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Abstract: Breast reconstruction is an important part of the breast cancer treatment process for many women. Recently, 2D and 3D images 
have been used by plastic surgeons for evaluating surgical outcomes. Distances between different fiducial points are frequently used as 
quantitative measures for characterizing breast morphology. Fiducial points can be directly marked on subjects for direct anthropometry, or 
can be manually marked on images. This paper introduces novel algorithms to automate the identification of fiducial points in 3D images. 
Automating the process will make measurements of breast morphology more reliable, reducing the inter- and intra-observer bias. 
Algorithms to identify three fiducial points, the nipples, sternal notch, and umbilicus, are described. The algorithms used for localization 
of these fiducial points are formulated using a combination of surface curvature and 2D color information. Comparison of the 3D co-
ordinates of automatically detected fiducial points and those identified manually, and geodesic distances between the fiducial points are 
used to validate algorithm performance. The algorithms reliably identified the location of all three of the fiducial points. We dedicate this 
article to our late colleague and friend, Dr. Elisabeth K. Beahm. Elisabeth was both a talented plastic surgeon and physician-scientist; we 
deeply miss her insight and her fellowship.
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Introduction
Accurate measurement of breast morphology is cru-
cial for determining the surgical outcomes of breast 
reconstruction, and other breast cancer treatments.1,2 
Recently, in the fields of aesthetic and reconstructive 
breast surgery, 3-dimensional (3D) imaging has been 
validated as a potential tool for obtaining clinical 
measurements such as surface area and distance, and 
breast volume.3 Distances between fiducial points are 
widely used for quantifying breast aesthetic measures 
such as symmetry4 and ptosis.5 Existing 3D visualiza-
tion packages provide tools to measure surface path 
distances, volume, and angles, but annotation of the 
fiducial points is still done manually, which can intro-
duce inter- and intra-observer variability.3,6 Moreover, 
a number of the fiducial points are difficult to locate 
and require a fairly sophisticated understanding of 
surgical terminology and human anatomy. Thus, auto-
mating the process of localizing fiducial points should 
not only make the measurements of breast aesthetics 
more accurate and reliable, but also more practical for 
the busy medical profession.

Detection of 3D fiducial points is critical to a 
variety of medical applications including magnetic 
resonance (MR) and X-ray computed tomography 
(CT) images of the brain in neurology,7 CT images 
of bones in orthopedics,8 and stereophotogrammetric 
images in craniofacial surgery.9 3D landmark detec-
tion has also been extensively studied in the field of 
face recognition.10 In both medical11 and computer 
vision12 applications, a popular approach has been to 
generate atlases (templates) wherein the atlas is man-
ually generated and landmarks detected on the atlas. 
For each target image, feature points are detected 
and matched with those in the atlas to identify the 
landmarks on the input image. Other approaches 
for landmark detection have included Point Signa-
tures,13 Spin Image representation,14 and Local Shape 
Maps.15 Some of these approaches have exhibited 
high sensitivity to noise. Other practical applications 
of automated landmark detection on 3D images of 
the human body are found in the textile industry,16 
and in the gaming industry for creation of realistic 
avatars for virtual reality systems.17 In these studies, 
however, the focus has been on the identification of 
anthropometric landmarks such as necklines, bust, 
waist and hip circumference, torso height, shoul-
der points, and limb joints. In this study our focus 

is to identify anatomical landmarks, such as nipples, 
umbilicus, and sternal notch to facilitate quantifica-
tion of breast morphology. Our work also contrasts 
other studies in the ergonomic, textile, and gaming 
industries in that we need to identify anatomical land-
marks that require nude images of the torso. The only 
other area where identification of landmarks (specifi-
cally nipples) in nude images has been attempted is 
in the field of web image explicit content detection 
for screening inappropriate adult oriented Internet 
pages. However, most of this work is performed on 
2D photographs.18

To date, our group19 has made all previously pub-
lished attempts at automated detection of fiducial points 
for breast morphology assessment from 2D images. 
Related work on automating quantitative analysis of 
breast morphology from 2D photographs has also 
been done by Cardoso et al.20 In this study we pres-
ent algorithms for the automated identification of three 
fiducial points—nipples (right (NR) and left (NL)), 
sternal notch, and umbilicus from 3D torso images.

Materials and Methods
Some of the most effective methods in the field of 
3D face recognition for landmark detection rely on 
estimation of local mean and Gaussian curvature 
information.21 Our approach combines 3D surface 
curvature in conjunction with 2D color information 
for the automated identification of fiducial points. 
Fiducial points, or landmarks, have unique structural 
and/or surface properties that differentiate them from 
their surrounding regions. We reasoned that the key 
to accurately locating these anatomical fiducial points 
(nipples, sternal notch, and umbilicus) was to isolate 
their distinctive morphological features, and to search 
for them in an appropriate spatially localized region 
of the torso. Thus the first step was to partition the 
torso based on the anatomic location of the fiducial 
point. For example, the central portion of the torso 
was the region of interest (ROI) for umbilicus identi-
fication, whereas the right and left halves of the upper 
portion of the torso were the ROI’s for the identifica-
tion of the right and left nipples, respectively. Next, 
the curvature tensor field was estimated using a tool-
box developed by Peyre22 based on the algorithms 
proposed by Cohen-Steiner et al.23 Using the cur-
vature tensor we determined the principal (kmin and 
kmax), Gaussian (K), Mean (H), and Shape Index (S), 
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curvature measures.24 In the following sections, we 
describe in detail the steps employed to automatically 
detect each of the three fiducial points.

Identification of nipples
For identification of the nipples, the 3D torso image 
was first partitioned into two halves, left and right 
for locating NL and NR, respectively. Each ROI was 
automatically segmented based on a priori knowledge 
of the relative position of the breasts (ie, the portion 
of the torso after cropping 30% from the top (neck) 
and bottom (lower navel area)) in the forward fac-
ing upright posture (Fig. 1). Next we determined the 
Gaussian (K) and Mean (H) curvatures. The regions 
with K . 0 are ‘elliptic’, K , 0 are ‘hyperbolic’, and 
K = 0 are either ‘planar’ or ‘cylindrical.’ The regions 
of the surface with H , 0 are ‘concave’, while those 
with H . 0 are ‘convex’. The breast mounds exhibit 
high elliptic Gaussian curvature and are convex, 
while the nipples that are typically at the pinnacle of 
the breast mounds exhibit maximal Gaussian curva-
ture and outward projection.

Features for nipples included high ellipticity and 
convexity curvature values (red and orange colored 
regions, H . 0 and K . 0) and a maximal value along 
the z-axis (ie, outward projection). To simultane-
ously search for these criteria, the sum of the curva-
ture  values, H and K and the corresponding z-value 
for each vertex on the surface mesh, was computed 
and the point having the largest sum was selected as 
the initial estimate of the nipple. Including the cor-
responding 2D color information available for the 
surface mesh as follows refined this initial estimate. 
The 3D surface mesh region surrounding the initial 
estimated nipple position (as shown in Fig. 2A) was 
extracted by traversing the mesh and selecting vertices 
in subsequent 1-ring neighborhoods until a maximum 

Figure 1. Types of curvature used for nipple identification. (A) gaussian 
Curvature, K (B) Mean Curvature, h.

Figure 2. Steps for nipple identification (A) gaussian curvature plot of the 
region extracted using initial estimate of the nipple (B) 2D texture image 
of the high curvature region (red colored) exhibited in the Figure 2A (c) 
gray-scale image of 2D texture image (D) output after thresholding the 
gray-scale image.

of 400 vertices were identified.22 Next the area exhib-
iting the highest Gaussian curvature (red in Fig. 2A) in 
the extracted sub-region and its corresponding color 
map were determined (Fig. 2B). The rationale here 
was to differentiate the areola region and a portion 
of the surrounding breast mound, but not the entire 
breast. This color map was converted to gray-scale 
(as shown in Fig. 2C) and then binarized using auto-
mated thresholding. For thresholding, the maximum 
(Imax) and minimum (Imin) intensity values of the pix-
els present in the gray-scale map (from the 2D color 
image) of the sub-region (Fig. 2C) were determined. 
Pixels with values less than Imin + 0.1 (Imax − Imin) were 
assigned a value of 1, and the remaining pixels were 
assigned a value of 0. This thresholding criterion is 
based on the assumption that the nipple is more heav-
ily pigmented than the surrounding  areola. Threshold-
ing allows the selection of points that are within 10% 
of the total contrast observed in nipple-areola sub-
region. The centroid of the binarized sub-region was 
computed and remapped back to the 3D mesh, giving 
the final location of the nipple on the surface. These 
procedures were performed on each of the partitioned 
halves of the torso surface, left and right, to determine 
NL and NR, respectively (Fig. 3).

Figure 3. Position of automatically detected nipples (red cross).
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Identification of sternal notch
The sternal notch is a visible dip just between the 
heads of the clavicles located along the midline at the 
base of the neck. To automatically detect the sternal 
notch, we locate the midpoint of the upper portion 
of the region at the intersection of the neck and the 
torso. To determine the point of the intersection of the 
torso with the neck, the width of the torso (xmax − xmin) 
is determined along the length (ie, moving upward 
from the breast mounds towards the neck) (Fig. 4A). 
At the point of transition from the torso to the neck, 
there is a large decrease in the width (Fig. 4A, indi-
cated as point P1). At point P1, the midpoint of width 
((xmax − xmin)/2) is computed, and the search for the 
sternal notch is restricted to a region within 10% of 
this midpoint along x-axis.

Similarly, plotting the maximum z-values along 
the midpoint of the width (determined above), against 
the y-coordinates (moving downward from the neck 
to the breast mounds), we find the vertical extent of 
search region (Fig. 4B). As seen in Figure 4B, the 
point P2 is indicative of the area where the sternal 
notch begins to dip. We define the vertical extent of 
the ROI for the sternal notch as the region 15% above 
and below the point P2. The final ROI for determina-
tion of the sternal notch is as shown in Figure 5A. The 
principal curvature of the ROI is then computed to 
locate the sternal notch. As shown in Figure 5B (blue 
area), the sternal notch exhibits low principal curva-
ture, kmin , 0. Within the region exhibiting kmin , 0, 
the point with the minimal z-value (indicating the 

dip of the sternal notch) is determined as the loca-
tion of sternal notch. Figure 5C shows the location 
of the sternal notch automatically detected using the 
proposed algorithm.

Identification of umbilicus
To identify the location of the umbilicus we used the 
Shape Index (S) curvature and the Mean curvature 
(H) values.24 We restricted our search region to the 
bottom 40% and central 30% of the torso as this rep-
resents the anatomical region where the umbilicus is 
located. The umbilicus region exhibits a high ellipti-
cal concave curvature (blue colored region, S , 0 and 
H , 0 as shown in Fig. 6A and B). Thus, we extracted 
the regions exhibiting concavity (blue color) for both 
S as well as the H curvatures. We also extracted 
the corresponding 2D color values for the same set 
of points as shown in Figure 6C. The final position of 
the umbilicus was then estimated by the centroid of 
the extracted 2D color image. This centroid point was 
remapped on to the 3D torso image giving the final 
estimate of the location of the umbilicus.

imaging system
The 3D images used in this study were captured using 
two stereophotogrammetric systems, namely, the 
DSP800 and 3dMDTorso systems manufactured by 
3Q Technologies Inc., Atlanta, GA. The latest version, 
the 3dMDTorso, has improved accuracy enabling 
capture of 3D data clouds of ∼75,000 points, whereas 
the older system, the DSP800, allows  capture of data 
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Figure 4. (A) Xmax − Xmin (diff X) against a range of Y-coordinates. P1 is the point after which the graph ceases to be constant. (B) Maximum Z along mid-
point of X, plotted against a range of Y-coordinates.
note: P2 is the initial estimate for the y-coordinate that is used to define the vertical extent of the search region for the sternal notch.
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Figure 5. (A) rOi for determination of sternal notch. (B) Principal 
Curvature image of the rOi for sternal notch. (c) Sternal notch (red 
cross) located by the algorithm.

Figure 6. Steps for umbilicus identification (A) h-plot (B) S-plot (c) Extracted umbilicus region (D) Detected umbilicus (blue dot).

clouds consisting of ∼15,000 points. Data from the 
two different systems were used to study the influ-
ence of the resolution of the 3D point cloud on the 
performance of the algorithms proposed. Each recon-
structed surface image consists of a 3D point cloud, 
ie, x, y, z coordinates, and the corresponding 2D color 
map. Only the frontal portion of the torso is imaged, 
resulting in a surface mesh which excludes the back 
region.

Study population
Women who had both native breasts (unoperated) 
were recruited for this study at The University of 
Texas MD Anderson Cancer Center under a proto-
col approved by the institutional review board. The 
subjects in the study consisted of 19 patients who 

were preparing to undergo a mastectomy and breast 
reconstruction, and 5 commissioned participants. The 
nineteen patients ranged in age from 36 to 63 years 
(51.2 ± 7.6) with body mass index (BMI) in the range 
of 20.4 to 38.6 kg/m2 (25.9 ± 4.7). Out of the nine-
teen patients, four were Hispanic/Latino and fifteen 
were not Hispanic/Latino. Eighteen patients were 
white and one was African American. Race, ethnicity, 
age, and BMI information was not available for the 
five commissioned female volunteers.

Study protocol
All the subjects signed informed consent forms, were 
taken to a private research area where they disrobed, 
and had one/two sets of images taken in the hands 
down pose.6 For the first set, which we refer to as 
the “unmarked images,” no markings were made on 
the subject prior to the image being taken. For the 
second set, prior to capturing the image, an experi-
enced research nurse manually marked the fiducial 
points directly on the subject; we denote the result-
ing picture as the “marked image.” Both unmarked 
and marked torso images were acquired using the 
DSP800 system, whereas only unmarked images were 
acquired using the 3dMDTorso system. In order to 
validate stereophotometry, direct anthropometric data 
(ie, marked images) were initially collected only on 
subjects imaged with the DSP800 system.3 Following 
validation of distance measurements using stereopho-
tometry, manual markings and measurements were 
not performed on subjects when using the upgraded 
3dMDTorso system.

Twelve images obtained using each the DSP800 and 
3dMDTorso systems were used as test data sets. In addi-
tion, another twelve images (randomly selected) from 
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patients and volunteers obtained using the DSP800 
system were used as the training data set for algo-
rithm development (data not included). Information 
regarding height and weight was abstracted from 
patient’s medical record. Four naïve observers (grad-
uate students) were briefly instructed to manually 
annotate the fiducial points on the acquired images 
(both marked and unmarked). For unmarked images, 
the four observers manually (via mouse click using 
software) identified the fiducial points on the torso 
images. Each observer selected and recorded the loca-
tion of the fiducial points. For marked images, one 
of the four observers recorded the x, y, z coordinates 
of the annotated points on the images. In addition to 
the coordinates of fiducial points, we also computed 
the contoured distances (eg, nipple-to-nipple dis-
tance) between the fiducial points using customized 
software.3,6 The contoured distance was the shortest 
geodesic path along the 3D surface of subject’s torso 
between two points and computed using the “continu-
ous dijkstra” algorithm described by Mitchell et al.25 
As discussed earlier for the marked images for the 
DSP800 system, the research nurse manually recorded 
anthropometric distance measurements (eg, nipple-
to-nipple distance) between the manually marked 
fiducial points using a tape measure. Fiducial points 
markings on the subject made by the research nurse 
and the manually measured distances between these 
points using the tape measure were designated as the 
ground truth for images from the DSP800, while for 
unmarked images from the 3dMDTorso system, man-
ually selected points on images (stereophotometry by 
observers) and the corresponding computed contoured 
(geodesic) distances were used as the ground truth.

Data analyses
We evaluated the performance of the proposed algo-
rithms by (1) comparing the 3D coordinates of fidu-
cial points, (2) comparing distances between fiducial 
points, and (3) determining the precision of fiducial 
point detection. Performance of fully automated ste-
reophotometry (automated fiducial point detection 
from marked and unmarked images with automated 
computation of geodesic distance) was compared 
against manual stereophotometry (manual annota-
tion of fiducial points on unmarked images with 
automated computation of geodesic distance), and/or 
direct anthropometry (marked images showing fiducial 

points directly annotated on the participant, and dis-
tances recorded directly on the participant using a tape 
measure).

Comparison of 3D coordinates
In order to compare the spatial coordinates or position 
of the points located via different methods  (automated 
stereophotometry, manual stereophotometry, and 
direct anthropometry), we calculated the geodesic 
distance between automatically detected coordinates 
and those annotated manually.

Comparison of geodesic distances 
between fiducial points
Typically quantitative assessments of breast morphol-
ogy include the use of distances between fiducial points 
to define appearance in terms of measures such as sym-
metry4 and ptosis.5 Thus, we evaluated the hypothesis 
that distances measured using the three methods are 
equivalent. For manual stereophotometry measure-
ments, we used the average of measurements from the 
four observers. In tests such as the Student’s t-test and 
ANOVA, the null hypothesis is that the means of the 
groups under comparison are the same, and the alter-
native hypothesis is that the group means are different. 
Thus, they cannot prove that a state of no difference 
between groups exists.26 We used equivalency testing 
to demonstrate comparability by examining whether 
mean differences between any two groups are small 
enough that these differences can be considered prac-
tically acceptable and, thus, the groups can be treated 
as equivalent. For equivalence testing, we computed 
the (1 − 2α), ie, the 90% confidence interval at a sig-
nificance level of α = 0.05 around the mean difference 
between two groups.26 In addition, we also performed 
significance testing using the nonequivalence null 
hypothesis (ie, the two one-sided tests; TOST).27

Precision of fiducial point detection
We determined the precision accuracy of the algo-
rithms by calculating relative error magnitude 
(REM),28 as the percentage of the difference between 
two measurements divided by the grand mean of the 
two sets of measurements. Precision REM scores 
less than 1% are deemed “excellent”; between 1% 
and 3.9% as “very good”; between 4% and 6.9% as 
“good”; between 7% and 9.9% as “moderate”; and 
any scores above 10% as “poor.”29
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Results
Comparison of 3D coordinates
Automated identification of nipples (NR and NL), 
sternal notch, and umbilicus was performed on 12 
(unmarked and marked) images from the DSP800, 
and 12 (unmarked) images from the 3dMDTorso 
system. For images from the DSP800, both marked 
and unmarked images from one participant exhibited 
irregularities in the surface mesh due to noise, and thus 
the images were deemed unusable due to overall poor 
quality of the image (Fig. 7). The algorithms success-
fully located the 44 nipples in 22 images (including 
both unmarked and marked) acquired from DSP800, 
and 24 nipples in 12 images from the 3dMDTorso 
system. Similarly both the sternal notch and umbilicus 
were successfully located in all the images analyzed. 
Table 1 presents a comparison of the 3D coordinates 
for the three fiducial points identified by automated 
and manual stereophotometry, and direct anthropom-
etry in terms of the average difference (ie, the distance 
between the pair of coordinates being compared). The 
overall average difference for both NL and NR was 
found to be 8.0 ± 4.4 mm for unmarked images, and 
5.8 ± 3.6 mm for marked images from the DSP800. 
It is interesting to note that automated stereopho-
tometry compares more favorably to direct anthro-
pometry than manual stereophotometry. A plausible 
explanation is that manual stereophotometry may be 
subject to operator bias, thereby introducing a larger 

 discrepancy in the identification of fiducial points. For 
images from the 3dMDTorso system, we observed 
improved results, as the image resolution is higher. 
The overall average difference for the detection of 
24 nipples from 12 unmarked images was found to be 
5.2 ± 2.4 mm.

For sternal notch identification, the aver-
age difference between automated and manual 
stereophotometry was found to be 19.4 ± 10.0 mm 
and 14.0 ± 6.5 mm, for the DSP800 and 3dMDTorso 
systems, respectively. As expected, improved identi-
fication is observed for the 3dMDTorso system due to 
its higher image resolution. Based on the average size 
of sternal notch (∼40 mm),30 any difference # 20 mm 
(50% of the mean size) indicates that the position of 
the sternal notch detected by the automated approach 
would fall well within the overall sternal notch region. 
The comparison of automated stereophotometry with 
direct anthropometry indicated an average difference 
of 22.4 ± 6.5 mm. In this case, higher variability is 
observed because manual annotation of the sternal 
notch directly on the participant’s torso was marked 
by the research nurse and the four naïve observers 
at a point on the chest surface representing the point 
midway between the left and right clavicles (and 
not within the valley of the sternal notch), whereas 
the algorithm identifies the dip (maximal inward 
projection or depth) as the sternal notch.

For umbilicus identification, the average difference 
between automated and manual stereophotometry was 
found to be 8.2 ± 6.5 mm and 4.4 ± 3.0 mm for the 
DSP800 and 3dMDTorso systems, respectively. The 
umbilicus represents the attachment site of the umbil-
ical cord and is visible as a depressed scar surrounded 
by a natural skin fold that measures about 15–20 mm 
in diameter.31,32 Typically, the surrounding navel ring 
is about 20–25 mm with an inner depressed region 
of approximately 10–15 mm. The average difference 
between the umbilicus marked by the research nurse 
(direct anthropometry) and that detected by our algo-
rithm (automated stereophotometry) was found to be 
11.5 ± 10.9 mm. This relatively larger discrepancy 
is a result of the practical difficulty associated with 
manual marking of the umbilicus on the participant. 
The umbilicus forms a depression on the skin of the 
abdomen, making it too difficult to visualize a mark 
within the center of the umbilicus on 3D images. The 
research nurse marked the umbilicus just above its 

Figure 7. Anomalies due to noise in the surface mesh are visible (see 
arrows).

http://www.la-press.com


Kawale et al

64 Biomedical Engineering and Computational Biology 2013:5

Figure 8. Annotation of the umbilicus directly on the subject by the 
research nurse.
note: The marking made by the nurse is highlighted by the black box.

Table 1. Comparison of the 3D coordinates for the three fiducial points identified by automated and manual stereophotom-
etry, and direct anthropometry in terms of the average difference (ie, the geodesic distance between the pair of coordinates 
being compared).

Type of comparison Instrument Average difference [μ ± σ (mm)]
Nipples (#) Sternal notch (#) Umbilicus (#)

Manual stereophotometry  
vs. automated

DSP800 8.0 ± 4.4 (22) 19.4 ± 10.0 (11)  8.2 ± 6.5 (11)
3dMDTorso 5.2 ± 2.4 (24) 14.0 ± 6.5 (12)  4.4 ± 3.0 (12)

Direct anthropometry  
vs. automated

DSP800 5.8 ± 3.6 (22) 22.4 ± 6.5 (11) 11.5 ± 10.9 (11)

note: The number of images (#), evaluated for each fiducial point is denoted within parentheses.

physical location (Fig. 8) to facilitate the visibility 
of the mark for subsequent direct anthropometry and 
manual stereophotogrammetric of distances, whereas 
the algorithm identified the point of maximal depres-
sion as the umbilicus resulting in the larger variance 
observed between the two methods.

Comparison of geodesic distance
We performed equivalence testing to compare the 
nipple-to-nipple (NL-NR), sternal notch-to-NL, 
sternal notch-to-NR, and sternal notch-to-umbilicus 
geodesic distances between three groups (automated 
stereophotometry, manual stereophotometry, and 
direct anthropometry). This analysis was performed 
using the marked images captured with the DSP800 
(N = 11 subjects; Table 1), since direct anthropomet-
ric data was not available for images captured using 
the 3dMDTorso system. For equivalence testing, 
the practically acceptable discrepancy (∆) for the 
NR-NL, sternal notch-to-NR, and sternal notch-to-

NL distances was defined to be 1.6 cm (∼7% of the 
average nipple-to-nipple distance). This criterion was 
based on anthropometric measurements of the diam-
eter of the nipple,33 which is estimated to be in the 
range of 1.0−2.6 cm with a mean value of ~1.8 cm. 
Thus ∆ = 1.6 cm effectively represents a practically 
acceptable value because a difference # 1.6 cm 
between the NR-NL distances measured using differ-
ent methods can be deemed negligible as it approxi-
mates a value slightly lower than the average size 
of a single nipple. Similarly, for the sternal notch-
to-umbilicus distance, we predefined ∆ = 4.5 cm 
resulting in an equivalence interval of [−4.5, 4.5]. 
The distance between the sternal notch and the umbi-
licus is about 40–45 cm; the average width of the 
sternal notch30 is ∼4.8 cm, whereas the diameter of 
the umbilicus is highly variable ranging from 1.5 to 
2.5 cm based on its shape.31 Given the normal vari-
ability in the size and shape of both the sternal notch 
and the umbilicus, we chose the smallest amount 
of practically acceptable difference between the 
distance measured using automated versus manual 
methods to be 10% of the sternal notch-to-umbilicus 
distance, ie, 4.5 cm. This analysis was performed 
using the images (N = 11) captured with the DSP800, 
resulting in a total of 11 NR-to-NL, 22 sternal notch-
to-nipple (11 from the sternal notch-to-NR and 11 
from the sternal notch-to-NL), and 11 sternal notch-
to-umbilicus distance measurements. We performed 
a pairwise comparison of the distances measured by 
automated stereophotometry, manual stereophotom-
etry, and direct anthropometry. All the three groups 
were found to be equivalent, with the confidence 
intervals falling within the equivalence interval. 
Based on TOST for both the one-sided tests, we reject 
the null hypothesis to confirm equivalence within the 
specified ∆ value (P-values in Table 2).
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Table 3. Precision analysis of automated stereophotom-
etry with reference to manual stereophotometry.

Distance (auto vs. manual) Total ReM Precision
NL-Nr 11 1.9% “Very good”
Sternal notch-to-nipple 22 3.0% “Very good”
Sternal notch-to-umbilicus 11 1.8% “Very good”

Table 2. Summary of equivalence testing.

Distance Groups 90% cI TOST H0 P-value

Nr-NL (N = 11) Auto vs. direct −1.5674, 0.4420 μAuto-μDirect # −1.6 0.0454
μAuto-μDirect $ 1.6 0.0015

Manual vs. direct −1.3605, 0.5969 μMan-μDirect # −1.6 0.0239
μMan-μDirect $ 1.6 0.0022

Auto vs. manual −0.4685, 0.1067 μAuto-μMan # −1.6 0.0000
μAuto-μMan $ 1.6 0.0000

Sternal notch-to-  
nipple (N = 22)

Auto vs. direct 0.5330, 1.5143 μAuto-μDirect # −1.6 0.0000
μAuto-μDirect $ 1.6 0.0281

Manual vs. direct 0.0869, 0.7199 μMan-μDirect # −1.6 0.0000
μMan-μDirect $ 1.6 0.0000

Auto vs. manual 0.2242, 1.0163 μAuto-μMan # −1.6 0.0000
μAuto-μMan $ 1.6 2.0E-04

Sternal notch-to-  
umbilicus (N = 11)

Auto vs. direct −1.5674, 0.4420 μAuto-μDirect # −4.5 0.0000
μAuto-μDirect $ 4.5 0.0219

Manual vs. direct −1.3605, 0.5969 μMan-μDirect # −4.5 0.0000
μMan-μDirect $ 4.5 1.0E-04

Auto vs. manual −0.4685, 0.1067 μAuto-μMan # −4.5 0.0000
μAuto-μMan $ 4.5 0.0000

Precision analysis
Finally, we determined the precision of the automated 
algorithm by calculating the REM for the NR-NL, ster-
nal notch-to-nipple, and sternal notch-to-umbilicus 
distances measured using automated and manual ste-
reophotometry. We performed this analysis only for 
the 3dMdSystem as the DSP800 system is no lon-
ger commercially available. REM was computed by 
dividing the difference between two measurements 
by the grand mean of both the measurements together. 
Table 3 presents the REM values. These results vali-
date the effectiveness of automated stereophotometry 
for the analysis of breast morphology.

Discussion
Breast morphology can be quantified by geometric 
measurements made on 3D surface images. Inherent 
to all geometric measures is the identification of fidu-
cial points. For example, using the nipples and sternal 
notch, symmetry is often computed as a ratio of the 

distance between the nipples and the sternal notch.6 
In order to facilitate automated analysis, as a first step 
in this study we describe the automated identifica-
tion of three key fiducial points, namely the right and 
left nipples, sternal notch, and umbilicus. We pres-
ent a novel approach for automated identification of 
fiducial points in 3D images that are based on sur-
face curvature. An advantage of using curvature, as 
a primary feature for the detection of fiducial points 
is that it is invariant to translation and rotation of the 
surface,34 thereby making the algorithms applicable 
to 3D images of the subject captured at any pose.

Performance of the algorithms is validated by 
comparing the fully automated approach to manual 
stereophotogrammetry (average of 4 observers), 
and to direct anthropometry, using two parameters: 
(1) the spatial location in terms of the (x, y, z) coordi-
nates, and (2) the distance measured between fiducial 
points. This evaluation methodology allows us to test 
the reliability of the automated approach in terms of 
both the actual position of the fiducial points and the 
practical measurement of the distances that are clini-
cally important. Finally, the precision of fiducial point 
detection is determined in terms of the REM.28

We have presented data acquired using two imag-
ing systems from 3Q Technologies Inc.: the DSP800, 
an early generation model, and the 3dMDTorso, the 
latest instrument from the company. We were required 
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to include the data from the DSP800 as correspond-
ing direct anthropometric data from subjects was only 
available for this data set. The automated approaches 
presented were validated by comparison to direct 
anthropometry using images from the DSP800, but 
the final precision values were computed using images 
captured with the latest generation equipment which 
is current and affords improved imaging capabilities 
in terms of both speed and resolution.

For the detection of the fiducial points, we recorded 
a mean difference of #5 mm between manual stereo-
photometry and the proposed automated algorithms 
for the identification of the position of the nipple 
(5.2 ± 2.4 mm) and the umbilicus (4.4 ± 3.0 mm) for 
images acquired by the 3dMDTorso system, whereas 
the mean difference for the identification of the ster-
nal notch (14.0 ± 6.5 mm) was found to be #15 mm. 
A plausible explanation for the relatively larger dif-
ference observed for the sternal notch in comparison 
to the nipple or umbilicus, is the physical size/extent 
of the individual fiducial points. The average size of 
the nipple and umbilicus31,33 is ∼20 mm, whereas the 
width of the sternal notch30 is ∼40 mm. Due to the 
larger area of the sternal notch, higher variability is 
expected in its manual annotation, which accounts 
for the larger difference observed between auto-
mated and manual stereophotometry. We have also 
previously shown that inter-observer variability6 for 
manual annotation of the sternal notch on 3D torso 
images is in the range of 7.8 to 9.4 mm. It should also 
be noted that when comparing the results of auto-
mated detection with manual annotation, a critical 
factor is the experience of the user who must rely on 
palpation to ascertain the location of non-bony fidu-
cial points such as the sternal notch. Thus user bias 
in the manual annotation of the sternal notch may 
strongly influence the variability observed. Overall 
the proposed algorithms are able to identify the posi-
tion of the three fiducial points within a distance that 
is half the size of the fiducial point itself, ie, differ-
ence # 5 mm for nipples and umbilicus (mean size 
10 mm), and difference # 15 mm for the sternal 
notch (mean size 40 mm). This indicates that the posi-
tion of the fiducial points detected by the automated 
approach fall well within the overall physical region 
of the fiducial points. As expected, the performance 
of the algorithm when compared to manual stereo-
photometry for images from the DSP800 is lower, 

ie, difference # 8 mm for the nipple and umbilicus, 
and difference # 20 mm for the sternal notch. This 
is an inherent effect of the lower resolution of the 
DSP800 system. Overall, our results indicate that 
the proposed algorithms were effective in detecting 
the position of the nipples, sternal notch, and umbili-
cus in 3D torso surface scans.

The comparison of automated stereophotometry 
with direct anthropometry for identification of the 
position of the fiducial points resulted in a difference 
of approximately 6 mm, 22 mm, and 12 mm for the 
nipples, sternal notch, and umbilicus, respectively. 
These values are slightly high, particularly for the 
umbilicus, for the following reasons. First, the reso-
lution of the DSP800 system is low (approximately 
one third that of the 3dMDTorso). Second, a key 
factor contributing to this difference is the discrep-
ancy in the marking of these points on the subject 
by the research nurse and the criteria on which the 
automated detection was implemented. For example, 
the umbilicus was marked on subjects just above the 
umbilicus (Fig. 8) since it is difficult to visualize an 
annotation marked within the umbilicus (i.e. at its 
center) in 3D images. The algorithm, on the other 
hand, selected the centroid within the navel ring that 
exhibited the maximal dip. Similarly, the sternal 
notch was automatically identified as point exhibiting 
the maximal dip in the valley between the two clavi-
cles, whereas direct annotation was done at the point 
on the chest surface representing the point midway 
between the left and right clavicles. In contrast, the 
nipple has several distinct structural characteristics 
that make its manual identification relatively easier 
and, accordingly, we observed a smaller difference 
when comparing automated stereophotometry with 
direct anthropometry for nipple identification. Fur-
thermore, nipples can be classified as everted, flat, 
or inverted based on their shape. Everted nipples are 
most common and appear as raised tissue in the cen-
ter of the areola, whereas inverted nipples appear to 
be indented in the areola and flat nipples appear to 
have no shape or contour. In this study, 77% of the 
nipples were everted, 14% were flat and 9% were 
inverted. These findings suggest that the proposed 
algorithm can identify everted, flat, and inverted nip-
ples but further evaluation (ie, a larger sample popu-
lation) is needed to statistically evaluate the efficacy 
of algorithm to detect all nipple shapes.
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Another important aspect with manual annotation 
of fiducial points (such as the sternal notch) on sub-
jects is that it is typically performed via palpation of 
the skin and the underlying tissue and bone structures 
and thus the BMI of the subject can influence the 
markings. Figure 9 presents a plot of the difference 
between the manually and automatically annotated 
points versus the BMI for the 18 subjects (BMI was 
unavailable for the commissioned participants). As 
seen in the figure, the largest difference between the 
two approaches is observed for the sternal notch, but 
the difference for the nipples and umbilicus are fairly 
equivalent. Most importantly, we did not notice any 
differences when comparing the normal (39%), over-
weight (44%), and obese (17%) subjects. The ability 
of the automated algorithm was found to be equally 
effective in identifying fiducial points in normal 
(BMI = 18.5–24.9), overweight (BMI = 25–29.9), and 
obese (BMI $ 30) subjects. This may be attributed to 
the primary use of curvature as a feature to detect the 
points. Even in obese subjects, the subtleties of sur-
face curvature for the anatomical landmarks remain 
and can be computationally measured to enable 
effective detection of the fiducial points. These subtle 
curvature changes may not be easily discernable dur-
ing manual stereophotometry using images or when 
applying direct palpation on the subject.

Since an important purpose of identifying fiducial 
points is to facilitate quantitative distance measure-
ments, we performed a pairwise comparison of the 
distances measured by automated stereophotometry, 

manual stereophotometry, and direct anthropometry. 
All of the three groups were found to be equivalent 
with the confidence intervals falling within the equiv-
alence interval (Table 2). This suggests that auto-
mated identification of fiducial points can be used to 
facilitate robust quantitative assessment of distances 
from torso images. Finally, the REM for automated 
detection of all the points was found to be within the 
interval of 1%–3.9% indicating very good precision.

In summary, the algorithms presented satisfacto-
rily identified all the fiducial points. This is the first 
attempt for the automated detection of fiducial points 
on 3D images for breast reconstructive surgery and 
should not only benefit the objective assessment of 
breast reconstruction but can also assist us in future 
research needed to better understand the relationship 
between objective outcomes of reconstruction and 
patient body image or subjective perception of cos-
metic outcomes. Our findings can also be extended 
to the task of detecting landmark points in other areas 
such as for facial reconstruction surgeries, and other 
surgeries on human torso. The curvature analysis used 
in our algorithms can be easily used for determining 
properties such as symmetry, curvature, and ptosis of 
the breasts, which are important characteristics used 
for defining the breast aesthetics.
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