.la-press.com
http://www.la-press.com
http://www.la-press.com/evolutionary-bioinformatics-journal-j17
http://www.la-press.com
mailto:ant.nizhnikov@gmail.com

Antonets and Nizhnikov

264 Evolutionary Bioinformatics 2013:9

Introduction
Compositional biases are local shifts in amino acid or
nucleotide frequencies in biological sequences. This is a
widespread natural phenomenon occurring at all levels of
biological material, from genomes and proteomes down
to short regions of genes and proteins. These regions are
called compositionally biased (CB) regions. It is now
clear that CB regions play a significant role in the adap-
tation of organisms to extreme ecological niches1,2 and
determine certain properties of proteins.3,4 Some types of
CB regions in protein sequences are strongly associated
with completely disordered sequences,5 and have the
ability to form amyloids6,7 or other cellular functions.8
Certain compositional biases play significant roles in
human neurodegenerative diseases.9,10

The great success of recent genome projects is an
important factor in the development of algorithms
and tools for the automated annotation of biological
sequences. In recent years, in addition to a large num-
ber of prokaryotic genomes, the genomes of thousands
of different eukaryotic species have been sequenced
and assembled. The almost exponential growth of
genomic and proteomic data is an important incentive
for the development of algorithms and tools for the
automated annotation of biological sequences. Some
algorithms for the annotation of CB regions have pre-
viously been derived. The general aim of these exist-
ing algorithms has been the selective masking of CB
regions without affecting other regions that could be
potentially important. Examples of such algorithms
are SEG (Segment Sequence(s) by Local Complex-
ity) and CAST (Complexity Analysis of Sequence
Tracts).11,12 Later, a method for the identification of
CB regions based on defining the lowest-probability
subsequences (LPSs) for a given amino-acid com-
position was proposed.6 This algorithm (referred to
below as the original LPS algorithm) is based on
scanning along the input sequence in a decreasing
series of moving windows whose range of window
sizes is specified by the user. The next adaptation of
this method was an algorithm for the complete anno-
tation of multiple amino acid residue biases.8 This
algorithm provides an exhaustive assignment of CB
regions with a precise localization of boundaries. It
was employed for the development of the LPS-anno-
tate server and “Prion Home” database.13,14 The LPS
algorithm is a very useful and powerful tool for the
annotation of LPSs, but some of its features reduce

its efficiency. For examples, it uses an enumerative
technique in which LPSs are found by checking all
possible subsequences from 25 residues to the full
sequence length with a step size of 1 residue.6 In this
algorithm, the dependence of processing time on the
length of the sequence is nearly quadratic. Annotation
of CB regions requires a lot of time and resources,
especially for relatively long sequences.

Considering that processing time is essential for the
processing of large datasets, we developed Sequence
Analysis based on the Ranking of Probabilities
(SARP): a novel algorithm for the annotation of
LPSs. SARP provides a precise annotation of LPSs;
it finds all of the LPSs that would be found by the
original LPS algorithm. Our algorithm is based on
ranking subsequences by their probabilities, followed
by the selection of LPSs, which avoids enumeration.
We achieved an approximately 230-fold faster per-
formance with a dependence on sequence length that
is closer to a linear relationship. SARP is especially
useful for the processing of large datasets, such as
sets of eukaryotic proteomes, as it permits the user to
drastically reduce the computing time and hardware
requirements for computation.

Methods
materials
Algorithms were implemented using C#. All calcu-
lations were performed on a computer with a single
2.8 GHz Intel Core i7 CPU and 6 GB RAM. The
probability threshold in all cases was 10-12. The mini-
mum window size for both algorithms was 25 aa,
and the maximum window size for the original LPS
algorithm was 1000 aa. The source code for SARP is
available upon request.

All protein sequences were downloaded from the
NCBI RefSeq database (http://www.ncbi.nlm.nih.
gov/refseq/). To generate the sets of 1000 proteins of
yeast Saccharomyces cerevisiae, we selected top 1000
proteins from the list of proteins sorted by accession.
To generate the sets of 250 proteins for each of
5 species: Homo sapiens, Drosophila melanogaster,
Caenorhabditis elegans, Nanoarcheum equitans and
Saccharomyces cerevisiae, we sorted the list of the
proteins by accession and selected the first protein
of each n proteins. The parameter n was different for
each species, so the sampling procedure covered the
whole proteome.

http://www.la-press.com
http://www.ncbi.nlm.nih.gov/refseq/
http://www.ncbi.nlm.nih.gov/refseq/

SARp: An algorithm to assess compositional biases

Evolutionary Bioinformatics 2013:9 265

Original LpS algorithm
We used the LPS algorithm described previously.6
This algorithm is based on calculating the probabili-
ties for all subsequences of the given sequence. To
generate the set of subsequences, the authors used
sliding windows of different sizes. For each individ-
ual amino acid of type x, the whole range of window
sizes and for all positions of the window, the prob-
ability of subsequences was calculated as follows:

P S x

w

n w n
p pi w x

n
x

w n(,)
!

!()!
(), =

-
- -1 (1)

where Si,w is a subsequence of sequence S starting at
position i with length w, n is the count of amino acid
residues of type x in subsequence Si,w and px is the fre-
quency of residues of this type in the whole proteome.
The subsequence with the lowest probability was
selected as the LPS, and the remainder of the sequence
was resubmitted to the procedure. The input sequence
was searched for LPSs for each residue with a preas-
signed range of window sizes (from 25aa to 1000aa).

description of SARp
Unlike original LPS algorithm, our algorithm, SARP,
finds short subsequences, which are likely to be the
parts of LPSs, and extends them to cover the whole
LPSs. A flow diagram of SARP is shown in Fig. 1.
First, SARP finds the lower limit of LPS length for
the given sequence. The procedure for the optimi-
zation is described below. Then, the window of the
calculated length moves along the sequence with a
step size of one residue, and both the count of x-type
amino acids and the probability are calculated for
each subsequence. Probability is calculated as for the
original algorithm (1).

Next, all subsequences are split into groups so
that all elements in each group have equal probabili-
ties, and the groups are added to the queue in order
of ascending probability. So, at the beginning of the
queue, we have the group of subsequences with the
lowest probability among the all subsequences of the
same size, which are more likely to be the parts of
LPSs. Then, the first group is taken from the queue
and split into subgroups in such a manner that each
subsequence in the subgroup overlaps with at least one
other subsequence in the subgroup. We expect that all

members of each subgroup are the parts of one LPS,
if they are. Next, SARP determines the boundaries
and probability of the LPSs covering the subgroups.
For each subgroup, the first and last subsequences
are selected, and each of these sequences is extended
towards the beginning and end of the sequence as fol-
lows. At each step, one residue is added to the subse-
quence, and a new probability is calculated until the
extension reaches the border of the sequence or the
explored subsequence. Then, the subsequence with
the lowest probability is chosen. Next, the extensions

Start

Optimization of the length of window

Generate the array of subsequences of optimized window
length

Calculate the probability for each subsequence from the
array

Split the array into groups with equal probabilities

Split the group into subgroups with overlapping
subsequences

Select the first and last fragment in the subgroup

Extend both subsequences to the beginning and end of the
sequence separately

Combine the extensions for the first and last subsequences
separately

Combine the results for both subsequences

Save the start and end positions

Extend to both tails of the sequence separately

Combine the results of the extension

Check the subsequences for overlapping

Add the subsequences to the array of LPSs

Delete explored subsequences from the sequence

Return the array of LPSs

For each group

For each subgroup

No

Did the positions change?

Yes

Figure 1. A workflow of SARP. The steps of SARP performance are
shown below. The beginning and end of the algorithm are indicated. The
steps suggesting alternative solutions are indicated with rhombs.

http://www.la-press.com

Antonets and Nizhnikov

266 Evolutionary Bioinformatics 2013:9

are combined as follows. We select the subsequence
with the lowest probability from the extensions to the
beginning, to the end and the union of both exten-
sions. Then, from the first and last extended subse-
quences of the subgroup, the subsequence with the
lowest probability is selected. For this subsequence,
the procedure of extending to both ends and selecting
the extension with the lowest probability is repeated
until the beginning and end of the subsequence do not
change. The LPS at each step is saved.

The LPSs generated for the subgroups, could over-
lap. To resolve overlapping, SARP uses the following
procedure. For the group, the lowest probability subse-
quences from the last extension step for each subgroup
with a probability lower than the threshold are checked
for overlap. If there is a pair of overlapping subse-
quences, the subsequence with the higher probability is
substituted with the LPS from the previous step for that
subgroup, and checking is repeated. If the probability of
the new LPS is higher than the threshold, it is excluded
from the list of LPSs. The explored sequences for each
group are excluded from further analysis. The final list
of LPSs for each group is added to the final list of LPSs,
which is returned by the algorithm. The example of run-
ning SARP is shown in Fig. 2.

Length optimization procedure
SARP outputs only the LPSs, whose probabilities
are lower than the user-defined threshold, and whose
lengths are bigger than the user-defined limit. We
conclude that if the probability for every subsequence
of the smallest window’s length is much higher than
the threshold, we can increase the length of the win-
dow until the probability of at least one of the sub-
sequences is closer to the threshold. Therefore, we
developed the window length optimization procedure.
The length optimization procedure works as follows:
SARP calculates the probability for an initial length
w of each subsequence Si,w of sequence S (1). Then, if
the lowest probability is greater than the square root
of the threshold, SARP doubles the length; otherwise,
it returns w. Given two subsequences of S, Si,w and
Si+w,w, that contain residues n1 and n2 of type x, the
probability of subsequence Si,2w is:

p S x
w

n n w n n
p pi w x

n n
x

w n n(,)
()!

()!()!
(),2

1 2 1 2

22

2
11 2 1 2=

+ - -
-+ - -

 (2)

Let P S x ti w(,), > and P S x ti w w(,) ,,+ > where t
is the threshold. Then,

 p S x P S x ti w i w w(,) (,), ,+ > (3)

and

P S x

P S x P S x

w n n w n w n

w
i w

i w i w w

(,)

(,) (,)

()! ! !()!()!

(
,

, ,

2 1 2 1 22

+

=
- -

!!) ()!()!2
1 2 1 22

1
n n w n n+ - -

≥

 (4)

Taking Equations (3) and (4) together, we can con-
clude that P S x P S x P S x ti w i w i w w(,) (,) (,), , ,2 ≥ >+ . This
proves the correctness of the optimization procedure.

Results
Faster algorithm with the same accuracy
The original LPS algorithm uses sliding windows,
which have sizes that vary over a broad range, and
a binomial distribution to calculate the probability
of each subsequence.6 The employment of sliding
 windows with sizes that vary from several residues
to thousands requires the calculation of approxi-
mately lr probabilities, where l is the length of the
protein sequence and r is the difference between the
minimum and maximum sizes of sliding window.
However, the maximum size of a LPS is equal to the
length of the sequence; thus, the upper limit for the
calculation of probability is near l2. SARP does not
use sliding windows of all sizes to find LPSs, which
notably reduces computing time.

We benchmarked SARP with the original LPS
algorithm using 1000 random protein sequences from
Saccharomyces cerevisiae. The average length of a
protein sequence in this set was 489.2 residues, and
the total length was 489,217 residues. SARP was as
accurate as the algorithm described by Harrison and
Gerstein. It found 100% of the LPSs identified by the
original algorithm, and the boundaries of those LPSs
were principally the same as for the original algo-
rithm (Fig. 3, Supplementary File S1). The exception
was cases of LPSs that were longer than the maxi-
mum window size. In contrast with the original LPS
algorithm, SARP does not have an upper limit of win-
dow size, enabling the prediction of longer LPSs than
the original algorithm can handle. We found only 1

http://www.la-press.com

SARp: An algorithm to assess compositional biases

Evolutionary Bioinformatics 2013:9 267

that was inaccurate but it was very close to the origi-
nal prediction of LPS boundaries for a very long LPS
with an amino acid frequency that was lower than
average for protein with GI 6319255.

We compared computation times between the
 original LPS algorithm and SARP. As expected, SARP
demonstrated dramatic reductions in computation
time. The tested set of 1000 proteins was processed in
1465 seconds of running time, ie, approximately half
an hour, whereas for the original LPS algorithm, this
index was 341,914 seconds (approximately 4 days).

Sequence:

Sliding windows:

Groups:

Subgroups:

16-AAAMA-20

16-AAAMA-20 P = 0.0000296

16-AAAMA-20 P = 0.0000296

Merge

Merge

15-TAAAMA-20 P = 0.00008
14-NTAAAMA-20 P = 0.00018

Lowest probability:
16-AAAMAA-21 P = 0.0000018
Lowest probability:

16-AAAMAA-21 P = 0.0000018
Lowest probability:

16-AAAMAA-21 P = 0.0000018

LPS: 16-AAAMAA-21 P = 0.0000018

Lowest probability:

1-WNCHGLANINKYVNTAAAMA-20 P = 0.0022

17-AAMAA-21
14-NTAAA-18 13-VNTAA-17

19-MAAKL-23
20-AAKLV-24

15-TAAAM-19
18-AMAAK-22

Extension

First in the subgroup

To the beginning:

16-AAAMAA-21 P = 0.0000018
16-AAAMAAK-22 P = 0.0000059

16-AAAMAAKLV-24 P = 0.0000321

To the end:

Subgroups: Subgroups:

1-WNCHGLANINKYVNTAAAMAAKLV-24

1-WNCHG-5 P = 0.774

Pa = 0.05

P = 0.0000296 P = 0.0011 P = 0.021

2-NCHGL-6 P = 0.774

3-CHGLA-7 P = 0.204

Last in the subgroup

Figure 2. The scheme of search for LpS in example sequence with SARp for the amino acid alanine (A). The groups of the fragments with equal
 probability and the subgroups are shown. The process of extension is demonstrated for the first group.

Thus, SARP is approximately 230-fold faster than the
original algorithm. A summary of the time consumed
by each algorithm to find the LPSs in 1000 yeast pro-
teins is presented in Table 1.

Computation time strongly depends
on protein length
It is clear that the computation time required to
find the LPSs within a protein sequence depends
on the length of the sequence. Over the range of
protein lengths in our testing set (Fig. 4C), the

http://www.la-press.com

Antonets and Nizhnikov

268 Evolutionary Bioinformatics 2013:9

for proteins grouped by size is shown in Figure 4D.
Because the difference in computation time for
SARP and the original LPS algorithm is too large to
illustrate both in the same histogram, an additional
histogram for SARP alone is included (Fig. 4E). As
discussed above, the upper limit of runtime of the
original algorithm is close to l2. Comparing the run-
ning times for SARP and the original LPS algorithm
for groups of different protein lengths (Fig. 4F), we
have shown that the ratio between the running times
for the original LPS algorithm and SARP depends on
the length of protein linearly. Thus, the dependence
between the SARP runtime and sequence length
is closer to linear than for original LPS algorithm.
Taken together, SARP provides significantly faster
performance, and its advantage is most prominent
for long sequences.

Another question was whether the computing
time for SARP depends on the frequencies of amino
acids within the proteome. To test this, we compared
the speed of LPS detection between proteins from 5
different species. We selected 250 random proteins

6226530
6226534
6226541
6319253
6319255
6319276
6319282
6319291
6319295
6319298
6319300
37362611
330443386
6319341
6319355
330443395
6319386
330443405
6319390
6319420
6319424
6319425
6319429
6319442
6319459
6319462
6319464
6319486
6319485
6319490
6319523
6319528
6319533
6319541
330443439
6319553
330443449
6319589
6319611
6319616
6319626
6319638
6319675
330443461
6319689

6319715
6319754
6319756
330443479
330443481
10383762
6319835
42759852
10383780
10383792
6319890
6319912
330443486
6319926
6319931
10383809
10383811
6319968
6319978
330443497
6320034
6320039
6320041
6320049
6320061
6320097
6320115
6320143
6320145
269970297
6320167
6320170
6320179
6320190
6320191
6320192
6320199
6320259
6320260
6320282
6320285
6320286
6320301
6320304

Figure 3. The scheme represents all LpSs found with the original LpS algorithm and with SARp in a set of 1000 yeast proteins. The numbers are the Gi
numbers of proteins in the NCBi database. The horizontal black line represents a protein sequence. different green regions represent overlapping LpSs
found with the original algorithm and SARP. Blue regions denote parts of an LPS that were not identified by the original algorithm. Vertical red dashes
denote an exact match of the LpS boundaries found with the original LpS algorithm and SARp.

Table 1. A comparison of the efficiency between SARP
and the original LpS algorithm.

parameter Lps algorithm sARp
Total protein length, aa 489217 489217
Total time, ms 341914177 1464619
Average protein
length, aa

489.2 489.2

Average time per
protein, ms

341914.2 1464.619

Times faster* 1 233.45

note: *This parameter illustrates the ratio of running times between the
LpS algorithm and SARp, in which the running time of the LpS algorithm
is set to 1.

computation time of the original algorithm increases
very quickly, reaching up to approximately 2 hours
for a sequence of 2800 residues (Fig. 4B), whereas
SARP required only approximately 12 seconds
for the same sequence length (Fig. 4A). To better
understand this dependence, we sorted all sequences
into several groups by length with an increment of
200 residues (Fig. 4C). A comparison between SARP
and the original LPS algorithm in processing times

http://www.la-press.com

SARp: An algorithm to assess compositional biases

Evolutionary Bioinformatics 2013:9 269

350

300

250

200

150

100

50

0

0–
20

0

20
0–

40
0

40
0–

60
0

60
0–

80
0

80
0–

10
00

10
00

–1
20

0

12
00

–1
40

0

14
00

–1
60

0

16
00

–1
80

0

18
00

–2
00

0

20
00

–2
20

0

22
00

–2
40

0

24
00

–2
60

0

26
00

–2
80

0

30
00

–3
20

0

28
00

–3
00

0

Length of proteins, aa

C
o

u
n

t

Length of proteins, aa

500.00

350.00

450.00

400.00

300.00

250.00

200.00

150.00

100.00

50.00

0.00
0–200 200–400 400–600 600–800 800–1000 1000–12001200–14001400–1600

Length of proteins, aa

L
P

S
/S

A
R

P

50000

35000

45000

40000

30000

25000

20000

15000

10000

5000

0
5000 1000 1500 2000 2500 3000 3500

Length of proteins, aa

T
im

e
o

f
co

m
p

u
ta

ti
o

n
, m

s

8000 000

6000 000

7000 000

5000 000

4000 000

3000 000

2000 000

1000 000

0
5000 1000 1500 2000 2500 3000 3500

Length of proteins, aa

T
im

e
o

f
co

m
p

u
ta

ti
o

n
, m

s

9000 000

7000 000

8000 000

6000 000

5000 000

4000 000

3000 000

2000 000

1000 000

0

0–
20

0

20
0–

40
0

40
0–

60
0

60
0–

80
0

80
0–

10
00

10
00

–1
20

0

12
00

–1
40

0

14
00

–1
60

0

16
00

–1
80

0

18
00

–2
00

0

20
00

–2
20

0

22
00

–2
40

0

24
00

–2
60

0

26
00

–2
80

0

30
00

–3
20

0

T
im

e
o

f
co

m
p

u
ta

ti
o

n
, m

s

LPS SARP

SARP

LPS
SARP

A B

C D

45000.00

40000.00

35000.00

30000.00

25000.00

20000.00

15000.00

10000.00

5000.00

0.00

0–
20

0

20
0–

40
0

40
0–

60
0

60
0–

80
0

80
0–

10
00

10
00

–1
20

0

12
00

–1
40

0

14
00

–1
60

0

16
00

–1
80

0

18
00

–2
00

0

20
00

–2
20

0

22
00

–2
40

0

24
00

–2
60

0

26
00

–2
80

0

30
00

–3
20

0

Length of proteins, aa

T
im

e
o

f
co

m
p

u
ta

ti
o

n
, m

s

E F

Figure 4. (A) A distribution of computation times for separate proteins of different lengths using SARp. Lengths of protein sequences (aa) and times of com-
putation (ms) are shown. (B) The same as A. for the original LpS algorithm. (c) A histogram of relative numbers of proteins from the set of 1000 sequences
that were analyzed grouped by their lengths. (D) A comparison of Cpu running times for the original LpS algorithm and SARp dependent on the length of
proteins. The columns of SARp results are nearly invisible due to its very fast computation time relative to the original algorithm. The results are indicated
as the mean ± the confidence interval (P $ 0.95). (e) Special histogram for SARp computation times. The results are indicated as the mean ± confidence
interval (P $ 0.95). (F) Ratio between the Cpu times for the original LpS algorithm and SARp in the groups of proteins arranged by their length (aa).

from Homo sapiens, Drosophila melanogaster,
Caenorhabditis elegans, Nanoarcheum equitans and
Saccharomyces cerevisiae. Those species are from
different taxonomic groups, live in different habi-
tats and possess different compositions and average
 protein lengths (Fig. 5). The average protein lengths
for the selected organisms vary from 285 residues for
N. equitans to 661 for D. melanogaster (Fig. 5B), with
a large spread of amino acid frequencies between the
5 sets of proteins tested (Fig. 5A). We compared the
running times for the original algorithm and SARP

separately for each of the 5 sets of proteins. If the
average protein length is the major factor defining the
performance of the algorithm, the approximate ratio
of running times should be the same as the ratio of
average sizes. If the running time depends mostly
on the distribution of amino acids, we may expect
a violation of this correlation. Our analyses dem-
onstrated that for both SARP and the original LPS
algorithm, the CPU running time strongly correlates
with the average protein length and does not depend
on the composition of amino acids (Fig. 5C and D).

http://www.la-press.com

Antonets and Nizhnikov

270 Evolutionary Bioinformatics 2013:9

The runtimes for the subsets containing proteins of
the same length from different organisms were very
close to each other (data not shown). Taken together,
these data confirm the efficiency of SARP for the pro-
cessing of large datasets.

Discussion
The role of amino acid composition was first dis-
cussed many years ago.15 Since then, shifts in the
composition of protein sequences have been attrib-
uted to a large number of interesting phenomena of
the living world, including adaptations to extreme
ecological niches by Archaea and bacteria,1,2 prions
and amyloids6,16 and many others. Analysis of com-
position is used to characterize the structure,13 func-
tions and evolution of proteins.8,17 There is evidence
suggesting that the composition of amino acids is a
unique “molecular signature” of each species, similar
to the GC content of genomes.1 However, unlike GC
content, the amino acid composition of proteomes
has been studied very poorly to date, primarily due
to the relatively weak elaboration of algorithms

for systemic annotation of compositional biases in
 proteins. It is noteworthy that there are a lot of papers
describing shifts in the composition of entire pro-
teomes or individual proteins, but that the number of
papers dedicated to the systematic analysis of CBs
in proteins is much lower. One of the most conve-
nient algorithms allowing such analysis is the LPS
 algorithm.6 It was successfully utilized in the original
paper for the annotation of potentially amyloidogenic
and prionogenic proteins based on their enrichment
in asparagine and glutamine, which is the common
feature of prions. Furthermore, this algorithm was
used for the “Prion Home” (http://libaio.biol.mcgill.
ca/prion)14 and “LPS annotate” (http://cedra.biol.
mcgill.ca/lps-annotate.html) databases13 and for a
series of studies dedicated to the characterization of
CB regions. These implications of the LPS algorithm
confirm its relevance. Our algorithm, SARP, can also
be used in such studies with the advantage of very
fast processing times. Our algorithm permits the
annotation of LPSs in eukaryotic proteomes within
several hours of CPU running time on a single CPU

800
700
600
500
400
300
200
100A

ve
ra

g
e

le
n

g
th

 o
f

p
ro

te
in

s,
 a

a

0

C. e
leg

an
s

D. m
ela

no
ga

ste
r

H. s
ap

ien
s

N. e
qu

ita
ns

S. c
er

ev
isi

ae

3000

2500

2000

1500

1000

500

T
im

e
o

f
co

m
p

u
ta

ti
o

n
, m

s

0

C. e
leg

an
s

D. m
ela

no
ga

ste
r

H. s
ap

ien
s

N. e
qu

ita
ns

S. c
er

ev
isi

ae

1000 000.00
900 000.00
800 000.00
700 000.00
600 000.00
500 000.00

300 000.00
400 000.00

200 000.00
100 000.00

T
im

e
o

f
co

m
p

u
ta

ti
o

n
, m

s

0.00

C. e
leg

an
s

D. m
ela

no
ga

ste
r

H. s
ap

ien
s

N. e
qu

ita
ns

S. c
er

ev
isi

ae

0.12

0.1

0.08

0.06

0.04

0.02

0
%A %C %D %E %F %G %H %K %L %M %N %P %Q %R %S %T %V %W %Y%I

Caenorhabditis elegans

Drosophila melanogaster

Homo sapiens

Nanoarcheum equitans

Saccharomyces cerevisiae

LPS SARP

A

DCB

Figure 5. (A) The frequencies of amino acids for the sets of 250 proteins for each of the five species analyzed. The means of frequencies are indicated
as percentages. (B) The average protein length (aa) is indicated for the set of sequences from each species. (c) Computation time using the original LpS
algorithm for the sets of 250 proteins from five different species. Computation time is indicated in ms. The results are shown as the mean ± the confidence
interval (P $ 0.95). (D) The same as C. for SARp.

http://www.la-press.com

SARp: An algorithm to assess compositional biases

Evolutionary Bioinformatics 2013:9 271

machine without using high-performance computer
systems. SARP may be useful for any web resources
demanding permanent annotation of novel LPSs,
such as “LPS annotate”, because compared with the
LPS algorithm, it strongly reduces the required com-
putation capacity.

To conclude, we herein described the use of
SARP, a novel algorithm for assessing compositional
biases. This algorithm was shown to have high fidel-
ity, allowing the precise identification of CB regions in
proteomes. Indeed, comparing the original LPS algo-
rithm and SARP for 1000 yeast proteins, we found
only 1 protein for which the original algorithm was
more precise than SARP. We did not filter the LPSs by
the frequency of residues of type x within them. So,
the output of the both algorithms contained LPSs of 2
kinds, with increased and with decreased abundance
of residues of type x. The inaccurate LPSs found
by SARP belong to the second class. All LPSs with
increased abundance of the x-type residues were
found accurately by SARP. So, this inaccuracy can
be easily overcome by searching not for LPSs with
decreased abundance of the x-type residues, but
for LPSs with increased abundance of non-x-type
residues.

The general advantage of this algorithm is its
significantly faster performance. The basis of such
a performance improvement is the method of iden-
tification of LPSs. In contrast with the previously
published LPS algorithm, SARP does not use enu-
meration of subsequences but directly ranks their
probabilities and uses a new procedure of opti-
mization of window lengths. A performance test
showed that CPU running time with SARP was
approximately 230-fold faster than the original LPS
algorithm. For the set of 1000 yeast’s proteins we
achieved the reduction of the runtime up to approxi-
mately 95 hours, using SARP instead of the original
algorithm. We could expect that the typically used
data sets are the whole proteomes, which are much
larger. The whole proteome of S. cerevisiae is about
6000 proteins, and the proteomes of mammals are
even bigger, up to approximately 35000 proteins
for human proteome. Therefore, the gain of runtime
would be even bigger for normal data sets.

Thus, SARP is a powerful tool for the annota-
tion of LPSs in large datasets, which is important for
comparative, functional and evolutional proteomics.

Author contributions
Conceived and designed the experiments: KSA, AAN.
Designed the algorithm: KSA. Analyzed the data:
KSA, AAN. Wrote the first draft of the manuscript:
AAN. Contributed to the writing of the manuscript:
KSA. Agree with manuscript results and conclu-
sions: KSA, AAN. Jointly developed the structure
and arguments for the paper: AAN. Made critical
revisions and approved final version: KSA, AAN.
All authors reviewed and approved of the final
manuscript.

Funding
The study was supported by the Ministry of Education
and Science of Russia, project 14.132.21.1324. This
work was supported by a grant from the St. Petersburg
Government.

competing Interests
Author(s) disclose no potential conflicts of interest.

Disclosures and ethics
As a requirement of publication the authors have pro-
vided signed confirmation of their compliance with
ethical and legal obligations including but not lim-
ited to compliance with ICMJE authorship and com-
peting interests guidelines, that the article is neither
under consideration for publication nor published
elsewhere, of their compliance with legal and ethi-
cal guidelines concerning human and animal research
participants (if applicable), and that permission has
been obtained for reproduction of any copyrighted
material. This article was subject to blind, indepen-
dent, expert peer review. The reviewers reported no
competing interests.

References
1. Schmidt A, Rzanny M, Schmidt A, Hagen M, Schütze E, Kothe E.

GC c ontent-independent amino acid patterns in bacteria and archaea.
J Basic Microbiol. 2012;52(2):195–205.

2. Tadeo X, López-Méndez B, Trigueros T, Laín A, Castaño D, Millet O.
 Structural basis for the aminoacid composition of proteins from halophilic
archea. PLoS Biol. 2009;7(12):e1000257.

3. Long JC, Caceres JF. The SR protein family of splicing factors: master regu-
lators of gene expression. Biochem J. 2009;417(1):15–27.

4. Neduva V, Russell RB. Proline-rich regions in transcriptional complexes:
heading in many directions. Sci STKE. 2007;2007(369):pe1.

5. Uversky VN, Dunker AK. Understanding protein non-folding. Biochim
 Biophys Acta. 2010;1804(6):1231–64.

6. Harrison PM, Gerstein M. A method to assess compositional bias in bio-
logical sequences and its application to prion-like glutamine/asparagine-rich
domains in eukaryotic proteomes. Genome Biol. 2003;4(6):R40.

http://www.la-press.com

Antonets and Nizhnikov

272 Evolutionary Bioinformatics 2013:9

 7. lberti S, Halfmann R, King O, Kapila A, Lindquist S. A systematic survey
identifies prions and illuminates sequence features of prionogenic proteins.
Cell. 2009;137(1):146–58.

 8. Harrison PM. Exhaustive assignment of compositional bias reveals univer-
sally prevalent biased regions: analysis of functional associations in human
and Drosophila. BMC Bioinformatics. 2006;7:441.

 9. Gitler AD, Shorter J. RNA-binding proteins with prion-like domains in ALS
and FTLD-U. Prion. 2011;5(3):179–87.

 10. Orr HT. Polyglutamine neurodegeneration: expanded glutamines enhance
native functions. Curr Opin Genet Dev. 2012;22(3):251–5.

 11. Wootton JC, Federhen S. Analysis of compositionally biased regions in
sequence databases. Meth Enzymol. 1996;266:554–71.

 12. Promponas VJ, Enright AJ, Tsoka S, et al. CAST: an iterative algorithm for
the complexity analysis of sequence tracts. Complexity analysis of sequence
tracts. Bioinformatics. 2000;16(10):915–22.

 13. Harbi D, Kumar M, Harrison PM. LPS-annotate: complete annotation of
compositionally biased regions in the protein knowledgebase. Database
(Oxford). 2011;2011:baq031.

 14. Harbi D, Parthiban M, Gendoo DM, et al. PrionHome: a database of prions
and other sequences relevant to prion phenomena. PLoS ONE. 2012;7(2):
e31785.

 15. Conn EJ, Berggren RE. Studies in the physical chemistry of proteins:
III. The relation between the amino acid composition of casein and its
capacity to combine with base. J Gen Physiol. 1924;7:45–79.

 16. Michelitsch MD, Weissman JS. A census of glutamine/asparagine-rich
regions: implications for their conserved function and the prediction of
novel prions. Proc Natl Acad Sci U S A. 2000;97(22):11910–5.

 17. Harrison LB, Yu Z, Stajich JE, Dietrich FS, Harrison PM. Evolution of
 budding yeast prion-determinant sequences across diverse fungi. J Mol
Biol. 2007;368(1):273–82.

http://www.la-press.com

SARp: An algorithm to assess compositional biases

Evolutionary Bioinformatics 2013:9 273

supplementary material

Supplementary File 1
List of LPSs found by SARP and by the original LPS
algorithm.

http://www.la-press.com

