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Abstract: United States farmers typically spend over $10 billion annually on commercial fertilizer. Chemical inputs such as nitrogen 
(N) are essential for maintaining crop yields; however, farmers often apply excessive N inputs as an insurance policy. Nitrogen fertilizer 
consumption in the U.S. quadrupled from 3 million metric tons in 1961 to over 12 million metric tons in 2004, and per ha N fertilizer 
use quadrupled. Increase in N use has been associated with the impairment of U.S. streams, lakes, and aquifers. The objective of this 
research study was to develop an integrated farm-level economic/environmental risk framework for trade-off analysis between farm 
profitability and environmental externalities (impacts). Results indicated that there was no single point of optimal trade-off between 
farm profitability and the environment. Additionally, trade-offs between farm profit and environmental impacts varied significantly 
depending on the choice of cropping or tillage system.
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Introduction
Federal policies rely primarily on voluntary approaches 
by farmers and ranchers to minimize environmen-
tal externalities of agricultural production. Research 
has shown that in many cases the loss of agricul-
tural chemicals from farm fields can be substantially 
reduced by conservation or best management prac-
tices (BMPs), and that significant improvements in 
water quality would result from widespread BMP 
adoption.1 However, farmers face the challenge of 
balancing environmental considerations with farm 
profitability. Effective quantification of environ-
mental versus economic trade-offs should result 
in tools that are based on the best available science 
and can be easily utilized by practitioners who may 
face time constraints. Comprehensive process-based 
agro-ecosystem models, such as the Nitrogen Loss 
and Environmental Assessment Package (NLEAP, 
Shaffer et al2) model and the Root Zone Water Quality 
Model 2 (RZWQM2, Ahuja et al3), have been used to 
accurately predict nitrogen (N) fate and crop yield in 
agricultural soils. However, direct use of these mod-
els is too difficult and time-consuming for conserva-
tion planners and land managers. Black box models 
have been developed based on statistical or empiri-
cal relations expressing the load of nitrate-N (NO3-
N) to groundwater or surface waters as a function of 
relatively few parameters such as land use, rainfall 
and soil type. The empirical relations are often devel-
oped from linear or non-linear regression analysis 
(eg, Simmelsgaard and Djurhuus,4 Hansen et  al,5 
Haberle et al,6 Pedersen et al7). The black box mod-
els are only applicable for simulating and predicting 
NO3-N loads under similar conditions to those that 
they were calibrated under. Furthermore, they can-
not be extrapolated to simulation of scenarios where 
considerable changes in climate, soils, management 
practices, are considered because the calibrated model 
relies fully on the observed data (Shepherd et al8). In 
summary, an opportunity exists for development of 
user-friendly tools that may lead to increased adop-
tion of conservation and BMPs that both enhance 
water quality and maintain farm profitability.

Malone et al9 used 10 years of data (1994–2003) 
from a long-term study near Nashua, Iowa to develop 
multivariate polynomial regression equations predict-
ing crop yield, NO3-N concentration, drainage vol-
ume, and NO3-N loss in subsurface drainage from corn 

(Zea mays L.) and soybean (Glycine max (L.) Merr.) 
crop rotations. The regression equations described 
over 87%, 85%, 94%, 76%, and 95% of variation in 
soybean yield, corn yield, subsurface drainage, NO3-N 
concentration, and NO3-N loss in subsurface tile 
drainage, respectively. While the above approaches 
concentrate strictly on environmental concerns, 
another approach to this problem has been to develop 
Pareto-efficient frontier tools (eg, Tóth et  al10) that 
map trade-offs of economic gains (or losses) to envi-
ronmental losses (or gains) for a range of conserva-
tion or BMPs. In this context, a management practice 
is Pareto-efficient if none of the associated environ-
mental outputs or the associated cost can be improved 
(ie, increased for environmental outputs or decreased 
for costs) without compromising another output. 
Typically, these frontiers do not consider more than 
1 environmental variable at a time because they are 
2-dimensional (2-D) and all factors except economic 
($) and environment (E) are fixed relative to $ and E. 
That is, input factors such as tillage type, soil type, and 
fertilizer application rate/timing are not considered. 
The notion of Pareto-optimality is critical because it 
helps towards finding management options that lead 
to BMPs in the most cost-efficient way possible.

This study utilizes response surface methodol-
ogy (RSM)11 to examine trade-offs when there are 
multiple E variables (ie, N measured in tile drainage 
flow and total N measured in the soil profile) and 
by allowing for factor inputs to remain variables. 
This research builds on previous work (eg, Down-
ing et  al,12 Kelly et  al13) by expanding trade-off 
curves to include 2 E variables instead of 1 and by 
improving the accuracy of (and information about) 
the Pareto-optimal frontier by simultaneously esti-
mating the impacts of all input factors for each point 
on the frontier. That is, we estimate a 3-dimensional 
(3-D) frontier surface for $ and 2 E variables where 
the variables not seen in the frontier, like the type of 
tillage system or the N application rate, are simul-
taneously optimized with the surface. Burdick and 
Naylor14 argued that RSM is a useful alternative to 
classical optimization and mathematical program-
ming techniques in the presence of experimental 
design data and that there is a need for an econo-
metric model describing the economic system. They 
presented a mathematical framework for an eco-
nomic constrained RSM model. Fitzgerald et  al15 
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used a response surface approach to create ground 
sampling designs from input imagery in order to 
develop regression equations for predicting crop 
height and width attributes in a 3.4-ha cotton field. 
Predictions of height and width from regressions 
between the imagery and ground sampling at the cal-
ibration locations gave coefficients of determination 
(R2) for height ranging from 0.34 to 0.90 and width 
ranging from 0.30 to 0.94. All regression models but 
1 were statistically significant at the α = 0.01 level. 
Lesch16 presented an objective sampling and simpli-
fied modeling strategy for predicting soil property 
information from spatially referenced sensor data. 
A model-based sampling strategy for estimating an 
ordinary linear regression model in the spatial setting 
was developed incorporating a traditional response 
surface design into an iterative, space-filling type 
algorithm for the purpose of selecting sample site 
locations. A case study confirmed the effective-
ness of the model-based strategy over a more tradi-
tional simple random sampling strategy, and Lesch16 
concluded that the strategy was highly effective at 
ensuring efficient regression model parameter esti-
mates and reliable prediction maps. Frey and Patil17 
summarized previous studies on using RSM and 
concluded it could be successfully used to represent 
the relationship between a response variable (output) 
and 1 or more explanatory inputs. They also showed 
that RSM could be used in a probabilistic analysis 
for identifying curvatures in the response surface and 
to account for higher-order effects. Dhungana et al18 
used RSM in connection with the CERES-Wheat 
model and the HADCM2 climate simulation model 
to identify optimal configurations of plant traits and 
management practices that maximize yield of win-
ter wheat in high CO2 environments. They found 
that RSM used in conjunction with crop and climate 
simulation models was useful in understanding the 
complex relationships between wheat genotypes, 
climate, and management practices. Isukapalli et al19 
compared a stochastic RSM with traditional Monte 
Carlo and Latin Hypercube Sampling (LHS) meth-
ods in a study of uncertainty propagation for envi-
ronmental and biological systems. The traditional 
methods required a prohibitive number of model 
simulations compared to the stochastic response 
surface for a wide range of problems; however, the 
results obtained in all 3 methods agreed closely.

Nitrogen is essential to agricultural sustainability 
but poor N management may lead to adverse environ-
mental impacts (eg, excessive leaching to groundwa-
ter).9 Clearly N application rate, type of tillage system, 
and soil physical properties significantly affect envi-
ronmental (eg, N transport in the surface and subsur-
face) and economic (eg, crop yield and subsequently 
gross margin) trade-offs, but the combined or interac-
tive effects of these variables is not clear. Accurate 
quantification of environmental and economic trade-
offs, as affected by multiple variables, is a first step 
toward developing relatively simple predictive man-
agement tools. Therefore, the primary objective of this 
research was to utilize RSM to develop an integrated 
farm-level economic/environmental risk framework 
for trade-off analysis between farm profitability and 
environmental externalities (impacts). We used 14 
years (1990–2003) worth of economic budget and 
environmental data collected from 36 0.4 ha experi-
mental plots at the Iowa State University Northeast 
Research and Demonstration farm near Nashua, Iowa. 
We consider maximization of economic profit and 
minimization of environmental impairment simulta-
neously by constraining the optimization problem at 
specific empirical limits for NO3-N in tile drainage 
flow and total soil profile residual N. The Nashua plot 
data suggests NO3-N leaching and/or corn and soy-
bean yield was significantly affected by N application 
amounts, cropping system, tillage system, and precip-
itation.9 Other desirable features of the Nashua data 
set are that it has been thoroughly investigated with 
multiple peer-reviewed manuscripts, includes numer-
ous N management treatments, is relatively long-term 
(1990–2003) with a range of yearly precipitation, and 
the soil associations present on the 0.4-ha experimen-
tal plots represent approximately 575,000 ha where 
corn or soybean is commonly grown in Iowa, USA.

Materials and Methods
Site description and management
Data for our study were obtained from 35 treatments 
on 36 plots (0.4 ha each) located at the Iowa State 
University Northeast Research Station near Nashua, 
IA, USA (43.0° N, 92.5° W). The experimental plots 
were established to quantify the impact of management 
practices on crop production and water quality.20,21 
The soils are predominantly Floyd loam (fine-loamy, 
mixed, mesic Aquic Hapludolls), Kenyon silty-clay 
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loam (fine-loamy, mixed, mesic Typic Hapludolls) 
and Readlyn loam (fine-loamy, mixed, mesic Aquic 
Hapludolls) with 30–40  g kg−1 (3%–4%) organic 
matter.22 These soils vary from moderately well to 
poorly drained, lie over loamy glacial till and belong 
to the Kenyon-Clyde-Floyd soil association. Soil 
slopes varied from 1% to 3% among the various plots. 
The field experiments were established on a 15 ha 
research site in 1977 using a randomized complete 
block design with 3 replications. The seasonal water 
table at the site fluctuates from 20–160 cm and sub-
surface drainage tubes/pipes (10  cm diameter) were 
installed in the fall of 1979 at 120 cm depth and 29 m 
apart. 3 experimental phases were conducted from 
1978–1992, 1993–1998, and 1999–2003. From 1978–
1992, there were 4 tillage treatments (chisel plow, 
moldboard plow, no-till, ridge-till) under 2 different 
cropping sequences (continuous corn and both phases 
of a corn-soybean rotation). Crop yield was the pri-
mary measurement from 1978–1989. Experimental 
data collected from 1990  included tile drain flow, 
NO3-N concentration in tile drain flow, residual N in 
soil, crop yield, biomass and plant N uptake. From 
1993–1998, there were 2 tillage treatments (chisel 
plow and no-till), with 8  N management treatments 
(eg, different rates, times of application, fertilizer type 
and/or swine manure) for chisel plow and 4 N treat-
ments for no-till with no change in the number of crop 
sequences. The experimental data collected remained 
essentially the same as from 1990–1992 with the addi-
tion of runoff. Continuous corn was replaced with 
both phases of the corn-soybean rotation in 1999, and 
the experiments were continued along with 10 fertil-
izer and swine manure treatments in the chisel plow 
system and 2 swine manure treatments in the no-till 
system. All plots received swine manure and/or urea-
ammonium-nitrate (UAN) fertilizer each cropping 
season, with the swine manure applied in either fall 
or spring using application rates based on N or phos-
phorus (P) needs for the corn-soybean/soybean-corn 
rotations. Experimental measurements from 1999–
2003 again focused on tile drain flow, NO3-N concen-
tration in drain flow, soil N, and crop yield, biomass and 
N uptake. Similar to Malone et al,9 tillage treatments 
were combined in this study to simplify the analysis 
and reduce the number of variables in the developed 
response surface equations. However, predominate 
tillage indirectly affects N in the soil profile and 

subsurface drainage and therefore the crop yield.20 
Table 1A lists the major management practices for each 
of the 35 treatments (ie, tillage and cropping systems) 
from 1990–2003 for the Nashua, IA, experiment. The 
major management practices for each of the 36 plots 
from 1990–2003 are listed in Table 1B.

Economic budgets
Economic budgets by plot for 1990–2003 (36 plots × 
14 years  =  504 plot-years) were developed as part 
of the web-based USDA Natural Resources Conser-
vation Service (NRCS)—EconDoc exchange tool. 
Primary data sources for the study included both 
Nashua experimental records and USDA National 
Agricultural Statistical Services (NASS) published 
data. Variable and farm machinery inputs for each till-
age system were based on actual management prac-
tices and equipment used at the Nashua agricultural 
experiment station. Similar to Williams et al,23 equip-
ment ages were assumed to be half of their depre-
ciable life (the half-life ranged from 5 to 7 years old 
depending on equipment type), with equipment prices 
deflated to the appropriate year the machine was pur-
chased to calculate the original value for depreciation. 
Variable costs included farm input costs and variable 
machinery costs. Farm input costs for tillage and vari-
able inputs, such as seed, fertilizer, or chemicals, were 
assumed similar for each tillage system and estimated 
based on actual management practices obtained from 
the experiment stations. Variable machinery costs 
were based on equipment usage and included oil and 
lubrication (estimated at 20% of total fuel costs), fuel 
consumption, and repair and maintenance. Following 
Yiridoe et al,24 machinery fixed costs including annual 
depreciation, interest on investment, and equipment 
storage, insurance, and repairs were allocated to each 
crop in the rotation based on usage (ie, if the same 
equipment was used for both corn and soybean pro-
duction, the associated annual fixed cost was split 
between the crops). Machinery insurance and storage 
were based on 2% of the purchase price. Labor require-
ments were calculated using the time required for field 
operations with the equipment used for the operation. 
Additional details on the total cost of production for 
each tillage system for the period prior to the experi-
mental phase analyzed in this study are described in 
Chase and Duffy.25 To determine gross returns, we 
used average annual prices for corn and soybeans from 
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NASS county data records and annual yields reported 
by the Nashua experiment station. Gross margins for 
each of the 4 tillage systems were then calculated 
by subtracting the operational costs from the corre-
sponding gross returns. Gross margin represents the 
enterprise’s contribution towards covering the fixed 
costs and generation of profit after operational costs 
have been covered.26 The gross margin data were then 

averaged across the experimental replications and dis-
counted to reflect the net present values.

Response surface problem formulation
RSM was first introduced by Box and Wilson27 and 
explores the relationships between several explanatory 
variables and one or more response variables. 
Response surface models are general linear models 

Table 1A. Major management practices by treatment at the Northeastern Research and Demonstration Farm, Nashua, IA 
from 1990–2003.#

Treatment  
no.

Treatment  
period

Cropping  
system

Tillage  
system

Treatment  
no.

Treatment  
period

Cropping  
system

Tillage 
system

1 1990–1992 CC NT 19 1993–1998 CC CP
2 1990–1993 CS NT 20 1994–2003 CS CP
3 1990–1992 SC NT 21 1993–2003 SC CP
4 1990–1992 CC CP 22 2000–2003 CS CP
5 1990–1993 CS CP 23 2001–2003 SC CP
6 1990–1992 SC CP 24 1993–1998 CC CP
7 1990–1992 CC MP 25 1994–2003 CS CP
8 1990–1992 CS MP 26 1993–2003 SC CP
9 1990–1992 SC MP 27 1999 CC CP
10 1990–1992 CC RT 28 2000–2003 CS CP
11 1990–1992 CS RT 29 2000–2003 SC CP
12 1990–1992 SC RT 30 2000 CC CP
13 1994–1998 CS NT 31 2001–2003 CS CP
14 1993–2000 SC NT 32 2001–2003 SC CP
15 1994–1999 CS CP 33 2000–2003 CS NT
16 1993–2000 SC CP 34 2001–2003 SC NT
17 1994–1999 CS NT 35 1999–2000 SC CP
18 1993–1998 SC NT

Abbreviations: #CS, corn-soybean rotation with corn during even years; SC, soybean-corn rotation with corn during odd years; CC, continuous corn;  
CP, chisel plow; RT, ridge-till; MP, moldboard plow; NT, no-till.

Table 1B. Major management practices by plot at the Northeastern Research and Demonstration Farm, Nashua, IA from 
1990–2003.#

Plot no. Dominant soil  
type

Cropping system Tillage system
1978–1992 1993–1998 1998–2003 1978–1992 1993–1998 1998–2003

1, 7, 30 Readlyn, Kenyon CS CS CS CP CP CP
2, 16, 20 Readlyn, Kenyon CS CS CS MP NT NT
3, 24, 28 Readlyn, Kenyon SC SC SC NT NT CP
4, 18, 33 Kenyon SC CS CS CP CP CP
5, 21, 26 Readlyn, Kenyon CC CC SC CP CP CP
6, 32, 36 Readlyn, Kenyon CC SC SC RT CP CP
8, 9, 19 Readlyn, Floyd CS CS CS RT CP CP
10, 15, 29 Kenyon CS CS CS NT NT CP
11, 23, 27 Kenyon SC SC SC RT CP CP
12, 17, 34 Kenyon, Floyd SC SC SC MP CP CP
13, 22, 35 Readlyn, Floyd CC CC CS MP CP CP
14, 25, 31 Readlyn, Kenyon CC SC SC NT NT NT

Abbreviations: #CS, corn-soybean rotation with corn during even years; SC, soybean-corn rotation with corn during odd years; CC, continuous corn;  
CP, chisel plow; RT, ridge-till; MP, moldboard plow; NT, no-till.
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where attention is focused on characteristics of the 
fitted response function, particularly where optimum 
estimated response values occur. The main idea of 
RSM is to use carefully designed empirical data sets 
to obtain an optimal response surface. The major 
advantage of the RSM approach, with the availability 
of today’s high-speed computational resources, is that 
a potentially computationally intensive model can be 
reduced to a simplified form that enables much faster 
model run times. The canonical analysis and eigen-
vectors analysis of the RSM model and the values 
of its coefficients may provide a useful indication of 
explanatory variable sensitivities.

A constrained RSM approach, including selected 
optimization algorithms (ie, the steepest descent 
or ascent) was applied to find the optimum surface 
regions of corn and soybean profitability from the 
Nashua, IA experimental plots subject to two con-
straints representing environmental externalities: 
NO3-N measured in tile drainage and total N mea-
sured in the soil profile from each experimental 
plot. The RSM approach in this study uses a sur-
face regression least squares method to fit linear, 
quadratic, and cross product response combined 
surfaces. 5 primary steps were performed for the 
analysis and were taken from multiple sources in the 
literature (eg, Box and Draper,28 Khuri and Cornell,29 
SAS Institute Inc.30):

1.	 Create a simple linear model and explore the nature 
of the response, β coefficients (ie, the slope of each 
explanatory variable), magnitude, and direction 
and level of significance.

2.	 Continue the exploration by moving towards the 
optimum zone response surface by following the 
favorable optimization (ie, the steepest descent 
or ascent) direction. For example, add more data, 
investigate relationships between the response and 
explanatory variables, and add scientifically sound 
(ie, statistically significant) variables.

3.	 If there are a large number of “hills” and 
“valleys” in the response surface graph, then a 
first-order model is inappropriate and a more 
complex model (ie, a second- or third-order 
model) will be needed to obtain a meaningful 
RSM approximation.

4.	 Perform a (lack of) fitness test using the F statistical 
test to measure overall performance of the model.

5.	 Use the final response surface model to perform 
the analysis and then summarize implications of 
the results.

For this study, 4 optimization models were con-
structed. 2 targets were maximized (yield and gross 
margin) on 2 crops (corn and soybeans), subject to 
limits of observed NO3-N in tile drainage flow and soil 
profile N. The overall model problem was estimated 
using the RSREG regression procedure in the Statistical 
Analysis System (SAS Institute28) software program, 
which uses the method of least squares to fit quadratic 
response surface regression models. For this study, the 
RSREG procedure was formulated as follows:

Maximize RSREG  =  Yij subject to Yik with limits 
LL to LU

where:
RSREG  =  Calculated response surface regression 

model.
LL = �Lower empirical level of NO3-N in tile drainage 

flow or soil profile N.
LU = �Higher empirical level of NO3-N in tile drainage 

flow or soil profile N.

The general format of the production or gross mar-
gin function is:

ijY x x x x x x= + + + + + +0 1 1 2 2 3 1
2

4 2
2

5 1 2β β β β β β ε* � (1)

where ε is the error term and Yij are the dependent 
variables [i is the crop (corn or soybean) and j is the 
yield or gross margin] subject to Yik = NO3-N in tile 
drainage or soil profile N (for corn or soybean). The 
model explanatory variables for corn were:

x1 = �crop rotation (classification variable for rota-
tion: continuous corn, corn-soybean, or soybean-
corn).

x2 = �tillage system (classification variable for tillage 
system type: chisel plow, reduced-till, moldboard 
plow, or no-till).

x3 = planting rate (# seeds/m of row).
x4 = �total profile soil water content (calculated using the 

RZWQM2 model for each experimental plot dur-
ing the 1990–2003 experimental analysis period).

x5 = �total applied N content (by plot) calculated as: 
N content = weight %*quantity applied or appli-
cation rate.
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where: weight% = atomic weight of N/molecular 
weight of the fertilizer)*100].

x6 = �year (classification variable for the years during 
the 1990–2003 experimental analysis period).

x7 = �effective soil porosity, ie, fraction of total volume 
where water flow effectively occurs (calculated 
using RZWQM2 for each plot during the 1990–
2003 experimental analysis period).

Profile soil water content and effective soil porosity 
values were taken from simulations of the Nashua, IA 
experimental data plots in which the RZWQM2 model 
with 26 years of data (1978–2003) was used to evalu-
ate year-to-year crop yield, water, and N balances.31 
RZWQM2 was calibrated using data from 2 0.4 ha 
plots and evaluated by comparing simulated values 
for crop yield, soil water content, tile drainage flow, 
NO3-N loading in tile drainage flow, and soil profile N 
with the corresponding measured data from the exper-
imental plots. Root mean square errors (RMSE) for 
simulated soil water storage, water table, and annual 
tile flow were 3.0, 22.1, and 5.6 cm, respectively. These 
values were close to the average RMSE for the mea-
sured data between replicates (3.2, 22.4, and 5.7 cm, 
respectively). RMSE values for simulated annual 
N loading and soil profile N were 16.8 and 47.0 kg 
N ha−1, respectively, which were somewhat higher 
than the average RMSE for measurements among 
replicates (12.8 and 38.8 kg N ha−1, respectively). The 
model explanatory variables for soybeans were:
x1 = �crop rotation (classification variable for rotations: 

corn-soybean or soybean-corn).
x2 = �tillage system (classification variable for tillage 

system type: chisel plow, reduced-till, moldboard 
plow, or no-till).

x3 = �total profile soil water content (calculated using 
RZWQM2 for each plot during the 1990–2003 
experimental analysis period).

x4 = �year (classification variable for the years during 
the 1990–2003 experimental analysis period).

x5 = �effective soil porosity, ie, fraction of total volume 
where water flow effectively occurs (calculated 
using RZWQM2 for each plot during the 1990–
2003 experimental analysis period).

The above models were optimized using the RSREG 
command in SAS, which automates most of these steps, 
ie, a model is fitted to a surface for Y1, subject to the lim-
its on Y2 and Y3, while also solving for the independent 

variables of interest. The RSREG procedure uses the 
lack-of-fit concept to confirm the parameters of inter-
est, a canonical analysis to optimize the shape of the 
function (accounting for local optima), and then ridge 
analysis to search for regional optima.30 In general, a 
lack-of-fit test determines if the response surface model 
needs to be improved through the addition or subtrac-
tion of independent or explanatory variables. The test 
compares the variation around the model with “pure” 
variation within replicated observations. This measures 
the adequacy of the response surface model. In par-
ticular, if there are n replicated observations Yi1, ... ,Yin 
of the response all at the same values xk of the factors, 
then the true response can be predicted at xi either by 
using the predicted Ŷ value based on the model or by 
using the mean Y of the replicated values. Thus, the 
test for lack-of-fit28 decomposes the residual error into 
a component due to the variation of the replications 
around their mean value (the “pure” error), and a com-
ponent due to the variation of the mean values around 
the model prediction (ie, the “bias” error):

n k n k
2 2

ij ij i ii i
i 1 j 1 i 1 j 1 i

ˆ ˆ( ) ( ) k( )Y Y Y YY Y
= = = =

− = − + −∑ ∑ ∑ ∑ ∑ 	 (2)

If the model is adequate, then both components 
estimate the nominal level of error; however, if the 
bias component of error is much larger than the pure 
error, this constitutes evidence that there is significant 
lack-of-fit.

Final response surface estimation
The response surface model steepest ascent or steepest 
descent process combines canonical and ridge analysis 
to develop a comprehensive surface over the range of 
values of interest for the 3 dependent variables. It is an 
iterative process. The search for an optimum response 
surface begins with simple linear models and simple 
designs to explore the nature of the response function 
in the vicinity/region of where we think the final factor 
combination settings would be located.28 The search 
for the optimum response starts with testing whether 
a first-order linear model provides adequate fitness 
(using the lack-of-fitness process explained above) for 
the response surface at the initial response region. The 
next step is usually to select local optimum points along 
the direction of steepest ascent (or descent, if response 
is to be decreased) and continue the search as long as 

http://www.la-press.com


Ascough et al

80	 Air, Soil and Water Research 2013:6

the response is behaving as expected, ie, the process is 
continuing to move in the current direction. When the 
response begins to decrease rather than increase (or 
vice versa), then new factor points are identified (using 
the SAS RIDGE procedure) and a new direction of 
steepest ascent or descent is determined (provided that 
a first-order model is satisfactory). The RIDGE proce-
dure computes the ridge of optimum response starting 
at a given point xo; the point on the ridge at radius r 
from xo is the collection of factor settings that opti-
mizes the predicted response at this radius. The ridge 
is analogous to climbing or falling as fast as possible 
on the surface of predicted response. Thus, the ridge 
analysis is useful as a tool to help interpret an existing 
response surface or to indicate the direction in which 
further experimentation should be performed.

If a first-order model is inadequate, then the search 
for the optimum points is enlarged by conducting 
additional runs at appropriately selected experimental 
points such that a second-order model may be fitted 
and its coefficients estimated.32 The process continues 
to a third-order model (ie, cross product of the explan-
atory variables) until the best fit model is obtained. 
The RSM process is interactive in the sense that the 
response surface modeler should test for first-order 
model fitness, add (scientifically sound) or eliminate 
(scientifically unsound) explanatory variables, mod-
ify input data (eg, biophysical model data), and re-test 
for the fitness again. A modeler would not typically 
move to a second-order model unless the first-order 
model showed a lack-of-fitness (and so forth to the 
third-order model). This process is applicable only in 
a situation such as this study where there is lack of a 
predefined functional form to reflect the complexity 
of the research problem. That is, the complexity in 
this study is primarily due to the lack of a predefined 
single functional form for biophysical variables, envi-
ronmental variables, and economic variables that can 
be combined together in a single model.

Example of using RSM  
with agro-ecosystem modeling
To illustrate the above discussion of RSM, the follow-
ing is a simple example of how the approach could be 
used in conjunction with an agroecosystem simulation 
model (such as RZWQM2) to approximate the process 
of identifying new plant cultivar technology as a result of 
potential change in irrigation management. Assume that 

a scientist would like to find levels of 2  inputs, D 
(a cultivar genetic trait such as days to maturity) and P 
(a management variable such as planting rate), which 
maximize yield (Y) of a particular crop for a different 
irrigation management scenarios. Furthermore, let yield 
be only a function of inputs D and P and a vector of irri-
gation management-related variables (eg, irrigation rate 
and timing) I or more specifically, Y = f(D,P,I) where a 
simulation model such as RZWQM2 accurately quanti-
fies this functional relationship. A predicted yield value 
is then generated for a particular set of inputs D and 
P by simulating for a particular irrigation management 
scenario I and using D, P and I in the RZWQM2 model 
to generate crop yields over time. In a broad sense, 
RSM proceeds by successively adjusting D and P until 
maximum yield is achieved which approximates the 
scientist’s search for improved cultivars and irrigation 
management practices.

In this simple example, the RSM procedure begins 
with an initial factorial first-order experiment, cen-
tered at the “current” levels of D and P (point a in 
Fig. 1) where each of the 4 design points are identi-
fied by the levels of D and P in Figure 1 and yield 
is measured on a third axis that is perpendicular to 
the D, P plane. Point a represents the current cultivar 
and irrigation management practice. At each of the 
four design points about a, yield values are simu-
lated over a number of years and the mean yield (Y) 
is obtained for each point. Based on these 4 Y val-
ues, a simple first-order statistical model: Y = b0 + 
b1X1 + b2X2 is fit to give a planar yield response 

Maximum yield

Final second-order experiment

Second first-order experiment

Initial first-order experiment

a

c
b

d

D
D, opt.

Days to maturity

P, opt.

P

P
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n
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n
g
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at

e

Figure 1. Example of RSM (path of steepest ascent) to identify maximum 
yield and optimal value for two explanatory variables based on hypotheti-
cal agroecosystem model simulation experiments.
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surface as a function of D and P. Using this surface, 
the path of steepest ascent is determined as the line 
that predicts the steepest increase in yield (line ab 
in Fig.  1). Yield values are simulated sequentially 
at various D and P values along the path of steepest 
ascent until yield decreases substantially. Another 
factorial experiment is then conducted near the 
point of highest yield on the path of steepest ascent 
(point c, Fig. 1), another first-order statistical model 
is fit and a second path of steepest ascent is identi-
fied (line cd, Fig. 1). The process is continued until 
there is little increase in yield at which point a final 
second-order experiment is conducted to identify 
the values of D and P that maximize yield (Dopt.|Popt. 
in Fig. 1). This final experiment is normally a central 
composite design and data from this experiment are 
analyzed with a second-order model y = b0 + b1X1 + 
b2X2 + b11X1

2 + b22X2
2 + b12X1X2. Differentiating the 

estimated equation with respect to D, setting the 
result equal to zero and solving gives the optimal 
inputs (Dopt.|Popt.). Evaluation of the fitted response 
surface then determines the nature of the surface 
and the nature of the Dopt.|Popt. values, ie, if they 
are maximum, minimum, or saddle-points. Ideally, 
the final values of Dopt. (days to maturity) and Popt. 
(planting rate) will maximize yield under future 
irrigation management scenarios at this location. 
Even though the values of Dopt. and Popt. are based 
on agro-ecosystem model simulations, they can be 
useful in understanding the types of cultivars and 
irrigation management practices that may be effica-
cious in the future. Although this example is some-
what unsophisticated, the method is quite general 
since any cropping system model with any number 
of input variables and any climate scenario can be 
used as long as the output (Y), the inputs (D, P) and 
the irrigation management variables (C) are clearly 
identified.

Results and Discussion
Table 2 summarizes the results for the 4 response sur-
face models (eg, corn yield, corn gross margin, soy-
bean yield, and soybean gross margin) used in this 
study for the first local optima reached in the RSM 
(ie, the point closest to the origin). This solution was 
found to be a local, but not necessarily global opti-
mum using the steepest ascent method; ridge analy-
sis produced other local optimum through additional 

searching of the factor space. In Table  2, the local 
optimum yield for corn is 7.6 t/ha, which would gen-
erate an optimum gross margin of $308/ha. The envi-
ronmental externality of the optimum corn yield and 
gross margin values is 20 kg/ha tile drainage NO3-N 
and 54 kg/ha total soil profile N. The optimum yield 
for soybean is 2.9 t/ha which would generate an opti-
mum gross margin of $380/ha. The environmental 
externality of the optimum soybean yield and gross 
margin values is 14  kg/ha tile drainage NO3-N and 
41 kg/ha total soil profile N (Table 2). In this case, the 
economic versus N environmental impact trade-off 
clearly varies by crop grown.

Table 3 summarizes the statistical analysis of the 
4 response surface models as they are expanded from 
the simple linear model to the full quadratic model 
with cross products. The R2 of the 4 models ranges 
between 0.73 and 0.84, with the corn yield model 
having the highest R2 and the corn gross margin and 
soybean yield models having the lowest. The linear 
model in all 4 cases contributed the most to overall 
model significance between the linear, quadratic, and 
cross product components of the response surface 
model. However, the response surface models were 
all improved when made more complex, ie, through 
the addition of soil water content (data not shown). 
Table 4 presents the lack-of-fitness measures for the 
4 final response surface models. The results indicate 
the absence of lack-of-fitness (ie, the models are sta-
tistically sound based on the F and P statistics for 
all of the response surface models with the soybean 

Table 2. Optimum values for the dependent variables 
(corn/soybean yield and gross margin) versus tile drain-
age NO3-N and soil profile N.#

Yield  
(t/ha)

Gross  
margin  
($/ha)

Tile drainage  
NO3-N  
(kg/ha)

Soil 
profile N 
(kg/ha)

Corn
  Mean 7.6 308 20 55
  RMSD 0.7 69 11 28
  R2 0.8 0.73 0.81 0.64
  CV 9.2 22 53 51
Soybean
  Mean 2.9 380 14 41
  RMSD 0.3 85 8 23
  R2 0.7 0.75 0.70 0.67
  CV 9.6 22 56 56

Abbreviations: #RMSD,  root mean square deviation; R2, coefficient of 
determination; CV, coefficient of variation.
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gross margin model performing the best (ie, it has 
the highest F and lowest P values). This result indi-
cates that using multiple response method regression 
analysis demands detailed data on both the depen-
dent variable and the explanatory variables in order 
to accurately simulate response surface models. The 
differences in the results between yield and gross 
margin in Table 4 also indicate the influence of input 
and output price in the trade-off analysis. Farmers 
face variation in their crop and input prices at the 
marketplace. Therefore, market prices play an impor-
tant role in the farmer’s decision to accept the trade-
off between using higher levels of N fertilization and 
environmental conservation efforts. Unfortunately, 

a full investigation of price variability is beyond the 
scope of this investigation.

Table 5 shows that all selected explanatory vari-
ables were significant at the P  ,  0.10 level with 
the exception of effective porosity. However, the 
inclusion of effective porosity in the response 
surface models plays a critical role in changing 
the lack-of-fitness measure from positive to nega-
tive (data not shown). In other words, the success 
of including an explanatory soil property variable 
(ie, effective porosity) in the response surface mod-
els indicates the importance of using biophysical 
measures when conducting a trade-off analysis. 
Therefore, this study shows both detailed economic 

Table 3. Response surface statistical analysis.

Regression model Degrees of  
freedom (DF)

Type I sum  
of squares

Coefficient of  
determination (R2)

F value

Corn yield
  Covariates (treatments) 1 0.01 0.00 0.02
  Linear 7 513.70 0.65 148.25
  Quadratic 7 58.48 0.07 16.88
  Cross product 21 92.49 0.12 8.90
  Total model 36 664.67 0.84 37.30
Corn gross margin
  Covariates (treatments) 1 64,556 0.01 13.49
  Linear 7 1,451,045 0.32 43.32
  Quadratic 7 653,825 0.14 19.52
  Cross product 21 1,206,973 0.26 12.01
  Total model 36 3,376,399 0.73 19.60
Soybean yield
  Covariates (treatments) 1 0.18 0.00 2.27
  Linear 5 24.44 0.44 61.26
  Quadratic 4 9.42 0.17 29.52
  Cross product 10 6.81 0.12 8.54
  Total model 20 40.86 0.73 25.60
Soybean gross margin
  Covariates (treatments) 1 109,860 0.02 15.07
  Linear 5 1,613,175 0.29 44.27
  Quadratic 4 1,213,498 0.22 41.62
  Cross product 10 1,269,317 0.23 17.42
  Total model 20 4,205,851 0.75 28.85

Table 4. Response surface fitness analysis.

Response surface  
model

Degrees of  
freedom (DF)

Sum  
of squares

Mean  
square

F value P value

Corn yield 253 126 0.50 2.25 0.36
Corn gross margin 253 1,217,254 4811.28 3.18 0.27
Soybean yield 187 15 0.08 2.77 0.16
Soybean gross margin 187 1,386,897 7416.56 5.74 0.05
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Figure 2. 3-D trade-offs between corn yield, tile drainage N, and soil profile N.
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Figure 3. 3-D trade-offs between corn gross margin, tile drainage N, and soil profile N.
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Table 6. Trade-offs for the dependent variables (corn/soybean yield and gross margin) and tile drainage NO3-N and soil 
profile N.

Yield vs.  
N trade-off

Yield  
(t/ha)

Yield  
reduction (%)

Tile drainage  
NO3-N (kg/ha)

Tile drainage NO3-N  
reduction (%)

Soil profile N  
(kg/ha)

Soil profile N 
reduction (%)

Corn 10.4# 55 114
8.7 16 49 11 93 18
7.8 25 44 20 72 37
7.6 27 20 64 55 52

Soybean 4.5# 40 160
3.8 16 34 15 135 16
3.2 29 13 41 85 47
2.9 36 14 59 41 74

Gross margin vs.  
N trade-off

($/ha)

Corn 485* 77 156
451 7 55 29 93 40
376 23 44 43 62 60
308 37 20 74 55 65

Soybean 546* 53 218
450 18 47 11 181 17
421 23 40 25 62 72
380 30 14 74 41 81

Notes: #Maximum possible corn/soybean yield within the RSM constrained region (only local optima are shown). *Maximum possible corn/soybean gross 
margin within the RSM constrained region (only local optima are shown).
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Figure 6. 2-D trade-off frontier between corn yield, tile drainage N, and soil profile N.

and biophysical variables may be required to 
robustly analyze trade-offs.

At this point, various economic and environmen-
tal trade-offs can be explored. The complete surfaces 
for yield and gross margins are shown for corn and 
soybeans in Figures 2–5. As would be expected, the 
surfaces are complex and exemplify many potential 
trade-offs. It is difficult to discern any clear patterns; 
however, local optima for yield or gross margin can 

be easily observed where the surface points upward. 
Fortunately, ridge analysis revealed that there were 
only 4 local optima for both yield and for gross mar-
gin, which greatly reduces the dimensionality of the 
problem without any loss of relevant information. As 
presented in Table 6, local optima for corn yield and 
gross margin ranges from 10.4 t/ha to 7.6 t/ha and 
$485/ha to $308/ha, respectively. Local optima for 
soybean yield and gross margin ranges from 4.5 t/ha 
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to 2.9 t/ha and $546/ha to $380/ha, respectively. The 
level of environmental impact is also provided for 
each local optimum listed in Table 6, which allows for 
easy comparison of the trade-offs between the eco-
nomic (ie, yield and gross margin) and environmen-
tal (ie, tile drainage NO3-N and total soil profile N) 
objectives. As an example for soybeans, tile drainage 
NO3-N could be reduced from 53 kg/ha to 40 kg/ha 
and total soil profile N from 218 kg/ha to 62 kg/ha if 
producers were willing to accept a reduction in gross 
margin from $546/ha to $421/ha. For the trade-off 

analysis, all inefficient choices were removed from 
consideration. The remaining local optima (Table 6) 
require a choice between economic gain or loss and 
corresponding environmental impacts. Furthermore, 
in each case for corn or soybean yields/gross margins, 
the local optima show a reduction in returns required 
to achieve a marginal reduction in nitrogen.

Table 6 also shows that the soybean trade-off results 
are much different than the corn trade-off results. The 
optimum response surface soybean yield is 2.9 t/ha 
(Table  2). At this level, the expected tile drainage 

$600

$500

$300

$400

$200

$100

$0
1 2 3 4

T
ile

 d
ra

in
ag

e 
an

d
 s

o
il

p
ro

fi
le

 N
 (

kg
 h

a−1
)

G
ro

ss
 m

ar
g

in
 (

$ 
h

a−1
)

$308 $376 $451 $485

20 44 55 77

55

Gross margin ($/ha)

Tile drainage N (kg/ha)

Soil profile N (kg/ha) 62 93 156

180

160

140

120

100

80

60

40

20

0

Corn

Figure 7. 2-D trade-off frontier between corn gross margin, tile drainage N, and soil profile N.

5

4

4.5

3.5

2.5

2

3

1

1.5

0.5

0
1 2 3 4

T
ile

 d
ra

in
ag

e 
an

d
 s

o
il

p
ro

fi
le

 N
 (

kg
 h

a−1
)

Y
ie

ld
 (

t 
h

a−1
)

2.9 3.2 3.8 4.5

14 21 34 40

41

Yield (t/ha)

Tile drainage N (kg/ha)

Soil profile N (kg/ha) 85 135 160

180

160

140

120

100

80

60

40

20

0

Soybean

Figure 8. 2-D trade-off frontier between soybean yield, tile drainage N, and soil profile N.

http://www.la-press.com


Response surface methodology for economic and environmental trade-offs

Air, Soil and Water Research 2013:6	 87

NO3-N is 14  kg/ha while the total soil profile N is 
41 kg/ha (Table 6). Increasing soybean productivity 
to 4.5 t/ha would add 26 kg/ha NO3-N to tile drainage 
and 119 kg/ha N to the soil profile. This indicates that 
very high levels of productivity in soybean produc-
tion can cause proportionally significantly high lev-
els of N in the soil profile and therefore potentially 
higher levels of environmental damage (eg, exces-
sive N leaching to groundwater) as compared to corn. 
Table  6 also shows the percent reduction in yield, 
tile drainage NO3-N, and soil profile N for each of 
the optima compared to the maximum possible corn/
soybean yield and gross margin within the RSM opti-
mum constrained region.

It is not easy to fully visualize the 3-D eco-
nomic and environmental trade-offs in Figures 2–5. 
Therefore, the information in Table 6 was used to cre-
ate visual 2-D representations of the economic and 
environmental trade-off frontiers. The 2-D trade-offs 
for corn yield and corn gross margin are presented 
in Figures 6–9, showing the 4 local optima for each 
trade-off case. For example, a farm manager must 
give up a substantial amount of corn yield (10.4 t/ha - 
8.7 t/ha = 1.7 t/ha) to reduce total soil profile N from 
114 to 93 kg/ha (or 21 kg/ha annually) while reducing 
tile drainage NO3-N by 6 kg/ha. Note that the opti-
mum response surface level of corn yield is 7.6 t/ha 
(Fig. 6). At this level, both tile drainage NO3-N and 
total soil profile N reach their minimum possible 

levels (20 kg/ha and 55 kg/ha, respectively, as shown 
in Table 6). As expected, when prices and production 
costs enter the equation in the form of gross margin as 
the trade-off factor, the levels of N reductions in the 
economic case are not proportional to the yield reduc-
tion case to the fact that yield and gross margin have 
a nonlinear relationship. As an example for corn, the 
farm manager must sacrifice approximately $177/ha 
(from $485/ha to $308/ha) in gross margin in order 
to reduce tile drainage NO3-N by 57 kg/ha and total 
soil profile N by 101 kg/ha annually, or 65% (Table 6 
and Fig. 7). This result is consistent with the study of 
Koikkalainen et al33 that showed a trade-off of about 
€ 52/ha when farmers reduced N use by over 50%.

Conclusions and Limitations
Our results indicate that trade-offs between farm 
profitability and environmental externalities are com-
plex and vary significantly depending on the crop. In 
this study, we present detailed tabular and graphical 
economic and environmental trade-offs between corn 
and soybean yield/gross margin and N in tile drain-
age flow and the soil profile. An important finding of 
this research is that there was no one single point of 
trade-off between economics and the environment. 
Furthermore, the trade-offs reflect economic and 
environmental returns to scale. That is, if a farm man-
ager reduces the amount of N applied by 1 half, then 
the environmental benefits would more than double. 
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However, if the same farm manager doubled the 
amount of N applied, the economic benefits would be 
more than double. We believe that this concept could 
have direct and significant policy consequences. For 
instance, a policy that targets support of farmers who 
are willing to trade-off economic gains for envi-
ronmental benefits should consider both economic 
returns to scale and the (multiplicative) environmen-
tal benefits due to a reduction in resource use (the 
implications of which are shown herein).

Response surface methodology (RSM) provides a 
useful mechanism to quantitatively evaluate tillage and 
cropping system treatments under northeast Iowa cli-
matic conditions. However, the underlying regression 
equations are limited in that extrapolation beyond the 
experimental data may be unwarranted, ie, applying 
the RSM regression equations beyond the experimen-
tal conditions would require comprehensive re-testing 
and modification of the regression models for those 
conditions. Other important weather variability that 
drives NO3-N loading such as rainfall distribution 
within the season was not considered because addi-
tional variables would increase the complexity and 
the limited years of observations poses difficulty. The 
use of process-based models was recommended by 
Malone et al9 to overcome some of the limitations of 
regression-based modeling and to more comprehen-
sively evaluate and quantify yield and NO3-N loading. 
The reasoning behind their recommendation was: (1) 
process-based models allow extrapolation of manage-
ment and climate effects to conditions (climate, soil, 
management) where observed data is sparse or non-
existent, and (2) process-based models also allow cause 
and effect analysis because observed data is necessarily 
limited.9 However, direct use of process-based models 
to predict NO3-N transport in artificially drained soil 
is too time-consuming for conservation planners and 
land managers. Prior research has suggested using a 
meta-modeling (eg, polynomial regression, splines, 
and neural networks) approach to upscale field scale 
modeling results of N leaching to regions (eg, Wu 
and Babcock,34 Borgesen et  al,35 Haberlandt et  al36). 
Development of the response surfaces for the Nashua 
experimental plot data suggests meta-models can be 
developed to quantify NO3-N leaching and crop yield 
under a variety of climate and management conditions 
in artificially drained soil.

In summary, farm managers face challenging 
decisions when considering trade-offs between eco-
nomics and the environment. Trade-off analysis is 
a complex issue and involves a large numbers of 
factors that influence the decision maker. The use 
of RSM was found to be appropriate in this study 
for analyzing this type of complex problem in that 
quantifiable independent variables were identified 
(eg, crop rotation, tillage system, planting rate, pro-
file soil water content, amount of N applied) that 
significantly affected the dependent variables corn/
soybean yield and gross margin. These variables 
were predicted with reasonable accuracy; there-
fore, the developed RSM regression equations are a 
step toward development of a simple, accurate, and 
objective method to quantify management and cli-
mate effects on NO3-N loading and crop yield for a 
region.
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