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Abstract: Converting information contained in natural language clinical text into computer-amenable structured representations can 
automate many clinical applications. As a step towards that goal, we present a method which could help in converting novel clinical 
phrases into new expressions in SNOMED CT, a standard clinical terminology. Since expressions in SNOMED CT are written in terms 
of their relations with other SNOMED CT concepts, we formulate the important task of identifying relations between clinical phrases 
and SNOMED CT concepts. We present a machine learning approach for this task and using the dataset of existing SNOMED CT rela-
tions we show that it performs well.
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Introduction
Many clinical applications, including clinical deci-
sion support, medical error detection, answering 
clinical queries, generating patient statistics, and bio-
surveillance, would be automated if the clinical infor-
mation locked in natural language clinical text could 
be converted into computer-amenable structured 
representations. To enable this, a long-term goal is 
to convert entire natural language clinical documents 
into structured representations. As an important step 
in that direction, in this paper we focus on a task that 
can help in converting clinical phrases into a struc-
tured representation. Systemized Nomenclature of 
Medicine—Clinical Terms (SNOMED CT)1 is a stan-
dardized representation for clinical concepts whose 
extensiveness and expressivity makes it suitable for 
precisely encoding clinical phrases. A concept in 
SNOMED CT is defined in terms of its relations with 
other concepts, and SNOMED CT currently includes 
around 400,000 pre-defined clinical concepts. If a 
natural language clinical phrase represents a concept 
which is already present in SNOMED CT then the 
conversion process reduces to a matching function; 
some previous work2,3 as well as existing SNOMED 
CT browsers such as CliniClue,a can automatically 
perform such matching. Our focus in this paper is 
instead on the task of creating new SNOMED CT 
concepts for clinical phrases for which no SNOMED 
CT concept already exists.

Since new concepts in SNOMED CT can be cre-
ated by identifying their relations with existing 
SNOMED CT concepts, we formulate the important 
task of identifying relations between clinical phrases 
and SNOMED CT concepts. That is, given a clinical 
phrase (for example, “acute gastric ulcer with perfora-
tion”) and a description of a SNOMED CT concept 
(for example, “stomach structure”), whether a particu-
lar kind of relation (for example, “finding site”) is pres-
ent between them or not (in this example it is present). 
To the best of our knowledge, there is no other work 
which has attempted this type of relation identification 
task. Note that this task is very different from the rela-
tion extraction task.4 In that task, two entities are given 
in a sentence and the system determines whether the 
two entities are related or not mostly based on what 

the sentence says. In contrast, there is no sentence in 
this task and the presence of a relation is determined 
entirely based on the two entities.

Since several thousand relations already exist in 
SNOMED CT, we used these existing relations to 
form our dataset. Both training and test relation exam-
ple pairs were obtained from this dataset. To identify 
each kind of relation, we separately trained a machine 
learning method. We employed the Support Vector 
Machine (SVM)5 machine learning method in combi-
nation with a new kernel that we specifically designed 
for this relation identification task. The experimental 
results show that the trained system obtains a good 
accuracy.

Such a system could be used for creating precise 
SNOMED CT expressions for clinical phrases. For 
example, “acute gastric ulcer with perforation” could 
be represented as an “acute gastric ulcer”, whose 
finding site is “stomach structure” and whose associ-
ated morphologies are “perforated ulcer” and “acute 
ulcer” (this is also shown in Table 1 under phrase (c)). 
In this example, “is a”, “finding site” and “associated 
morphology” are the identified relations, and “acute 
gastric ulcer”, “stomach structure”, “perforated ulcer” 
and “acute ulcer” are already present concepts in 
SNOMED CT. This representation would be obtained 
by efficiently testing the phrase for all the relations 
and with all the existing SNOMED CT concepts.

Background and Related Work
Realizing the importance of unlocking the clini-
cal information present in free-text clinical reports, 
researchers started working on automatically convert-
ing them into structured representations years ago. 
Previous systems to convert natural language clini-
cal information into structured representations, such 
as the Linguistic String Project6,7 MedLEE,8,9 and 
Menelas,10,11 were manually built by linguistically and 
medically trained experts over a long course of time. 
The builders manually encoded how different natural 
language patterns should convert into the target struc-
tured representations. They also developed their own 
suitable structured representations12,13 which restrict 
their systems from being useful elsewhere where a 
different type of structured representation is in use. 
Although we are limiting ourselves to clinical phrases 
instead of full sentences at this stage, we use machine 
learning techniques to minimize the manual cost of ahttp://www.cliniclue.com/
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Table 1. Some examples of natural language clinical phrases and their corresponding SNOMeD CT expressions.

natural language clinical phrase snOMeD cT expression
(a) severe pain in the stomach 116680003 |is a| = 22253000 |pain|

  {363698007 |finding site| = 69695003 | stomach structure |,
  272141005 |severity| = 24484000 |severe| }

(b) neoplasm of right lower lobe of lung 116680003 |is a| = 126713003 |neoplasm of lung|
 {116676008 |associated morphology| = 108369006 |neoplasm|,
    363698007 |finding site| =
   266005 |structure of right lower lobe of lung|}

(c) acute gastric ulcer with perforation 116680003 |is a| = 95529005 |acute gastric ulcer|
  {363698007 |finding site| = 69695003 | stomach structure |,
  116676008 |associated morphology| = 26317001 |acute ulcer|,
  116676008 |associated morphology| = 91182001 |perforated ulcer|}

(d) family history of aplastic anemia 116680003 |is a| 243796009 |situation with explicit context|
  {246090004 |associated finding| =
  306058006 |aplastic anemia|
   {408732007 |subject relationship context| =
    303071001 |person in the family|} }

notes: The numbers are  the SNOMED CT concept and  relation  identifiers and  their natural  language descriptions are shown  for human  readability. 
The “=” character indicates relation kind on its left side and the related concept on its right side.

building such a system. For the structured representa-
tion, we are using the standardized clinical terminol-
ogy, SNOMED CT, which is already widely in use.

SNOMED CT1 is the most comprehensive clinical 
terminology in the world today and is widely used in 
electronic health record systems for documentation 
purposes and reporting.14 Its extensive content and 
expressivity makes it suitable for precisely encoding 
clinical concepts. Not only does it specify approxi-
mately 400,000 pre-defined medical concepts and 
relations between them, but also its compositional 
grammar15 can be used to build new expressions that 
represent new medical concepts in terms of the exist-
ing concepts. SNOMED CT has been developed in 
the description logic formalism16 which also makes 
it suitable for automated reasoning. For all these rea-
sons, we think that it is the best structured representa-
tion into which natural language clinical phrases may 
be converted. There are browsers and tools available 
that can help users search SNOMED CT as well as 
interactively build new expressions, such as CliniClue. 
Lee et al17 presented a method for manually encoding 
text with SNOMED CT. There also has been recent 
work in automatically mapping text to SNOMED 
CT pre-defined concepts2,3,18 or Unified Medical 
Language System (UMLS) pre-defined concepts.19 
However, these systems at best do an approximate 
match from clinical phrases to pre-defined con-
cepts, also known as pre-coordinated expressions. 

In contrast, the system presented in this paper can 
help to automatically map natural language clinical 
phrases which do not match any pre-defined concepts 
into their semantically equivalent new SNOMED CT 
expressions. The new SNOMED CT expressions are 
also known as post-coordinated expressions. We did 
a preliminary analysis of the i2b2 2010 clinical text 
corpus20 and found that out of around 8300 unique 
annotated concepts (noun phrases) in it, only around 
1600 were pre-defined concepts in SNOMED CT. 
This shows that new phrases are abundantly present 
in clinical text and hence the ability to convert them 
into new SNOMED CT expressions is important.

Identifying snOMeD cT Relations
Formulation of the task
Table 1 shows some examples of clinical phrases 
and their associated SNOMED CT expressions. The 
expressions are shown using the syntax of SNOMED 
CT’s compositional grammar.15 The numbers are the 
unique SNOMED CT concept and relation identifiers. 
Each concept in SNOMED CT has at least one natural 
language description. A description for each concept 
and relation is shown within vertical bars for human 
readability. The “=” character denotes relation kind 
on its left side and the related concept on its right 
side. The “is a” relation identifies the basic concept 
a clinical phrase represents and this is then further 
qualified using more relations which are shown in 

http://www.la-press.com


Kate

32 Biomedical Informatics Insights 2013:6 (Suppl. 1)

“{}” brackets. Note that there could be multiple rela-
tions of the same kind in an expression, for example, 
in phrase (c) the “associated morphology” relation 
occurs twice. Similarly, even the “is a” relation can 
occur more than once because SNOMED CT allows 
multiple inheritance of concepts. There is more than 
one way to write an expression in SNOMED CT, 
ranging from close-to-user form to normal form.1 
We have shown close-to-user forms in Table 1 which 
are simpler and easier for humans to understand. For 
the record, the concepts for phrases (b) and (c) are 
already present in the current version of SNOMED 
CT but the concepts for phrases (a) and (d) are not 
present.

As it can be observed, relations are the basis for 
forming SNOMED CT expressions. Hence, in this 
paper, we formulate the task of identifying relations 
between clinical phrases and SNOMED CT concepts. 
A new SNOMED CT expression could then be formed 
for a new clinical phrase by identifying its relations 
with existing concepts. We present a machine learn-
ing method for training a separate relation identifier 
for each of the relations present in SNOMED CT (for 
example, “is a”, “finding site”, etc.). Since every con-
cept in SNOMED CT has a basic type (for example, 
“substance”, “disorder”, “body structure”, etc.), and 
the basic type can also be determined for every clini-
cal phrase (either directly from the context it is used 
in or by using a trained classifier),b we treat each rela-
tion with different types separately. For example, the 
“finding site” relation that relates “disorder” to “body 
structure” is treated separately from the “finding site” 
relation that relates “finding” to “body structure”. The 
first column of Table 2 shows the most frequent rela-
tions in SNOMED CT along with their types which 
we used in our experiments.

Since several hundred thousand concepts and 
the relations between them are already present in 
SNOMED CT, we decided to use them as our dataset 
for training and testing our method. Every concept 
in SNOMED CT has a unique identifier and is also 
given a unique fully specified natural language name. 
In addition, it may have several natural  language 
descriptions which are essentially a few different 
ways of expressing the same concept. To create our 

dataset, for every kind of relation, we randomly took 
some pairs of related concepts as positive examples 
and some pairs of unrelated concepts as negative 
 examples. For each of the two concepts in a rela-
tion example, we randomly selected one descrip-
tion (phrase) out of all the descriptions it may have 
(including its fully specified name). We did so because 
a clinical phrase may not always be a fully specified 
name and the method should also be trained to work 
with alternate descriptions. Then the task of relation 
identification is: given the two descriptions of two 
concepts of particular types, determine whether they 
are related by a particular relation or not. We are not 
aware of any other work that has considered such a 
relation identification task for SNOMED CT.

Machine learning approach for the task
For every kind of relation along with its types, we 
built a separate relation identifier. It may be noted that 
sometimes a presence of a relation can be identified 
simply by detecting overlap between the words in the 
two descriptions. For example, for the phrase (a) in 
Table 2, the word “pain” overlaps, hence “severe pain 
in the stomach” is a “pain”. Similarly for the phrase (b), 
“neoplasm of right lower lobe of lung” is a  “neoplasm 
of lung”. However, this is not the case for many other 
relations. For example, the phrase (c) does not con-
tain “stomach structure” which is its “finding site”. 
Hence besides mere overlap, the relation identifier 
system should be able to use several other clues. In 
the previous example, it should know that “gastric” 
generally means related to “stomach structure”. As it 
will be a formidable task to manually encode every 
piece of such knowledge, we use machine learning 
approach so that the system would automatically learn 
this kind of knowledge from training examples.

Another kind of knowledge a relation identifier 
would need is what words in the clinical phrase indi-
cate what relations. For example, the word “in” in a 
“disorder” concept would usually indicate a  “finding 
site” relation to a “body structure” concept. The 
machine learning system is expected to also learn 
this kind of knowledge from training examples. In 
our experiments, we used a baseline for comparison 
that uses only the amount of overlap for identifying 
relations.

We decided to use SVM5 as our learning algo-
rithm because it has been shown to work well with 

bAlternatively, the type of a clinical phrase could also be identified by first deter-
mining the “is a” relation.
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thousands of features and hence has been widely 
used in natural language processing tasks which often 
involve use of several thousand features, for example, 
words and their combinations. An additional advan-
tage of SVM is that one can implicitly specify poten-
tially infinite number of features without actually 
enumerating them by defining a similarity function 
between the examples, called a kernel. This is also 
known as the kernel trick. For our relation identifi-
cation task, we designed a specific kernel to enable 
the SVM learner to learn the kinds of knowledge it 
needs to learn which were mentioned earlier. It also 
incorporates word overlap which is sometimes a good 
indication of a relation.

The kernel is defined as follows. Let A and B be 
two examples. Let c1

A and c2
A be the descriptions of 

the first and the second concepts of the example A 
respectively. Thus, if an example has “acute gastric 
ulcer with perforation” as the description of the first 
concept and “stomach structure” as the description of 
the second concept then these two respective phrases 
will be c1

A and c2
A. Similarly, let c1

B and c2
B be the 

descriptions of the first and the second concepts of the 
example B respectively. Then the kernel K(,) between 
examples A and B is defined as:

 

K A B sim c c sim c c
sim c c sim c c

A B A B

A A B B
( , ) ( , )* ( , )

( , )* ( , )
=

+
1 1 2 2

1 2 1 2

++ sim cw c c cw c cA A B B( ( , ), ( , ))1 2 1 2
 (1)

where sim(,) is the similarity function. In our experi-
ments, we defined similarity as the number of com-
mon words. We also tried defining it as the number of 
common word subsequences,21,22 but it did not result 
in any gain in the performance. The cw(,) function 
computes the set of common words between the two 
phrases. Note that the above is a well-defined kernel 
because products and summations of kernels are also 
well-defined kernels.23 The kernel is normalized by 
dividing it by the square-root of K(A,A) *K(B,B).

We now explain this kernel and what its implicit 
features are. The first term of the addition is a prod-
uct of the number of common words between the 
first concepts of the two examples and the second 
concepts of the two examples. This essentially 
counts the number of common word-pairs present in 
the two examples such that in each example the first 
word is present in the first concept and the second 

word is present in the second concept. For example, 
if both examples have “gastric” present in the first 
concept and “stomach” present in the second con-
cept, then it will count “gastric, stomach” as a fea-
ture present in both the examples. Thus this kernel 
term implicitly captures pairs of words, one in each 
concept, as features. Based on these features, the 
learner may learn what combinations of word pairs 
indicate a relation.

The second term simply treats the number of 
words overlapping between the two concepts of an 
example as a feature. The product then indicates how 
similar the two examples are along this feature. As 
was indicated earlier, overlap is an important feature 
because often the descriptions of the related concepts 
have overlap of words. While this term considers the 
number of overlapping words between the two con-
cepts as a feature, it ignores the actual words that 
overlap. Overlap of certain words could be a good 
indicator of a relation present as opposed to overlap 
of some other words. For example, if the word “pain” 
is common between the two concepts then it is a good 
 indication of “is a” relation, ie, a particular pain is a 
type of pain. In order to allow the learning process to 
learn such knowledge from the training data, the third 
term implicitly captures words common between an 
example’s two concepts as features. The cw(,) func-
tion computes the set of common words for each of 
the two examples and then the sim(,) function counts 
how many of these common words are common 
across the two examples.

In the results we show the contribution of each of 
the three kernel terms through an ablation study. In 
general, the terms could be weighed differently, how-
ever, presently we did not experiment with different 
weights and we simply let SVM learn appropriate 
weights as part of its learning process.

experiments
In this section, we describe our experiments on 
the relation identification task for SNOMED CT 
relations.

Methodology
As was noted earlier, we formed our dataset utilizing 
the existing relations present in SNOMED CT. There 
are hundreds of different kinds relations present in 
SNOMED CT, some of them are more important than 

http://www.la-press.com


Kate

34 Biomedical Informatics Insights 2013:6 (Suppl. 1)

others (examples of some of the unimportant rela-
tions are “duplicate concept” and “inactive concept”). 
We report our results on the 14 important and most 
frequent relations, each of which had more than 
10,000 instances. The “is a (procedure, procedure)” 
relation had the highest number of 93,925 instances. 
Since we had enough examples to choose our train-
ing and test examples from, instead of doing standard 
cross-validation, we ran five folds and in each fold 
we randomly selected 5000 training and 5000 test 
examples. Training beyond 5000 examples would 
lead to memory problems, but as our learning curves 
showed, the learning would generally converge by 
5000 training examples.

For each relation, positive examples for both 
training and testing were randomly selected with-
out replacement as pairs of concepts for which the 
relation is known to exist. Then equal number of 
negative examples were randomly selected without 
replacement as pairs of concepts of the required types 
which are not related by that relation. There was no 
overlap between training and testing datasets. We 
employed SVM using the LibSVM packagec along 
with the user-defined kernel as defined in the previ-
ous section.

We measured precision and recall. Precision is the 
percentage of correctly identified relations out of all 
the identified relations. Recall is the percentage of 
correctly identified relations out of all the relations 
present in the test set. The evaluation was done for the 
combined output of all the folds. SVM can also give 
the confidences for its classification decisions through 
Platt’s method.24 We used these confidences to mea-
sure precision and recall at every confidence level 
and plotted precision-recall curves. We also measured 
the maximum F-measure across the  precision-recall 
curves, where F-measure is the harmonic mean of 
precision and recall.

We compared our approach with a baseline method 
which only uses the amount of word overlap between 
the two concepts to identify a relation between them. 
It is not a learning-based approach. It outputs its con-
fidence on a relation as the degree of overlap between 
the two concepts (ie, the number of common words 
after normalization for word lengths). We call this 
baseline the similarity baseline. Note that the similar-
ity scores are already included as features in the ker-
nel used in the learning approach. Since there were 

equal number of positive and negative examples, the 
accuracy of a random classifier would be 50%.

results and discussion
Table 2 shows the maximum F-measures obtained 
across the precision-recall curves for the similarity 
baseline and for the trained system for the 14 most fre-
quent relations in SNOMED CT. It may be first noted 
that the baseline does well on a few of the relations, 
obtaining close to 80% or more on five relations. This 
shows that the similarity baseline is not a trivial base-
line although on some other relations it does not do 
well at all. Note that 66.67% F-measure can be also 
obtained by a random classifier by calling every rela-
tion as positive which would result in 50% precision 
and 100% recall. The learned approach does sub-
stantially better than the baseline on every relation. 
On nine of the 14 relations it exceeds the baseline’s 
performance by more than 10% (absolute). On the 
five remaining relations it exceeds by more than 5%. 
The performance is better than 90% on five relations 
and better than 80% on 13 relations. The only rela-
tion on which the performance is not high is the “is a 
(substance, substance)” relation. We found that this is 
mostly because a lot of new names are used for sub-
stances and from the names themselves it is not easy to 
identify that a particular substance is a type of another 
substance, for example, “lacto-n tetrasylceramide, 
type 2 chain” is a “blood group antigen precursor”.

Figure 1 shows the entire precision-recall curves 
obtained using the trained system and the similarity 
baseline for the “is a (procedure, procedure)” relation. 
We are not showing these graphs for other relations 
due to space limitations, but this graph shows the 
typical curves obtained by the two methods. It may 
be noted looking at the lower part of the recall side 
that there are examples on which the relation can be 
identified with high precision even by the similarity 
baseline. But the learned approach continues to obtain 
high precision even on the high recall side when the 
precision of the baseline drops off. Figure 2 shows the 
learning curves for the same relation for the maximum 
F-measures on the precision-recall curves. Since the 
baseline method is not a learning method, its learn-
ing curve is horizontal. It can be seen that the learning 

chttp://www.csie.ntu.edu.tw/∼cjlin/libsvm/
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method has almost converged and more training 
examples are unlikely to improve the performance 
substantially. It may also be noted that even with a few 
hundred training examples, the trained system already 
does much better than the baseline.
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Figure 1. Precision-recall curves for the “is a (procedure, procedure)”  relation 
obtained using the similarity baseline and using the trained system.

Table 3. Ablation results showing contributions of the 
 different types of implicit features corresponding to the 
 different terms of the kernel in equation 1.

system Average maximum 
F-measure (%)

Baseline 72.39
Without word-pairs features 73.89
Without similarity score feature 84.27
Without common words features 85.54
All features 87.28

notes: The numbers are the averages of the maximum F-measures 
across the 14 relations. Without word-pairs features, without similarity 
score feature and without common word features correspond to omitting 
first, second and third terms respectively from Equation 1.
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Figure 2. Learning curve for the “is a (procedure, procedure)” relation 
obtained using the trained system.
note: The similarity baseline is shown for comparison.

In Table 3 we show the contributions of different 
types of implicit features captured through the differ-
ent terms of the kernel in Equation 1. The numbers 
are the averages of the maximum F-measures across 
the 14 relations. Without word-pairs features, without 
similarity score feature and without common word 
features correspond to omitting first, second and third 
terms respectively from Equation 1. It can be seen that 
all three types of features contribute towards improv-
ing the performance. However, the word-pairs are the 
most important features without which the perfor-
mance drops to only a little better than the baseline.

Future Work
There are several avenues for future work.  Currently, 
our method does not do any syntactic analysis of 
the phrases. Clearly the syntactic structure of the 

Table 2. Maximum F-measures over the precision-recall 
curves obtained by the similarity baseline and by the trained 
system for the most frequent SNOMeD CT relations.

Relation similarity  
baseline  
(%)

Trained  
system  
(%)

Associated morphology (disorder,  
morphologic abnormality)

66.67 84.95

Causative agent  
(disorder, substance)

82.94 90.98

Finding site  
(disorder, body structure)

66.67 87.13

Finding site  
(finding, body structure)

66.67 90.35

has active ingredient  
(product, substance)

85.92 91.38

Is a (body structure, body  
structure)

79.82 90.24

Is a (disorder, disorder) 78.18 86.00
Is a (finding, finding) 78.98 88.18
Is a (organism, organism) 66.67 82.20
Is a (procedure, procedure) 73.49 87.87
Is a (product, product) 67.48 88.52
Is a (substance, substance) 66.67 74.30
Part of (body structure,  
body structure)

66.67 90.56

Procedure site direct  
(procedure, body structure)

66.67 89.26
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phrase indicates the presence of relations with other 
concepts. Hence it will be potentially useful infor-
mation to exploit. One may do this by using syntac-
tic tree kernels25,26 to compute similarities between 
descriptions. Another way to improve the perfor-
mance could be by incorporating the hierarchical 
structure of concepts in SNOMED CT as additional 
features. This may help the learner generalize 
across concepts at similar places in the hierarchy. 
In future, we also want to evaluate the performance 
of our method on  clinical phrases which are not in 
SNOMED CT. This will, however, require manual 
evaluation by experts which may be doable only on 
a small scale.

In future, we plan to apply the SNOMED CT rela-
tion identification method to convert clinical phrases 
into their SNOMED CT expressions. We have already 
done some preliminary experiments towards this end. 
In order to identify relations for a new phrase, the 
system needs to check every relation with every other 
concept. Given that there are around 400,000 concepts 
in SNOMED CT, doing this is computationally very 
intensive (testing an example in SVM requires com-
puting kernels with all the training examples which 
have non-zero support vectors). However, we tested 
the idea on a subset of SNOMED CT with around 
3000 concepts whose all relations are preserved 
within the subset. We obtained maximum F-measures 
for the relation identification task in this setting in the 
range of 10%–20%. But given that this test dataset 
contains a few thousand negative examples for every 
positive example (random guessing will perform 
less than 1%), this is in fact not a bad performance, 
although it needs to be improved. One way to improve 
will be to design a top level classifier that will filter 
out several obvious negative examples. Some of the 
SNOMED CT expressions require nested use of rela-
tions, for example, the expression for the phrase (d) 
in Table 1. In order to compositionally build a nested 
SNOMED CT expression, in future one may leverage 
ideas from semantic parsing,27 the task of converting 
natural language utterances into complete meaning 
representations.

conclusions
We formulated the task of identifying SNOMED CT 
relations as a means for converting natural language 
clinical phrases into SNOMED CT  expressions. 

We presented a machine learning approach for 
 identifying relations and also introduced an appropri-
ate kernel for the task. Experimental results showed 
that the trained system obtains a good performance 
on the relation identification task.
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