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Abstract: Exposure to environmental stressors such as cigarette smoke (CS) elicits a variety of biological responses in humans, includ-
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pulmonary inflammatory processes. The IPN model predicted decreased epithelial cell barrier defenses and increased mucus hyperse-
cretion in human bronchial epithelial cells, and an attenuated pro-inflammatory (M1) profile in alveolar macrophages following expo-
sure to CS, consistent with prior results. The IPN provides a comprehensive framework of experimentally supported pathways related 
to CS-induced pulmonary inflammation. The IPN is freely available to the scientific community as a resource with broad applicability 
to study the pathogenesis of pulmonary disease.
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Introduction
Inflammation can be triggered by various insults, 
such as infection, tissue injury, and cellular stress. 
Even though it can lead to pathological consequences, 
acute inflammation itself is not a disease. It is merely 
the organism’s response to these triggers to maintain 
tissue homeostasis, and depending on the trigger, out-
comes vary widely.1

Pulmonary cells are exceptionally susceptible to 
the harmful effects of environmental insults, includ-
ing cigarette smoke (CS). CS is a complex mixture 
estimated to contain over 5,000 unique chemical 
species.2–4 Chronic exposure to CS has been linked to 
the development and progression of a variety of lung 
diseases, such as chronic obstructive pulmonary dis-
ease (COPD), including emphysema and bronchitis.5,6 
Although the specific sequence of events leading 
to pathology are under active investigation, recent 
studies have illuminated the central contribution of 
inflammatory responses to CS-induced diseases.7–10 
In addition to COPD, chronic inflammation has also 
been named as one of the hallmarks of cancer,11 and 
COPD and lung cancer are believed to share common 
mechanisms.12 While several inflammatory processes 
are linked to the non-resolving “chronic inflamma-
tion phase” that is typical of the progressive phase of 
COPD, there is a subset of inflammatory processes 
that occur in an undiseased lung upon environmen-
tal exposures, and that will resolve after the tissue 
has recovered from the insult. These processes are of 
importance for understanding the “normal” inflam-
matory mechanisms that, when overwhelmed, may 
lead to self-perpetuating “chronic” inflammation.

Exposure to CS has been reported to induce or 
potentiate inflammation through a variety of mecha-
nisms involving multiple cell types.13–15 Airway and 
alveolar epithelial cells, resident lung macrophages, 
and dendritic cells are the initial cellular targets of 
pulmonary CS exposure, and in response, these cells 
produce potent chemoattractants that recruit inflam-
matory cells from the systemic circulation, notably 
neutrophils, macrophages, and T-cells, into the lung 
microenvironment.13,15,16 Chronic exposure to CS can 
lead to increased airway cell damage/death, which 
further exacerbates pulmonary inflammation through 
the release of damage-associated molecular pattern 
molecules (DAMPs).17–19 Additionally, recent research 
suggests that chronic CS exposure can also alter the 

pro- and anti-inflammatory activity of cells within the 
inflamed pulmonary environment.20–24 Thus, although 
the exact mechanisms remain to be fully elaborated, 
CS exposure can modulate and enhance pulmonary 
inflammation through several distinct yet partially 
overlapping mechanisms involving multiple cell 
types. Over time, the persistence of these mechanisms 
in the lung can lead to the disease-linked phenotypes 
of goblet cell metaplasia/mucus hypersecretion, air-
way remodeling, and alveolar destruction.25–27

Current knowledge of the role of inflammation in 
CS-induced disease is built on decades of research 
into the molecular underpinnings of specific inflam-
matory processes such as macrophage activation.28–30 
Classically studied by manipulating in vitro and in vivo 
systems, early research into the mechanisms that gov-
ern pulmonary inflammation relied on investigators 
placing the interpretation of experimental results in the 
context of a relatively small number of measurements 
(eg, the production of IL8 mRNA following exposure 
of bronchial epithelial cells to CS).29,31,32 More recently, 
the availability of systems-wide technologies (eg, 
transcriptomics, proteomics, and metabolomics) have 
enabled the analysis of pulmonary inflammation using 
complex data sets capable of measuring thousands of 
differentially expressed molecular species following 
experimental manipulation.33–35 These investigations 
have made significant inroads into our understanding 
of the temporal and cell-type specific (eg, Clara cells, 
alveolar macrophages) complexities of inflammation, 
especially when applied to human systems in vivo.36,37 
As a corollary, the availability of comprehensive net-
work models of inflammation against which experimen-
tal results may be evaluated has emerged as a practical 
requirement for interpreting and gaining mechanistic 
insight from content–dense experimental data. Ideally, 
an appropriate network model of CS-related inflam-
matory processes should (1) provide coverage of the 
specific pathways that are modulated by CS, (2) be 
based on a large body of known biological cause and 
effect relationships derived from the published scien-
tific literature, (3) be compatible with the analysis of 
molecular profiling data sets, and (4) address the mul-
tiple cell types that are active in the pulmonary envi-
ronment during inflammation.

We are building a series of biological network 
models reflecting smoking-related molecular 
changes in the target tissues of the lung and the 
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cardiovascular system. Continuing with a network-
modeling strategy that has already produced network 
models describing cell proliferation38 and cellular 
stress,39 we present here the Inflammatory Process 
Network (IPN) model. It should be noted that inflam-
matory processes occurring during the chronic dis-
ease phase will be addressed separately in a COPD 
network, while the current network model describes 
the initial inflammatory pathways that are known to 
be elicited or influenced by CS exposure in an undis-
eased lung. As proof of concept, we used a subset 
of the network in combination with computational 
analyses of transcriptomic profiling data from three 
different CS-relevant experimental systems to assess 
some of the known mechanisms of pulmonary inflam-
mation. The content of the network is freely available 
and, along with previously published networks, can 
serve as an invaluable research tool for the wider pul-
monary biology research community.

Methods
Knowledgebase
The nodes and edges comprising the IPN model were 
assembled from the Selventa Knowledgebase, a com-
prehensive repository containing over 1.5  million 
nodes (biological concepts and entities) and over 
7.5  million edges (assertions about causal and non-
causal relationships between nodes). The assertions in 
the Selventa Knowledgebase are derived from peer-
reviewed scientific literature as well as other public 
and proprietary databases. Specifically, each assertion 
describes an individual experimental observation from 
an experiment performed in a human, mouse, and rat 
species context, either in vitro or in vivo. Assertions 
also capture information about the referring source 
(eg, the PubMed ID (PMID) for journal articles listed 
in MEDLINE), as well as key contextual information 
including the species (human, mouse, or rat) and the 
tissue or cell line from which the experimental obser-
vation was derived. An example causal assertion is the 
increased transcriptional activity of NFkB causes an 
increase in the mRNA expression of CXCL1 (HeLa 
cell line; Human; PMID 16414985). The Knowl-
edgebase contains causal relationships derived from 
healthy tissues and disease areas such as inflamma-
tion, metabolic diseases, cardiovascular injury, liver 
injury, and cancer. While the Selventa Knowledge-
base is a private commercial resource, a subset of the 

information contained in it as well as a freely available 
implementation of RCR called Whistle have recently 
been made publically available via the OpenBEL 
initiative (http://www.openbel.org).

Analysis of transcriptomic data sets
Three published data sets, GSE18341 (LPS-exposed 
mouse lung), GSE22886 (dendritic cell activation, 
monocyte-macrophage differentiation, NK cell acti-
vation, Th1 differentiation, and Th2 differentiation), 
and GSE2322 (LPS-exposed neutrophils), were used 
to construct the IPN model (Supplemental Fig.  6). 
three additional data sets, GSE994 (in vivo bronchial 
epithelial cells), E-MTAB-874 (in vitro bronchial epi-
thelial cells), and GSE13896 (in vivo macrophages), 
were used to demonstrate the utility of select IPN 
sub-models. All data sets except for E-MTAB-874 
(the raw data generated by PMI Research and Devel-
opment and analyzed for this manuscript prior to their 
deposition in a public gene expression repository) 
were downloaded from Gene Expression Omnibus 
(GEO; http://www.ncbi.nlm.nih.gov/gds). Raw RNA 
expression data for each data set were analyzed using 
the “affy” and “limma” packages of the Bioconduc-
tor suite of microarray analysis tools available for 
the R statistical environment.85–88 Robust Microarray 
Analysis (RMA) background correction and quan-
tile normalization were used to generate microar-
ray expression values. An overall linear model was 
fitted to the data for all sample groups, and specific 
contrasts of interest were evaluated to generate raw 
P-values for each probe set on the expression array.89 
The Benjamini–Hochberg False Discovery Rate 
method was then used to correct for multiple testing 
effects. For GSE2322, we only considered transcrip-
tomic data from the 12 patients for which complete 
data (circulating neutrophils pre- and post-LPS, and 
air space neutrophils post-LPS) was available, and we 
accounted for patient to patient variability by block-
ing by patient when fitting the linear model.

Probe sets were considered to have statistically 
significant changed expression levels in a specific 
comparison if they had an adjusted P-value of less 
than 0.05, an absolute fold change greater than 1.3, 
and an average expression intensity greater than 
150. NetAffx version na31 feature annotation files, 
available from Affymetrix (http://www.Affymetrix.
com), were used for mapping of probe sets to genes. 
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In our analysis, genes represented by multiple 
probe sets were considered to have changed if at 
least one probe set was observed to change. Gene 
expression changes that met these criteria are called 
“State Changes” and have the directional qualities 
of “increased” or “decreased”, ie, they were up-
regulated or down-regulated, respectively, in response 
to the experimental condition. The number of State 
Changes for each data set is listed in Supplemental 
Figure 6.

Reverse Causal Reasoning (RCR): 
Automated hypothesis generation
RCR analysis of the six inflammation transcriptomic 
data sets was used to generate lists of nodes that were 
predicted to be increased or decreased, and these lists 
of nodes were used to aid in the selection of nodes for 
inclusion in the IPN model or to evaluate the data set 
using the IPN model. RCR interrogates the Selventa 
Knowledgebase to identify potential upstream con-
trollers of entities observed to change significantly 
in an experiment (manuscript submitted). Here we 
applied RCR to the mRNA State Changes in the 
six transcriptomic data sets to predict hypotheti-
cal upstream controllers for the expression changes. 
These potential upstream controllers identified by 
RCR are called “HYPs”, as they represent statistically 
significant hypotheses that are potential explanations 
for the observed downstream RNA State Changes. 
Specifically, the upstream HYP is a potential explana-
tion for the subset of State Changes that are causally 
downstream of the HYP in individual assertions in 
the Selventa Knowledgebase.

Each HYP is scored according two probabilistic 
scoring metrics, richness and concordance. Richness 
is the probability that the number of observed RNA 
State Changes connected to a given HYP could have 
occurred by chance alone, calculated using the hyper-
geometric distribution. Concordance is the probabil-
ity that the number of observed RNA State Changes 
that match the direction of the HYP (eg, increased 
or decreased activity or abundance of a node) could 
have occurred by chance alone, calculated using a 
binomial distribution. HYPs meeting both richness 
and concordance P-value cutoffs of 0.1 were consid-
ered to be statistically significant. When performing 
control analyses, applying these significance cutoffs 
to randomly generated data (with similar numbers 

of RNA State Changes as the experimental data) 
generally produces less than 5% of the number of 
HYPs meeting both significance criteria than are 
observed for experimental data (not shown). For the 
purposes of network model construction, each scored 
HYP meeting the minimum statistical cutoffs for 
richness and concordance was evaluated and selected 
for integration based on its biological plausibility and 
relevance to the perturbation and biological context 
(eg, cell type) of the experiment applying a manual 
curation process. For data set interrogation, scored 
HYPs meeting these same statistical cutoffs were 
considered, with the understanding that as potential 
explanations for a subset of State Changes, the con-
nectivity and consistency of direction of individual 
HYPs needed to be considered within context of the 
models manuscript in preparation.

The IPN model accompanies this manuscript in the 
eXtensible Graph Markup and Modeling Language 
(.XGMML) (Supplemental File 1) format, and can be 
viewed using freely available network visualization soft-
ware such as Cytoscape (http://www.cytoscape.org/).

Results
IPN model description
Network model structure
In order to capture the contribution of multiple cell 
types to pulmonary inflammation, the IPN model was 
constructed using a modular schema, with the larger 
network model comprised of constituent sub-models. 
The 24 IPN sub-models (Fig. 1, Supplemental Fig. 1) 
focus on the main cell types known to be involved in 
CS-induced pulmonary inflammation. Specifically, we 
generated sub-models for pulmonary epithelial cells, 
macrophages, neutrophils, T-cell subsets (Th1, Th2, 
Th17, Treg, and Tc), NK cells, dendritic cells, mega-
karyocytes, and mast cells. Within each sub-model, an 
input-output design was used; sub-model inputs are 
signaling ligands/triggers that induce or suppress an 
intracellular signaling cascade, while sub-model out-
puts are the cellular/physiological products of these 
signaling pathways, largely secreted cytokines or 
biological processes. While each sub-model was con-
structed to reflect the biological relationships that are 
involved in particular cell types, the sub-models contain 
shared elements. For example, since the transcription 
factor NFkB is a pleiotropic protein involved in mul-
tiple inflammatory pathways, the node “transcriptional 
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Figure 1. IPN model overview—(A) The IPN model is designed to capture the inflammation related signaling in response to CS. Its constituent submodels 
represent the signaling that occurs in the main cell types involved in CS-induced pulmonary inflammation, including epithelial cells and macrophages. 
(B) Functional modularity was introduced into the IPN by the construction of 23 submodels.

activity of NFkB” exists in multiple IPN sub-models, 
with different upstream regulators depending on the 
focus of the sub-model. The XGMML encoding of the 
sub-models allows for the assembly of the IPN as a 
single network using freely available network visual-
ization software such as Cytoscape.

Network model construction and boundaries
Nodes in the IPN model are biological entities 
such as mRNA expressions, protein abundances, 

or protein activities. Nodes can also represent 
biological processes, such as “tight junction 
formation” or “monocyte adherence”. Edges are 
relationships between nodes and are broadly classi-
fied as causal or non-causal. Causal edges are direc-
tional cause-effect relationships between biological 
entities as reported in the scientific literature. (eg, 
the increased kinase activity of JAK1  increases 
the transcriptional activity of STAT3). Non-causal 
edges connect different forms of a biological entity, 
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such as the abundance of a protein and its activity. 
For example the protein abundance of STAT3 is con-
nected by a non-causal edge to the transcriptional 
activity of STAT3, since no casual relationship is 
inferred between the abundance of a protein and its 
biological activity. Protein-protein interactions are 
reflected in the network as complexes between the 
constituent proteins.

The IPN model was constructed by the same two-
step process used to produce previously published 
network models.38,39 First, a survey of the scientific lit-
erature was done to identify CS-relevant inflammatory 
signaling mechanisms. These mechanisms were com-
piled into a literature model, which was constructed 
via cell-type focused sub-models through the extrac-
tion of causal relationships from the Selventa Knowl-
edgebase, a unified collection of over 1.5  million 
elements of biological knowledge captured from the 
public literature and other sources. Where appro-
priate causal statements did not already exist in the 
Selventa Knowledgebase, statements were manu-
ally curated from the literature and deposited into the 
Knowledgebase. This literature model was then aug-
mented with additional nodes derived from reverse 
causal reasoning (RCR) analysis of transcriptomic 
profiling experiments that assessed specific inflamma-
tion-relevant processes. This augmentation by RCR 
helps uncover relevant nodes not identified during the 
literature portion of model building, and strengthens 
the model’s capability to interpret transcriptomic data 
sets. RCR is computational methodology that uses a 
set of differentially measured biological entities (eg, 
mRNA or protein abundance) as input, and makes 
predictions about the identity of potential upstream 
controllers of the observed differential measurements  
(http://www.openbel.org). These predictions, called 
hypotheses (HYPs), were included in a model if they 
had been shown in the literature to be mechanistically 
involved in the process of interest. The three data sets 
used for RCR augmentation of the IPN model are 
summarized in Supplemental Figure 6. These data sets 
represent mouse whole lung exposed to LPS in vivo 
(GSE18341), dendritic cell activation/monocyte-
macrophage differentiation/NK cell activation in 
response to IL15/Th1 differentiation/Th2 differentia-
tion in vitro (GSE22886), and pulmonary neutrophils 
exposed to LPS in vivo (GSE2322). In the case of 
mouse whole lung exposed to LPS (GSE18341), the 

candidate nodes hypothesized by RCR were potentially 
derived from any relevant pulmonary and immune 
cell types that are present in the lung and were either 
activated by LPS or modulated due to responses of 
cells to LPS. Whole lung transcriptomic data follow-
ing LPS-exposure was used to build the network for 
two main reasons. First, we wanted to ensure repre-
sentation of the canonical pathways induced by LPS, a 
prototypical pro-inflammatory agent. Second, because 
previous reports indicate that the pulmonary inflam-
matory response to CS is mediated by many of the 
same signal transduction pathways that are activated 
by LPS,40–42 we wanted to ensure broad coverage of 
these biological mechanisms prior to the analysis of 
data from CS-exposed systems.

The network model was constructed to depict 
biological mechanisms related to inflammatory 
responses elicited by exposure to CS in disease-free 
pulmonary and immune cell types, with a particular 
focus on avoiding mechanisms of inflammation that 
are potentially specific to a particular pathological tis-
sue context. Thus, as much as possible, the literature-
derived supporting evidence for a model edge was 
based on experimental support from non-pathological 
primary tissue, with a particular emphasis on edge 
support from the same cell type a sub-model repre-
sented (eg, edges in the dendritic cell activation sub-
model contained support from mechanistic studies 
done in dendritic cells).

Investigation of transcriptomic data sets using 
the IPN model
We were interested in using the IPN to understand 
which processes are modulated by CS exposure, as 
we expect that CS, like any other pulmonary insult, 
may activate only a subset of processes and signal-
ing pathways described in the IPN. The degree to 
which CS activates different biological processes can 
depend on dose, exposure route, time and the system 
under investigation. Take for example a recent study 
evaluating the temporal effects of CS exposure in 
rat lung in vivo. The investigators noted that while 
3  days of CS exposure was insufficient to recruit 
macrophages into the lung, by 26-weeks of exposure 
the number of lung macrophages in CS-exposed ani-
mals had increased roughly 3-fold relative to sham 
exposed animals.33 Likewise, in a recently pub-
lished study examining the dose dependent effects of 
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CS in mouse lung in vivo, the level of macrophage 
derived metalloproteinase MMP12  gene expression 
was unchanged after 24  hours of CS exposure, but 
increased over 40-fold after two months of exposure.43 
These studies, as well as others like them, serve to 
underscore our expectation that the signals emerging 
in the IPN from any given data set are dependent on 
multiple experimental factors.

First, we used the macrophage activation sub-
model to analyze transcriptomic profiling data derived 
from alveolar macrophages isolated from smokers and 
non-smokers. Because previous reports have described 
the effects of CS on lung macrophage activation using 
gene expression data,24,44 this provided us an opportu-
nity to (1) use input data derived from a single, puri-
fied cell type, (2) use a single, cell-type matched IPN 
sub-model, and (3) compare our results with results 
from published literature using an independent data 
set. Next, we used a transcriptomic data set where the 
underlying experimental setup allowed us to use multi-
ple IPN sub-models from the same cell type. Here, dif-
ferential gene expression profiles were generated from 
human bronchial epithelial cells of smokers compared 
to non-smokers. We used the epithelial barrier defense, 
epithelial cell pro-inflammatory signaling, and mucus 
hypersecretion sub-models to investigate the mechanis-
tic effects of long term CS exposure on lung epithelial 
cells in vivo. Last, we used a data set with a temporal 
component to analyze an IPN sub-model over time. 
The mucus hypersecretion sub-model was selected for 
this, as the production of mucus is a well known acute 
response of the airway epithelium to irritants like CS 
or its chemical constituents (eg, acrolein).45–48

Analysis of Alveolar Macrophages 
Derived from Human Smokers  
and Non-Smokers
We first interrogated a transcriptomic data set where 
gene expression in alveolar macrophages isolated from 
smokers was compared to non-smokers, GSE13896.49 
Although this study included patients with COPD, 
we focused our analysis on the comparison between 
healthy smokers and non-smokers. We used the mac-
rophage activation IPN sub-model, which represents 
pro-inflammatory signaling via the induction of NFkB 
and AP-1 transcription factors. The functional activa-
tion state (referred to as “polarization”) of macrophages 
is classified into discrete classes based on (1) the stimuli 

they respond to, and (2) the chemokine panel they 
produce. M1 polarized macrophages (also known 
as “classically” activated) respond to LPS and IFNG 
and produce Th1 cytokines, promoting an inflamma-
tory state. M2 polarized macrophages (also known as 
“alternatively” activated) respond to IL4, TGFB and/
or IL10, and generally promote tissue remodeling and 
angiogenesis.50,51 The authors found that alveolar mac-
rophages from smokers displayed an M2 phenotype, 
associated with tissue remodeling, when compared to 
macrophages from non-smokers that displayed a pro-
inflammatory M1 phenotype.49,50 Under these defi-
nitions, the biology represented in the macrophage 
activation sub-model most closely resembles that of 
pro-inflammatory M1 polarized macrophages. RCR 
analysis of GSE13896 produced 18 HYPs that corre-
spond to nodes in the macrophage activation sub-model 
(Fig.  2, Supplemental Fig. 2). Remarkably, 15 of the 
18 HYPs supported decreased macrophage activation 
(indicative of decreased M1-polarization) in smok-
ers compared to non-smokers. These HYPs included 
decreased activity of receptors (TLR2, TLR3, TLR4, 
and PTGER4) and transcription factors (eg, NF-ĸB, 
SP1, Stat1, and IRF3) that mediate M1  macrophage 
polarization. In addition, a HYP for increased activ-
ity of PPARA, a known inhibitor of M1 macrophage 
polarization,52 was predicted. Only HYPs for decreased 
activity of SIRT1 and increased PTGER4 protein lev-
els supported increased macrophage activation, while 
a HYP for decreased hyaluronate signaling supported 
both increased and decreased macrophage activation 
via different mechanisms. As indirect support for an 
increased M2 phenotype in macrophages isolated from 
smokers compared to non-smokers, RCR predicted 
HYPs for increased levels of glucocorticoid, increased 
transcriptional activity of the glucocorticoid receptor 
(NR3C1) and TGFB1 levels, both of which are associ-
ated with M2 macrophage activation.53,54 These results 
were not due to a general directional bias in HYPs, as 
RCR produced a relatively even distribution in total 
HYPs predicted to increase (n =  86) and to decrease 
(n = 77).

Analysis of bronchial epithelial cells 
exposed to CS in vivo
In order to further evaluate the IPN using differ-
ent sub-models, a data set (GSE994) consisting of 
gene expression profiles from bronchial brushings 
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of healthy smokers and non-smokers was used.55 We 
applied the IPN sub-models that focused on epithelial 
cell biology (Epithelial Barrier Defense, Epithelial 
Cell Pro-inflammatory Signaling, and Mucus Hyper-
secretion) for these analyses.

We first interrogated GSE994 using the Epithelial 
Barrier Defense sub-model. RCR analysis of GSE994 
produced a number of HYPs suggesting that CS 
compromises epithelial barrier function (Fig.  3, 
Supplemental Fig.  3); HYPs for increased IL1B 
and NRG1 abundance in smokers compared to non-
smokers provide evidence for activation of a cascade 
from IL1B through ADAM17, NRG1, and HER2, 
leading to increased tight junction permeability.56 
In addition, HYPs for increased reactive oxygen 

species (ROS) and response to oxidative stress 
also suggest that tight junction permeability may 
be increased in smokers.57 Finally, smokers have 
increased expression of 5 genes involved in tight junc-
tion function (OCLN, CTNNA1, CLDN7, CLDN10, 
and TJP2). Together, these data suggest that bronchial 
epithelial cells in smokers experience environmental 
stimuli (IL1B and oxidative stress) that may com-
promise barrier function, and respond with increased 
expression of various tight junction proteins.

Next, we evaluated GSE994 using the Epithelial 
Cell Pro-inflammatory Signaling sub-model. RCR 
analysis of GSE994 produced a limited number of 
HYPs that corresponded to nodes in the model (HYPs 
for increased IL1B and IL13 levels, and increased 

Figure 2. IPN model investigation of CS-exposed alveolar macrophages.
Notes: HYPs from analysis of GSE13896 are colored based on whether they were predicted increased (yellow) or decreased (blue). Gene expression 
State Changes are colored according to their observed change of increased (red) or decreased (green). A high resolution model image, is available in 
Supplemental Figure 2.
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Figure 3. IPN model investigation of CS-exposed epithelial cell barrier defense.
Notes: HYPs from analysis of GSE994 are colored based on whether they were predicted increased (yellow) or decreased (blue). Gene expression 
State Changes are colored according to their observed change of increased (red) or decreased (green). The pathways discussed in the text are likewise 
highlighted based on whether they support the same outputs. HYPs and edges that support increased pathways are shown in yellow lines while decreased 
pathways are shown in blue lines. A high resolution model image is available in Supplemental Figures 3 and 4.

transcriptional activity of AP-1; Supplemental Figs. 4 
and 5). These HYPs failed to describe a consistent and 
plausible mechanistic readout of pro-inflammatory 
signaling.

Last, we interrogated GSE994 using the Mucus 
Hypersecretion sub-model. RCR analysis of GSE994 
produced HYPs for increased ROS, increased TGFA, 
increased acrolein (a chemical component of CS), 
and increased transcriptional activity of AP-1 (Fig. 4, 
Supplemental Fig. 6). Together, these HYPs suggest 
that MUC5AC, one of the primary airway mucins, 
is expressed via activation of AP-1 through a path-
way from ROS signaling through TGFA, EGFR, and 
ERK.58,59 In support of this mechanism, MUC5AC 
gene expression increased in smokers compared to 
non-smokers in GSE994. RCR analysis also pro-
duced HYPs for increased IL13 abundance, increased 
kinase activity of MAPK14, increased HIFA protein 
abundance, and increased transcriptional activity of 
HIF1A. Together, these HYPs support the premise of 
Th2-mediated expression of MUC5AC via IL13 sig-
naling through STAT6, MAPK14, and HIF1A.60,61 In 
addition, the gene expression of SPDEF and AGR2, 
2  genes implicated in IL13-dependent formation 

of mucus-secreting pulmonary goblet cells,62,63 are 
increased in smokers versus non-smokers. No HYPs 
were predicted supporting reduced MUC5AC expres-
sion or mucus production in general.

Temporal analysis of CS-exposed 
bronchial epithelial cells in vitro
The analysis of GSE994 provided an evaluation of 
the effects of CS on human lung epithelium following 
chronic exposure in vivo. As an alternative applica-
tion of the IPN sub-models to experimental data, we 
evaluated the IPN mucus hypersecretion sub-model 
using data from E-MTAB-874, a data set where orga-
notypically differentiated human bronchial epithe-
lial cells in air-liquid interface culture were acutely 
exposed to CS in vitro. Specifically, we evaluated 
data from human bronchial epithelial cells exposed 
to CS in vitro for 28 minutes, followed by transcrip-
tomic profiling at 0.5, 2, 4, 24, and 48  hours post-
exposure. This data series allowed us to evaluate the 
patterns of a single IPN sub-model across a temporal 
window. We focused on the Mucus Hypersecretion 
sub-model for 2 main reasons. First, the production 
of mucin is a well-established response by the airway 
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epithelium to acute CS-exposure,64–67 and second, it 
provided an opportunity to compare the results with 
analysis of GSE994, where the Mucus Hypersecre-
tion sub-model indicated a substantial biological sig-
nal that differentiated smokers from non-smokers.

Structurally, the mucus hypersecretion model 
comprises four biological pathways that have been 
reported to induce the production of the main airway 
mucin, MUC5AC (Fig. 5). Two of these pathways are 
activated by the extracellular ligands TNF and IL13, 
while the remaining two pathways can be induced 
by a variety of extracellular stimuli, but converge 
on the activities of SP-1 and AP-1 transcription fac-
tors.14,16 We first asked which pathways were overrep-
resented at the HYP level in the post-exposure series 

in E-MTAB-874. As shown in Figures 6–11, HYPs 
in the AP-1, SP-1, and TNF pathways were enriched 
relative to the IL13 pathway, an indication that these 
pathways were preferentially modulated in response 
to CS. Notably, 14 nodes in the AP-1 pathway were 
predicted as HYPs in E-MTAB-874.

In order to gain further mechanistic insight into the 
biological effects of acute CS exposure on bronchial 
epithelial cells, we mapped the RCR predicted HYPs 
to the 4  main pathways in the mucus hypersecre-
tion model across the five post-exposure time points 
(Figs.  6–11). The AP-1 pathway showed the most 
striking pattern of activation (Figs. 6 and 7). Acrolein, 
an aldehyde component of CS known to induce 
airway mucus production, was predicted as a HYP as 

Figure 4. IPN model investigation of CS-exposed epithelial cell mucus hypersecretion.
Notes: HYPs from analysis of GSE994 are colored based on whether they were predicted increased (yellow) or decreased (blue). Gene expression 
State Changes are colored according to their observed change of increased (red) or decreased (green). The pathways discussed in the text are likewise 
highlighted based on whether they support the same outputs. HYPs and edges that support increased pathways are shown in yellow lines while decreased 
pathways are shown in blue lines. A high resolution model image is available in Supplemental Figure 6.
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Figure 5. Pathway detail for the IPN: Mucus Hypersecretion model.
Notes: The Mucus Hypersecretion model contains signaling detail from four main pathways known to induce airway MUC5AC production. The TNF 
pathway (purple) includes the TNFR ligands TNF and TNFRSF1A and culminates in the transcriptional activation of NFkB. The IL13 pathway (red), 
describes the molecular events leading to epithelial cell differentiation into mucin-producing goblet cells through the cytokine IL13 and the transcription 
factor, SPDEF. The SP-1 pathway (green) describes the routes leading to transcriptional activation of MUC5AC by the transcription factor SP-1, and 
includes the upstream signaling kinases, PKA, PKC and MAPK14. The AP-1 pathway (blue) includes the primary pathways that activate MUC5AC 
expression via EGFR activation and the signaling intermediate, reactive oxygen species (ROS).

early as 0.5 hours after exposure. The transcriptional 
activity of AP-1, a central mediator of MUC5AC 
gene expression, was predicted to increase at the 2, 
4, and 24 hours post-exposure time points, just prior 
to the observed increase in MUC5AC mRNA lev-
els as detected by microarray profiling. In addition, 
HYPs for increased levels of EGF and ROS as well 
as increased kinase activities of ERK1, ERK2, and 
PKC were consistently predicted between the 2 hour 
and 24 hour time points. The AP-1 pathway reached 
maximal activation by 24 hours post-exposure, with 
additional predictions for increased kinase activities 
of SRC and MAPK8. At 48  hours post-exposure, 

activation of the AP-1 pathway declined dramatically 
from its level at 24 hours, with most HYPs predicted 
to be marginally increased or decreased.

The general SP-1 pathway also showed a striking 
pattern of activation following CS exposure, with pre-
dictions for increased abundance of HIF1A and cyclic 
AMP as well as the kinase activities of PKA, PKC, and 
MAPK14 from 2 hours to 24 hours (Figs. 8 and 9). The 
SP-1 pathway peaked at 4 hours, with causally linked 
predictions for increased cyclic AMP and its down-
stream target PKA, increased kinase activity of PKC, 
and increased kinase activity of MAPK14 (which 
can be activated by both PKA and PKC) (Fig.  9). 
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Figure 6. Temporal activation of AP-1 mediated MUC5AC production fol-
lowing acute CS exposure.
Notes: The results of RCR analysis on E-MTAB-874 in the AP-1 pathway 
of the Mucus Hypersecretion model. Fourteen of the AP-1 pathway nodes 
were predicted as a HYP in one more of the recovery time points. The 
heat map is color coded according to the HYP concordance P-values, 
where yellow-orange shades indicate inferred increases in abundance 
or activity and blue shades indicate inferred decreases in abundance or 
activity. Lower P-values for concordance are indicated by darker shades. 
The numerical label indicates the number of State Changes supporting 
each prediction. Cells with an asterisk (*) indicate HYPs where the P-value 
for richness was not met, despite a passing P-value for concordance. 
A full description can be found in Supplemental File 3.

However, when looking at the specific HYP for the 
transcriptional activity of SP-1, in its function as a 
direct regulator of MUC5AC gene expression, it was 
generally predicted to be increased, but did not meet 
the statistical cut-offs for significance at any of the 
post-exposure time points. As with the AP-1 pathway, 
the SP-1 pathway showed a marked reduction in activ-
ity at the 48 hour post-exposure time point, with all 
HYPs predicted decreased in abundance or activity.

In contrast to the temporal activation of the general 
AP-1 and SP-1 pathways, the TNF pathway showed 
a pattern of temporal suppression across the post-
exposure time points. Few TNF pathway HYPs were 
predicted between 0.5 and 4  hours. However, the 
abundance of the TNF receptor ligand TNFRSF1A, 
kinases that regulate NFkB transcriptional activ-
ity (IKBKB and CHUK), and the transcriptional 
activity of NFkB were all predicted to be decreased 
at 48  hours post-exposure, indicating a global sup-
pression of NFkB mediated MUC5AC production 
(Figs. 10 and 11).

Discussion
In this report, we describe the construction of a mod-
ular network model representing the inflammatory 

processes that are known to be involved in pulmonary 
responses to CS exposure. We focused on modeling 
lung-specific mechanisms, as CS directly induces 
inflammatory processes through pulmonary cells, 
with cells recruited from the circulation (eg, neutro-
phils, T-cells) acting as secondary mediators of the 
inflammatory responses. Following construction of 
the network from literature references and elements 
derived from the computational analysis of transcrip-
tomic data, we evaluated the ability of portions of the 
network to describe some of the known inflammatory 
responses to CS in bronchial epithelial cells and mac-
rophages, two cell types that are directly exposed to 
CS in the human lung.

CS effects in human alveolar 
macrophages
In response to environmental cues, macrophages 
can differentiate into M1 or M2 phenotypes, which 
correspond with either classical pro-inflammatory 
activity (large amounts of nitric oxide (NO) and 
pro-inflammatory cytokines involved in cytotoxicity, 
microbial killing, and regulation of cell proliferation; 
Th1 response (M1)), or with an alternate response 
(polyamine and proline biosynthesis, control of cell 
growth, collagen deposition, and tissue remodeling 
and repair (M2).50 In particular, transcriptomic data 
from alveolar macrophages suggested that smokers’ 
alveolar macrophages tend to favor an M2 pheno-
type, compared to macrophages from non-smokers 
that favor an M1 phenotype.49 Analysis of this data 
using the IPN macrophage activation sub-model sup-
ported these findings, with RCR-derived predictions 
for decreased activity of many key proteins involved 
in the macrophage inflammatory (M1) response. 
Although not explicitly included in the macrophage 
activation sub-model, RCR analysis of the data set also 
supported an increased M2 phenotype in smokers’ 
alveolar macrophages with HYPs for increased levels 
of key mediators of M2 polarization, TGFB1 and glu-
cocorticoid receptor transcriptional activity.

CS-induced processes in human 
bronchial epithelial cells
We used three epithelial cell-focused IPN sub-models 
to evaluate unique aspects of two previously pub-
lished transcriptomic data sets derived from bronchial 
epithelial cells exposed to CS. In the first data set, 
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Figure 7. Temporal activation of AP-1 mediated MUC5AC production following acute CS exposure.
Notes: HYPs and State Changes from the RCR analysis of E-MTAB-874 mapped to the AP-1 pathway of the Mucus Hypersecretion model. The model 
is color coded according to the HYP concordance P-values, where yellow-orange shades indicate inferred increases in abundance or activity and blue 
shades indicate inferred decreases in abundance or activity. Lower P-values for concordance are indicated by darker shades. Gene expression State 
Changes are colored according to their observed change of increased (red) or decreased (green). Red lines indicate activated pathways while blue lines 
indicated pathways that are suppressed.

bronchial epithelial cells were isolated from smok-
ers in vivo, and in the second, human bronchial epi-
thelial cells were exposed to CS in vitro. For the in 
vivo data set, analysis of the epithelial barrier defense 
sub-model predicted that exposure to CS activates 
mechanisms that lead to decreased epithelial cell bar-
rier function, as well as compensatory mechanisms to 
restore barrier function. This prediction is consistent 
with previous findings that CS increases epithelial 
cell permeability in human systems in vivo.68

Analysis of the epithelial cell pro-inflammatory 
signaling sub-model did not produce a robust and con-
sistent signal for the in vivo data set. Although chronic 
exposure to CS can induce a pro-inflammatory phe-
notype in the airway,10,14,69 the presence of only ten-
tative evidence for the activation of one pathway of 
pro-inflammatory signaling in GSE994  may in part 
be due to the limited number of State Changes (ie, 
only 150 genes meeting the statistical cutoffs for dif-
ferential expression) in the bronchial epithelium of 
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Figure 9. Temporal activation of SP-1 mediated MUC5AC production following acute CS exposure.
Notes: HYPs and State Changes from the RCR analysis of E-MTAB-874 mapped to the SP-1 pathway of the Mucus Hypersecretion model. The model 
is color-coded according to the HYP concordance P-values, where yellow-orange shades indicate inferred increases in abundance or activity and blue 
shades indicate inferred decreases in abundance or activity. Lower P-values for concordance are indicated by darker shades. Gene expression State 
Changes are colored according to their observed change of increased (red) or decreased (green). Red lines indicate activated pathways while blue lines 
indicated pathways that are suppressed.
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Figure 8. Temporal activation of SP-1 mediated MUC5AC production fol-
lowing acute CS exposure.
Notes: E-MTAB-874 in the SP-1 pathway of the Mucus Hypersecretion 
model. Seven of the SP-1 pathway nodes were predicted as a HYP 
in one more of the recovery time points. The heat map is color-coded 
according to the HYP concordance P-values, where yellow-orange 
shades indicate inferred increases in abundance or activity and blue 
shades indicate inferred decreases in abundance or activity. Lower 
P-values for concordance are indicated by darker shades. The numerical 
label indicates the number of State Changes supporting each prediction. 
Cells with an asterisk (*) indicate HYPs where the P-value for richness 
was not met, despite a passing P-value for concordance. A full description 
can be found in Supplemental File 3.

smokers and non-smokers, which can lead to the com-
putational prediction of fewer numbers of upstream 
controllers by RCR.

Using the mucus hypersecretion sub-model, we 
found that CS exposure-activated pathways converge 
on mucus hypersecretion in bronchial epithelial cells 
through EGFR signaling. CS has been shown to induce 
EGFR-specific tyrosine phosphorylation in bronchial 
epithelial cell lines in vitro, and the concomitant up-
regulation of MUC5AC at both the mRNA and pro-
tein level was blocked by EGFR kinase inhibitors.70,71 

Interestingly, our analysis suggested that activation 
of mucus hypersecretion following CS challenge 
can occur through at least two distinct mechanisms, 
depending on the experimental context. In vitro, 
CS-induced generation of reactive oxygen species 
activates the cell surface enzyme ADAM17, whose 
sheddase activity results in the cleavage and release 
of the EGFR ligand, TGFA. TGFA, in turn, signals via 
EGFR and subsequently ERK kinases to increase the 
transcriptional activity of AP-1, a central regulator of 
MUC5AC expression. In addition, components of CS 
(notably the unsaturated aldehyde, acrolein) can also 
activate EGFR signaling, potentially via ADAM17 
activation as well.72–74

The second mechanism for CS-induced mucus 
hypersecretion, identified following analysis of 
transcriptomic data from CS-exposed bronchial epi-
thelial cells in vivo, involves the pro-inflammatory 
cytokine IL13. IL13 is a Th2 cytokine that has been 
most extensively studied in the lung in relation to its 
association with the development of asthma.75 In the 
bronchial epithelium, IL13 can signal through STAT6 
to increase the expression of SPDEF, a transcription 
factor critical for goblet cell differentiation and for 
MUC5AC synthesis. IL13 can be released by Th2-
polarized T-cells as well as mast cells, both of which 
are increased in number in the lungs of smokers rela-
tive to non-smokers.76–78 Here, our analysis of human 
bronchial epithelial cells exposed to chronic CS 
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Figure 10. Temporal suppression of TNF mediated MUC5AC production 
following acute CS exposure.
Notes: The results of RCR analysis on E-MTAB-874 in the TNF pathway 
of the Mucus Hypersecretion model. Seven of the AP-1 pathway nodes 
were predicted as a HYP in one more of the recovery time points. The 
heat map is color-coded according to the HYP concordance P-values, 
where yellow-orange shades indicate inferred increases in abundance 
or activity and blue shades indicate inferred decreases in abundance or 
activity. Lower P-values for concordance are indicated by darker shades. 
The numerical label indicates the number of State Changes supporting 
each prediction. Cells with an asterisk (*) indicate HYPs where the P-value 
for richness was not met, despite a passing P-value for concordance. 
A full description can be found in Supplemental File 3.

Figure 11. Temporal suppression of TNF mediated MUC5AC production following acute CS exposure.
Notes: HYPs and State Changes from the RCR analysis of E-MTAB-874 mapped to the TNF pathway of the Mucus Hypersecretion model. The model 
is color-coded according to the HYP concordance P-values, where yellow-orange shades indicate inferred increases in abundance or activity and blue 
shades indicate inferred decreases in abundance or activity. Lower P-values for concordance are indicated by darker shades. Gene expression State 
Changes are colored according to their observed change of increased (red) or decreased (green). Red lines indicate activated pathways while blue lines 
indicated pathways that are suppressed.

in vivo supports the emerging concept that the lung 
epithelium of chronic smokers may reflect a microen-
vironment populated with Th2-type cytokines, lead-
ing to goblet cell metaplasia and increased mucus 
production.62,79,80

Comparison with other inflammation 
networks
An optimal structure for a network model describing 
CS-induced inflammation covers a range of relevant 
cell types and processes, is modular in its organiza-
tion, and can be flexibly applied to interpret systems 
biology-based data. Existing resources that capture 
aspects of the ideal network model for studying CS-
related inflammation can be grouped into two general 
areas: signaling network databases and published 
inflammation models. Signaling network databases 
generally contain manually curated representations 
of canonical signaling pathways. The Kyoto Ency-
clopedia of Genes and Genomes (KEGG) Pathway 
database, Science’s Signal Transduction Knowledge 
Environment (STKE), and the UCSD Signaling Gate-
way are representative examples.

Whether part of a signaling network database, or 
published separately as part of a scientific study, mod-
els of biological networks can be constructed using 
different approaches depending on the specific aims of 
the researcher, the experimental contexts included, and 
the complexity/detail of the biology being modeled. 
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Here, we highlight the salient features of previously 
published inflammation-related networks in compari-
son to the IPN model. Specifically, we discuss a data 
set-centered network constructed by Calvano et  al, 
and three literature-centered models developed by 
Seok et  al, Patil et  al, and Oda et  al.81–83 Models in 
signaling network databases are generally literature-
centered, and thus share many characteristics with the 
models discussed below.

Calvano et al constructed a general inflammation 
network model using literature and gene expression 
data from blood leukocytes exposed to endotoxin 
in vivo.81 The model consists of differentially expressed 
genes from this data set that were connected into a 
network model by additional genes and interactions 
derived from literature. The network structure mimics 
a prototypical cell with no specific biological context 
defining which genes and interactions were included 
in the model. The Calvano et al network provided a 
structure for interpreting the potential effects of differ-
entially expressed genes within the context of known 
interactions. The IPN model was similarly derived 
from a priori knowledge and transcriptomic data. 
However, in contrast to the Calvano et al network, the 
IPN was constructed using RCR and was thus able to 
treat gene expression changes as the result of network 
activation. We thus incorporated nodes represent-
ing the inferred sources of these expression changes 
into the IPN, rather than the genes being expressed. 
Additionally, the IPN further refined the approach used 
by Calvano et al by distinguishing between proteins, 
their activities, and their mRNA levels, as well as by 
organizing interactions into sub-models representing 
distinct cell-type specific processes.

Like Calvano et  al, Seok et  al analyzed the 
same transcriptomic profiling data set.83 In contrast 
to Calvano, Seok et  al constructed an entirely 
literature-based model consisting of 10 inflammation-
related transcription factors and 99 genes known to be 
regulated by these transcription factors.83 They then 
used a computational analysis to predict the activity 
of each transcription factor based on the leukocyte 
gene expression data, deriving temporal profiles of 
transcription factor activation in endotoxin-exposed 
leukocytes. Thus, the Seok et  al network contains 
detailed content regarding the specific genes con-
trolled by inflammation-relevant transcription factors, 
but lacks broad coverage on the upstream regulatory 

mechanisms such as the activities of receptors and 
kinases.

Patil et  al constructed a comprehensive network 
model based solely on literature describing experi-
ments related to dendritic cell response to pathogens.82 
This model provides a more mechanistically-detailed 
description of dendritic cell signaling than the dendritic 
cell activation IPN sub-model. Similarly, Oda et  al 
constructed a literature-based pathway model focused 
on Toll-like receptor (TLR) and IL1R signaling.84 
Like the IPN model, a main structural feature of the 
Oda et  al network is the representation of “inputs” 
and “outputs” for a biological process. In the case of 
Oda et  al, network inputs and outputs are arranged 
in a bow-tie structure, reflecting the large number 
of “inputs” (ligands and receptors) and “outputs” 
(resulting gene expression changes) connected by 
a relatively small number of signaling components 
involved in TLR signaling. Both the Patil et  al and 
Oda et al network models contain more mechanistic 
details in the corresponding processes than the IPN 
network (ie, the dendritic cell activation sub-model 
and the IPN sub-models that include TLR signaling). 
Despite its less-detailed representation of these par-
ticular inflammatory processes and pathways, the 
IPN model provides a unified framework and repre-
sentation of cell type specific processes in pulmonary 
inflammation, and thus may serve as a more power-
ful resource for interpreting and analyzing cell-to-cell 
interactions and whole lung inflammation.

Thus, although the design and content features 
of the IPN model are shared with some previously 
published inflammation networks, we believe that its 
cell type-based structure and broad focus on multiple 
pathways modulated in the CS-exposed lung make 
the IPN model a unique resource for investigating 
pulmonary inflammation induced by not only CS, but 
other complex environmental exposures.

Conclusions
The IPN contains a diverse mechanistic represen-
tation of the main inflammatory pathways that are 
modulated in a selected group of pulmonary cells 
following exposure to CS. The content of the IPN 
reflects the pathways that operate in the main cell 
types responsible for both initiating and resolving 
pulmonary inflammatory responses. These pathways, 
uncovered by decades of basic research in the field of 
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pulmonary biology, are represented here for the first 
time in a coherent, modular network model. As part 
of a broader effort to fully understand the integrated 
response to CS using modern systems analyses, the 
IPN and related network models describing other 
areas affected by CS (eg, cell proliferation, cellular 
stress) are being disseminated into the public domain 
as research tools to help propel the next generation of 
pulmonary research forward.
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Supplemental Data
Supplemental File 1. The 24 IPN sub-models and 
agglomerated IPN network in .XGMML format. The 
individual sub-models and full IPN are supplied as a 
compressed file and be viewed using freely available 
network visualization software such as Cytoscape 
(http://www.cytoscape.org/).

Submodel Submodel description

Epithelial barrier defense

Epithelial cell proinflammatory signaling

Mucus hypersecretion

Microvascular endothelium activation

Macrophage activation

Neutrophil chemotaxis

Neutrophil response

Dendritic cell migration to tissue

Th1 differentiation

Th1 response

Th2 differentiation

Th2 response

Th17 differentiation

Th17 response

Tc response

Treg response

Mast cell activation

NK cell activation

Megakaryocyte differentiation

Tissue damage

Dendritic cell migration to lymph

Dendritic cell activation

Macrophage differentiation

Macrophage mediated neutrophil recruitment

Regulation of epithelial barrier function and tight junction permeability in response to upstream signals
including EGF, TNF, ADAM17, and ROS
Expression of inflammatory proteins in response to upstream signals, including TNF, TLR4, ELA2, and IL1B
during epithelial cell activation
Mucus hypersecretion and MUC5AC expression in pulmonary epithelial cells in response to upstream signals
including IL13, CCL2, TNF, and EGF
Pro-inflammatory signaling resulting in altered vascular permeability and upregulation of cell surface receptors
promoting leukocyte adhesion (SELE, SELP, ICAM1 and VCAM1)

NFkB dependent production of proinflammatory molecules in response upstream signals, including toll-like
receptor (TLR) ligation

Macrophage differentiation in response to upstream signals, including IL6, IGF1, and IFNG

Secretion of IL8, SERPINE1, and leukotriene B4 leading to neutrophil chemotaxis and recruitment in response
to upstream signals, including TNF

Regulation of chemotaxis in response to upstream signals, including CSF3, F2, IL8 CXCL12, and S100A8/9

Neutrophil response in response to upstream signals, including TNF, CSF3, and FPR1

Production of cytokines and other inflammation-related proteins in response to upstream TLR ligands,
including LPS and HMGB1

Regulation of migration to lymph nodes in response to upstream signals, including CXCL9/10/11 and
CCL19/21
Regulation of migration to site of infection in response to upstream signals, including complement, CCL3 and
CCL5

Th1 differentiation and IFNG expression in response to upstream signals, including CCL5 and DLL1

Th1 immune response to upstream signals, including IFNG, IL2, LTA, and LTB

Th2 differentiation in response to upstream signals, including IL4, IL25, and VIP

Th2 immune response to upstream signals, including IL4 and IL13

Th17 differentiation in response to upstream signals, including TGFB1 and DLL4

Th17 immune response to upstream signals, including IL21, IL22, and IL26

Induction of FASLG as a cytotoxic T cell response in response to upstream TCR ligation and IL15

Regulatory T cell differentiation and IL10 expression in response to upstream signals, including TGFB1 and IL7

Mast cell activation and cytokine production in response to upstream signals, including IL4, KITLG, and FclgE
receptor
Induction of target cell cytolysis by NK cell repsonse to upstream signals, including IL2/4/7/12/15, TGFB1,
IFNA1, and ITGB2

Megakaryocyte differentiation in response to upstream signals, including IL11 and CXCL12

Release of DAMPs and PAMPs as inflammatory triggers following tissue damage leading to TLR and NFKB
signaling

Figure S1. Basic description of the IPN model with the full list of nodes, edges and detailed references for each edge in the model.

Supplemental File 2. List of RCR derived HYPs 
from each of the three data sets used to augment the 
IPN network that were considered for the IPN, but 
not included.
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Figure S2. Supplemental Figures for the Results section. HYPs and State Changes from analysis of the data sets discussed in the Results section are 
colored based on whether they support increased (yellow) or decreased (blue) macrophage activation. HYPs that support both increased and decreased 
macrophage activation are colored in gray. The directions of the HYPs themselves are annotated as colored halos around the nodes based on whether 
they are predicted increased (yellow halo) or decreased (blue halo). The measured direction of state changes are annotated as colored halos around the 
nodes based on whether they are increased (red halo) or decreased (green halo).
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Figure S3. Supplemental Figures for the Results section. HYPs and State Changes from analysis of the data sets discussed in the Results section are 
colored based on whether they support increased (yellow) or decreased (blue) macrophage activation. HYPs that support both increased and decreased 
macrophage activation are colored in gray. The directions of the HYPs themselves are annotated as colored halos around the nodes based on whether 
they are predicted increased (yellow halo) or decreased (blue halo). The measured direction of state changes are annotated as colored halos around the 
nodes based on whether they are increased (red halo) or decreased (green halo).
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Figure S4. Supplemental Figures for the Results section. HYPs and State Changes from analysis of the data sets discussed in the Results section are 
colored based on whether they support increased (yellow) or decreased (blue) macrophage activation. HYPs that support both increased and decreased 
macrophage activation are colored in gray. The directions of the HYPs themselves are annotated as colored halos around the nodes based on whether 
they are predicted increased (yellow halo) or decreased (blue halo). The measured direction of state changes are annotated as colored halos around the 
nodes based on whether they are increased (red halo) or decreased (green halo).
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Figure S5. Supplemental Figures for the Results section.
Notes: HYPs and State Changes from analysis of the data sets discussed in the Results section are colored based on whether they support increased 
(yellow) or decreased (blue) macrophage activation. HYPs that support both increased and decreased macrophage activation are colored in gray. The 
directions of the HYPs themselves are annotated as colored halos around the nodes based on whether they are predicted increased (yellow halo) or 
decreased (blue halo). The measured direction of state changes are annotated as colored halos around the nodes based on whether they are increased 
(red halo) or decreased (green halo).
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Figure S6. Data sets analyzed by RCR for augmentation of the Inflammatory Process Network.
Notes: Overview of the three data sets used to construct the Inflammatory Process Network including relevant experimental details.
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