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Abstract: De novo neurosteroidogenesis from cholesterol occurs in the brain of various avian species. However, the biosynthetic path-
ways leading to the formation of neurosteroids are still not completely elucidated. We have recently found that the avian brain produces 
7α-hydroxypregnenolone, a novel bioactive neurosteroid that stimulates locomotor activity. Until recently, it was believed that neu-
rosteroids are produced in neurons and glial cells in the central and peripheral nervous systems. However, our recent studies on birds 
have demonstrated that the pineal gland, an endocrine organ located close to the brain, is an important site of production of neuroster-
oids de novo from cholesterol. 7α-Hydroxypregnenolone is a major pineal neurosteroid that stimulates locomotor activity of juvenile 
birds, connecting light-induced gene expression with locomotion. The other major pineal neurosteroid allopregnanolone is involved in 
Purkinje cell survival during development. This paper highlights new aspects of neurosteroid synthesis and actions in birds.
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Introduction
Steroids supplied by peripheral steroidogenic glands 
regulate a variety of important brain functions dur-
ing development, which persist into adulthood in 
 vertebrates. Because steroids are lipid soluble, periph-
erally secreted steroid hormones can cross the blood-
brain barrier and act on the brain through intracellular 
receptors that regulate the transcription of specific 
genes. Accordingly, the brain has been considered as 
a target site of peripheral steroid hormones in verte-
brates. In contrast to this classical concept, studies 
conducted over the past two decades have demon-
strated that the central and peripheral nervous systems 
have the capacity of synthesizing steroids de novo 
from cholesterol, the so-called  neurosteroids (See 
reviews by Baulieu,1 Tsutsui et al,2,3 Compagnone and 
Mellon,4 Mellon and Vaudry,5 Tsutsui et al,6,7 Tsutsui 
and Mellon,8 and  Do-Rego et al9).

Baulieu and colleagues10–18 originally demon-
strated the formation of neurosteroids in the brain 
of mammals. It is now known that the brain of non-
mammalian vertebrates also possesses several kinds 
of steroidogenic enzymes and produces a variety of 
 neurosteroids (See reviews by Tsutsui et al,2,3 Mellon 
and Vaudry,5 Tsutsui et al,6,7 Tsutsui and Mellon,8 and 
Do-Rego et al9). In birds, biosynthesis of neuroster-
oids has been reported in galliform bird species such 
as the Japanese quail Coturnix japonica2,6,19–26 and in 
passeriform bird species such as the zebra finch Tae-
niopygia guttata.27–35 The formation of several neu-
rosteroids from cholesterol is now also documented 
in various species of amphibians36–47 and fish.48–51 
Therefore, de novo synthesis of neurosteroids from 
cholesterol in the brain appears to be conserved 
across vertebrate species (See reviews by Baulieu,1 
Tsutsui et al,2,3 Compagnone and Mellon,4 Mellon and 
Vaudry,5 Tsutsui et al,6,7 Tsutsui and Mellon,8 and Do-
Rego et al9).

However, the biosynthetic pathways leading to 
the formation of neurosteroids in vertebrates are still 
not completely elucidated (See review by Tsutsui 
et al7). In fact, Tsutsui and colleagues recently iden-
tified 7α-hydroxypregnenolone as a novel bioactive 
neurosteroid in the brain of the Japanese quail52 and 
the Japanese red-bellied newt Cynops pyrrhogaster.40 
Importantly, 7α-hydroxypregnenolone acts on brain 
tissue as a novel neuronal modulator to stimulate 

locomotor activity of quail52 and newts.40 It was also 
found that cytochrome P450 7α-hydroxylase (cyto-
chrome P4507α, gene name Cyp7b) catalyzes preg-
nenolone to produce 7α-hydroxypregnenolone in the 
brain of these species.52,53 It was further demonstrated 
that melatonin acts on cytochrome P4507α-expressing 
neurons to regulate 7α-hydroxypregnenolone 
 synthesis, thus regulating diurnal locomotor activi-
ties in quail.52

Until recently, it was believed that neurosteroids are 
produced only in neurons and glial cells in the central 
and peripheral nervous systems. Now there is evidence 
that in the juvenile chicken and quail, the pineal gland, 
an endocrine organ located close to the brain, actively 
produces a variety of neurosteroids de novo from cho-
lesterol.54,55 Notably, 7α-hydroxypregnenolone and 
allopregnanolone (3α,5α-tetrahydroprogesterone, that 
is, 3α,5α-THP) are major neurosteroids secreted by 
the pineal gland.54,55 Importantly, the avian pineal 
gland produces 7α-hydroxypregnenolone that stimu-
lates locomotor activity in light-dependent and circa-
dian time-dependent manners.54 On the other hand, 
allopregnanolone produced by the pineal gland pre-
vents cell death of Purkinje cells in the cerebellum 
during development.55

Based on new findings obtained by the studies 
on birds, this review highlights the advances in our 
understanding of the biosynthesis and biological 
actions of 7α-hydroxypregnenolone, a newly dis-
covered bioactive neurosteroid, in the avian brain. 
Because the effect of 7α-hydroxypregnenolone on 
locomotion may be through neuromodulation, this 
review also describes recent findings in songbirds 
and quail, where neurosteroids have been implicated 
to have rapid neuromodulatory effects that influence 
song production and processing or sexual behavior 
of birds. Finally, this review describes what are cur-
rently known about the biosynthesis and biological 
actions of pineal 7α-hydroxypregnenolone and allo-
pregnanolone in birds.

classical concept  
of neurosteroidogenesis  
in the Avian Brain
Birds have served as excellent animal models for 
the investigation of neurosteroidogenesis.  Tsutsui 
and colleagues analyzed neurosteroids formed 
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from cholesterol using the Japanese quail and 
demonstrated that the brain of this bird possesses 
cytochrome P450 side-chain cleavage enzyme 
(P450scc, gene name Cyp11a), 3β-hydroxysteroid 
dehydrogenase/∆5-∆4-isomerase (3β-HSD, gene 
name Hsd3b), 5β-reductase (gene name Srd5b), 
cytochrome P450 17α-hydroxylase/c17,20-lyase 
(P45017α,lyase, gene name Cyp17), 17β-hydroxysteroid 
dehydrogenase (17β-HSD, gene name Hsd17b), and 
so on, and produces pregnenolone, progesterone, 
epipregnanolone (3β,5β-tetrahydroprogesterone, that 
is, 3β,5β-THP), androstenedione, testosterone, and 
estradiol-17β from cholesterol (Fig. 1).2,6,19–26 The 
expression and activity of cytochrome P450 aro-
matase (P450arom, gene name Cyp19), which con-
verts testosterone into estradiol-17β, have also 
been demonstrated in the quail brain (Fig. 1).56–67 
Schlinger and colleagues independently performed 
similar studies to demonstrate neurosteroidogenesis 
in the brain of zebra finches.27–35 The formation and 
metabolism of neurosteroids from cholesterol is now 
established in the brain of birds.

As summarized in Figure 1, it appears that the avian 
brain possesses a variety of steroidogenic enzymes and 
produces pregnenolone, progesterone, epipregnano-
lone, androstenedione, testosterone, and estradiol-17β 
from cholesterol. The discovery of these neurosteroids 
in the avian brain has expanded our knowledge of the 
sources of active steroidal  molecules, the time-course 
of their actions in the brain, and the kinds of brain 
functions in which neurosteroids have significant 

functions (See review by  Tsutsui68). Studies of avian 
neurosteroids are currently of great interest to many 
researchers.

Discovery of 7α-Hydroxypregnenolone, 
a novel Bioactive neurosteroid, in the 
Avian Brain and Its Biological Action 
on Locomotion
Identification of 7α-hydroxypregnenolone
Recently, 7α- and 7β-hydroxypregnenolone have 
been discovered in the avian brain as novel preg-
nenolone metabolites (Fig. 2).52 Subsequently, it has 
been demonstrated that 7α-hydroxypregnenolone is 
converted from pregnenolone by cytochrome P4507α 
(Fig. 2).52

Based on a preliminary finding that the quail 
brain actively produces unknown neurosteroids 
from pregnenolone, Tsutsui and colleagues sought 
to identify these neurosteroids from the adult quail 
brain by using biochemical techniques including 
high-performance liquid chromatography (HPLC), 
thin-layer chromatography (TLC) and gas chroma-
tography-mass spectrometry (GC-MS) analyses.52 
Quail brain homogenates were incubated with triti-
ated pregnenolone and radioactive metabolites were 
analyzed by reversed-phase HPLC. Several nonradio-
active steroids were used as reference standards for 
HPLC analysis, and 7α-hydroxypregnenolone and 
its stereoisomer, 7β-hydroxypregnenolone, exhib-
ited the same retention time of the radioactive peak 
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Figure 1. Classical biosynthetic pathways for neurosteroids in the avian brain. The arrows indicate the biosynthetic pathways of neurosteroids identi-
fied previously in the quail brain. De novo neurosteroidogenesis in the brain from cholesterol appears to be a conserved property across vertebrates. 
P450scc, cytochrome P450 side-chain cleavage enzyme; 3β-HSD, 3β-hydroxysteroid dehydrogenase/∆5-∆4-isomerase; P45017α,lyase, cytochrome P450 
17α-hydroxylase/c17,20-lyase; 17β-HSD, 17β-hydroxysteroid dehydrogenase; P450arom, cytochrome P450  aromatase. See the text for details.
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(Fig. 2A).52 The HPLC peak fraction was collected 
and subjected to TLC to separate the isomers. Quail 
brain homogenates produced two metabolites from 
3H-pregnenolone corresponding to the positions of 
the 7α- and 7β-hydroxypregnenolone standards by 
TLC analysis (Fig. 2B).52 The metabolites of preg-
nenolone were further analyzed by GC-MS. Based on 
GC-selected ion monitoring (SIM) analysis (m/z 386), 
the metabolites had retention times that were iden-
tical to those of 7α-hydroxypregnenolone and 
7β-hydroxypregnenolone, respectively (Fig. 2C).52

Identification of cytochrome P4507α  
and 7α-hydroxypregnenolone formation
7α-Hydroxypregnenolone is synthesized from 
pregnenolone through the enzymatic activity of 
cytochrome P4507α (Fig. 2E). To demonstrate that 
7α-hydroxypregnenolone is synthesized in the 
brain, it is necessary to show that the brain expresses 
cytochrome P4507α. A 2,341-bp full-length cDNA 
encoding a putative cytochrome P4507α was identi-
fied from the quail brain.52 The enzymatic activity 

of this putative quail cytochrome P4507α was dem-
onstrated in the homogenates of COS-7 cells trans-
fected with the putative quail cytochrome P4507α 
cDNA.52 Combination of HPLC and GC-MS analy-
ses revealed that the homogenate converted preg-
nenolone into 7α-hydroxypregnenolone. Both 
7α- and 7β-hydroxypregnenolone are clearly pres-
ent in the quail brain, although it is still unclear 
whether cytochrome P4507α can also convert preg-
nenolone into 7β-hydroxypregnenolone (Fig. 2).52 
The production of 7α-hydroxypregnenolone in the 
brain may be a conserved property of vertebrates 
because this neurosteroid has been identified in 
the brain of newts40 and mammals.69–72 Recently, 
a cDNA encoding cytochrome P4507α was iden-
tified in the newt brain.53 The homogenate of 
COS-7 cells transfected with the newt cytochrome 
P4507α cDNA indeed converted pregnenolone into 
7α-hydroxypregnenolone.53

The biosynthesis and concentrations of 7α- and 
7β-hydroxypregnenolone in different brain regions of 
the quail of both sexes were compared by HPLC and 
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Figure 2. Identification of 7α- and 7β-hydroxypregnenolone in the avian brain and stimulatory action of 7α-hydroxypregnenolone on locomotor  activity 
in birds. (A) HPLC profile of unknown metabolites of pregnenolone by using a reversed-phase column. Quail brain homogenates were incubated with 
3H-pregnenolone, and the extracts were subjected to HPLC. The ordinate indicates the radioactivity measured in each HPLC fraction, and the arrows 
indicate elution positions of standard steroids, pregnenolone, and 7α- and 7β-hydroxypregnenolone. (B) Autoradiography of the unknown pregnenolone 
metabolites (right column) and standard steroids 7α- and 7β-hydroxypregnenolone (left column) on TLC under the same condition as in A. (c) GC-
selected ion monitoring (SiM) mass trace of m/z 386 in the extract from quail brain homogenates. The arrowheads indicate the retention times of 
7α-hydroxypregnenolone and 7β-hydroxypregnenolone. (D) Effect of 7α- and 7β-hydroxypregnenolone on locomotor activity in the male quail. Male quail 
received an iCv injection of vehicle (saline alone, n = 8), 7α-hydroxypregnenolone (n = 8) or 7β-hydroxypregnenolone (n = 8). Locomotor activity of each 
group is expressed as the percentage of the vehicle value. Each column and vertical line represent the mean ± SEM. *P , 0.05 versus vehicle by one-way 
analysis of variance (ANOvA), followed by Duncan’s multiple range test. (e) A newly identified biosynthetic pathway leading of the formation of 7α- and 
7β-hydroxypregnenolone. P4507α  cytochrome P450 7α-hydroxylase. See Tsutsui et al52 and the text for details.
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GC-MS analyses.52 The two neurosteroids were found 
at the highest concentration in the  diencephalon, 
and their concentrations were very low in other brain 
regions.52 The biosynthetic activities and concentra-
tions of 7α- and 7β-hydroxypregnenolone in the dien-
cephalon were found to be much higher in males than 
females.52 Such a sexual dimorphism of cytochrome 
P4507α only occurs in the diencephalon.52 Similarly, 
there are sex differences in 3β-HSD and cytochrome 
P450arom in the avian brain.33,34,56

Biological action of 7α- 
hydroxypregnenolone on locomotor activity
It is well known in birds52 as well as in other verte-
brates73,74 that locomotor activity of males is higher 
than that of females. We found that there were clear 
sex differences in the synthesis and concentration of 
diencephalic 7α- and 7β-hydroxypregnenolone.52 It 
may be that these neurosteroids play a role in the 
control of locomotor activity of males. Because 
the male quail displays a robust locomotor activity 
rhythm when held under typical light/dark lighting 
schemes,75,76 this bird serves as an excellent animal 
model to demonstrate the biological action of 7α- and 
7β-hydroxypregnenolone. Both of the neurosteroids 
were administered  intracerebroventricularly (ICV) 
to the male quail during night, when the activity is 
low, to examine whether they could affect  locomotor 
activity.52 Thirty minutes after administration of 
7α-hydroxypregnenolone, locomotor activity was 
measured by using an implantable telemetry system.52 
A stimulatory effect of 7α-hydroxypregnenolone 
was observed in male quail (Fig. 2D).52 In  contrast, 
7β-hydroxypregnenolone did not influence the 
locomotor activity (Fig. 2D).52 It thus appears that 
7α-hydroxypregnenolone acts as a novel bioactive 
neurosteroid to stimulate locomotor activity in male 
quail (See reviews by Tsutsui et al77–81). A simi-
lar stimulatory effect of 7α-hydroxypregnenolone 
on locomotor activity has been shown in male 
newts.40,82

From sex differences in 7α-hydroxypregnenolone 
synthesis, concentration, and locomotor activity 
in quail,52 it is considered that this neurosteroid 
plays an essential role in the control of locomotor 
activity in males.52 Consistent with this notion, it 
has been shown that the cytochrome P450 inhibitor 

ketoconazole decreases locomotor activity in male 
quail.52 Unlike males, 7α-hydroxypregnenolone 
administration does not affect locomotor activ-
ity in females,52 suggesting that the receptor for 
7α-hydroxypregnenolone is not present or inactive 
in the female.

Mode of action of 7α-hydroxypregnenolone
It is important to clarify the mode of action of 
7α-hydroxypregnenolone on locomotor activity in 
birds and other vertebrates. Tsutsui and colleagues 
have first indicated that 7α-hydroxypregnenolone acts 
as a neuronal modulator to stimulate locomotor activ-
ity of male newts through the dopaminergic system.40 
7α-Hydroxypregnenolone increased the concentra-
tion of dopamine in the male newt brain, especially in 
the rostral brain region including the striatum, which 
is known to be involved in the regulation of locomo-
tor behavior.40 In addition, 7α-hydroxypregnenolone 
increased dopamine release from cultured male brain 
in vitro.40 The effect of 7α-hydroxypregnenolone 
on locomotion was abolished by administration of 
haloperidol or sulpiride, two dopamine D2 receptor 
antagonists.40

In the male quail brain, the expression of Cyp7b 
mRNA was localized in several diencephalic regions, 
such as the nucleus preopticus medialis (POM), the 
nucleus paraventricularis magnocellularis (PVN), 
the nucleus ventromedialis hypothalami (VMN), the 
nucleus dorsolateralis anterior thalami (DLA), and the 
nucleus lateralis anterior thalami (LA).52  Dopaminergic 
neurons that are located in the mesencephalic region, 
including the ventral tegmental area (VTA) and the 
substantia nigra (SN), project to the telencephalon, 
in particular in the striatum in birds.83,84 Importantly, 
the telencephalic region is enriched with dopamine 
D1 and D2 receptors in birds.85,86  Accordingly, 
7α-hydroxypregnenolone actively synthesized in the 
diencephalon may act on dopamine neurons localized 
in the VTA and SN to stimulate dopamine release 
from their termini in the striatum and increase loco-
motor activity in male quail as in male newts (See 
reviews by Tsutsui et al77–81 and Haraguchi et al82) 
(See Fig. 3A).

The acute stimulatory action of 
7α-hydroxypregnenolone on locomotor activity 
strongly suggests that this neurosteroid acts through 
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a nongenomic rather than a genomic mechanism 
in quail.52 It has been reported in the rat that pro-
gesterone metabolite allopregnanolone modulates 
locomotion87 and dopamine release88,89 via a nonge-
nomic pathway. It is hypothesized that the neuro-
modulatory action of allopregnanolone is mediated 
through γ-aminobutyric acid type A (GABAA) 
receptors, since allopregnanolone is a potent allos-
teric modulator of GABAA receptors90,91 and dop-
aminergic neurons are regulated by GABAergic 
 transmission.92 Similarly, pregnenolone can also act 
via nongenomic mechanisms by binding to GABAA 
and N-methyl-D-aspartate (NMDA) receptors to 
enhance neuronal excitability.91,93 Whether the acute 
actions of 7α-hydroxypregnenolone on  dopamine 
release and locomotor activity in quail are also medi-
ated through GABAA and/or NMDA receptors, or 
through an unknown membrane receptor, remains to 
be determined.

Diurnal changes in 7α-  
hydroxypregnenolone synthesis  
and its regulatory mechanisms
To clarify the functional significance of 
7α-hydroxypregnenolone in the regulation of 
 locomotor activity, diurnal changes in both locomotor 
activity and diencephalic 7α-hydroxypregnenolone 
concentrations were analyzed in the male quail 
exposed to a daily photoperiod of 16 h/8 h light/
dark cycles (lights on at 07:00 am, off at 11:00 pm). 

 Locomotor activity of males was much higher than 
that of females from the time of lights on until noon 
but decreased to female levels thereafter.52 These 
changes in locomotor activity in males were directly 
correlated with 7α-hydroxypregnenolone concentra-
tions in the diencephalon, the maximum value occur-
ring at 11:00 am when locomotor activity was high.52 
Furthermore, administration of ketoconazole sup-
pressed locomotor activity at 11:00 am.52 Thus, the 
increase in diencephalic 7α-hydroxypregnenolone 
may account for the higher locomotor activity in 
males. As mentioned above, the lower level of 
7α-hydroxypregnenolone synthesis and concentra-
tion in the female diencephalon suggests that this 
neurosteroid may not be involved in the control of 
locomotor activity in females.

Melatonin may regulate the biosynthesis of 
7α-hydroxypregnenolone in the diencephalon and 
thereby influence locomotor activity because mela-
tonin is known to be involved in the regulation of 
locomotor activity in birds.94–100 A series of experi-
ments were thus carried out to investigate the pos-
sible involvement of melatonin in the regulation 
of diurnal changes in 7α-hydroxypregnenolone 
production in male quail.52 Concomitant pinealec-
tomy (Px) and orbital enucleation (Ex) provoked 
a marked increase in the production and concen-
tration of 7α-hydroxypregnenolone and stimu-
lated the expression of Cyp7b mRNA in the quail 
 diencephalon.52 Reciprocally, melatonin adminis-
tration to Px/Ex quail decreased the production and 
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Figure 3. Mode of action of 7α-hydroxypregnenolone on  locomotor activity and melatonin action on 7α-hydroxypregnenolone synthesis in quail. (A) A 
schematic model depicting the mode of action of 7α-hydroxypregnenolone on the regulation of locomotor activity in male quail. (B) A schematic model 
depicting the action of melatonin on the regulation of 7α-hydroxypregnenolone synthesis and locomotor activity in male quail. See Tsutsui et al52 and the 
text for details.
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concentration of 7α-hydroxypregnenolone and 
inhibited the  expression of Cyp7b mRNA in the 
diencephalon.52 The inhibitory effect of melatonin 
on 7α-hydroxypregnenolone synthesis was abro-
gated by luzindole, a melatonin receptor antagonist.52 
It thus appears that melatonin secreted by the pineal 
gland and eyes may act as an inhibitory factor of 
7α-hydroxypregnenolone synthesis in the quail brain 
(Fig. 3B). This mechanism may account for the results 
of earlier studies indicating that melatonin treatment 
reduces locomotor activity in quail,99,101 sparrows, 
and owls.99

It is well established that the nocturnal secretion 
of melatonin depends on the duration of the dark 
period,102 the onset of melatonin secretion occur-
ring soon after the onset of darkness.103 Therefore, 
the increase in 7α-hydroxypregnenolone production 
observed in the brain of male quail during the light 
period can likely be accounted for by the decrease 
in endogenous melatonin secretion (Fig. 3B). Since 
7α-hydroxypregnenolone stimulates locomotor activ-
ity in male quail, this neurosteroid may play a crucial 
role in diurnal changes in locomotor activity through 
the action of melatonin.

In birds and other vertebrates in general, there is a 
circadian rhythm in locomotor activity controlled by 
daily rhythm of melatonin secretion.94–100,104 However, 
until recently, the neuroendocrine mechanisms medi-
ating this behavioral action of melatonin remained 
totally unknown. The discovery of the function of 
7α-hydroxypregnenolone in mediating the action of 
melatonin on diurnal locomotor rhythmicity is an 
important step in understanding these mechanisms.52 
A similar mechanism may underlie the regulation 
of diurnal locomotor rhythms in other vertebrates, 
because 7α-hydroxypregnenolone is also produced 
in the brain of newts40 and mammals69–72 (See reviews 
by Tsutsui et al77–81).

Discovery of neuromodulatory effects 
of neuroestrogens in the Avian Brain
As described above, the brain of quail and other 
birds possesses cytochrome P450arom, which con-
verts testosterone into estradiol.56–62,105 Cytochrome 
P450arom and estrogen receptors are both expressed 
in several brain regions including the preoptic area 
that is involved in the control of reproductive behav-
iors in birds.56–62,105 We detected, biochemically, the 

formation of estradiol from progesterone in the quail 
diencephalon including the preoptic area.20

There is evidence for activation of territo-
rial  behavior by neurosteroids in the song sparrow 
Melospiza melodia.106,107 It is known that territorial 
behavior of this species is expressed in the nonbreed-
ing season, although circulating testosterone levels 
are low.108 Because the brain of zebra finch expresses 
3β-HSD and cytochrome P450arom,34,35,67 these ste-
roidogenic enzymes may produce estrogens from 
dehydroepiandrosterone originated from the periph-
eral gland during the nonbreeding season. Because 
the brain of zebra finches also expresses cytochrome 
P450scc and cytochrome P45017α,lyase,

28–31 dehydroe-
piandrosterone may also be produced de novo from 
cholesterol in the brain of these birds. More research 
is needed to evaluate the function of neurosteroids 
produced in the brain from cholesterol de novo and 
the role of central metabolism of steroids originally 
coming from the periphery. As in zebra finches, 
song sparrows expressed 3β-HSD and cytochrome 
P450arom in the brain.67,109,110 Cytochrome P450arom 
is elevated in the non-breeding season in the brain.109 
3β-HSD is expressed and active in the song sparrow 
brain.67,110 3β-HSD is also elevated during the non-
breeding season.

There are several reports showing changes in neu-
rosteroid formation in relation to social interactions. 
A recent study showed that within the caudomedial 
nidopallium marked changes in estradiol occurred 
when males were exposed to females or to conspe-
cific zebra finch song.111 Estrogens produced in the 
local brain region are thought to rapidly strengthen 
auditory encoding and guide song preference in a 
songbird.112 Changes in estradiol formation were 
reduced by exposure to fadrozole, an inhibitor of 
cytochrome P450arom, or to glutamate as in quail 
hypothalamus.66 These findings suggest rapid control 
of cytochrome P450arom activity by glutamatergic 
inputs.66 In quail hypothalamic explants, cytochrome 
P450arom undergoes Ca2+-dependent phosphory-
lation that reduces cytochrome P450arom activity 
within minutes.63–65 Treatments of these explants 
with K+ or with glutamate receptor agonists produce 
a similar rapid inhibition of cytochrome P450arom 
activity.63 These results suggest that voltage-gated 
Ca2+ channels serves as a key regulatory signal for 
rapid estrogen production.
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Synaptic estrogen formation in the brain is becom-
ing clear in songbirds and other birds113,114 as in 
mammals.115 Compartmentalization of cytochrome 
P450arom within presynaptic boutons is considered 
to be crucial to provide sex- and song-specific estro-
genic signals in the songbird brain.114,116

Biosynthesis of neurosteroids in the 
pineal Gland and Biological Actions 
of pineal neurosteroids in Birds
Neurosteroidogenesis in the pineal gland
Until recently, it was generally believed that neuro-
steroids are produced only in the central and periph-
eral nervous systems. However, our recent studies 
in chickens54 and quail55 have demonstrated that the 
pineal gland, an endocrine organ located close to the 
brain, actively synthesizes neurosteroids de novo 
from cholesterol (Fig. 4). In fact, the steroidogenic 

acute regulatory protein (StAR, gene name StAR) 
and cytochrome P450scc were both expressed in the 
pineal gland of juvenile chickens54 and juvenile quail 
(Fig. 4).55 Immunohistochemistry with cytochrome 
P450scc antibodies showed intense staining in cells 
forming follicular structures in the quail pineal gland.55 
Incubation of the pineal glands of quail chicks with 
tritiated cholesterol led to the formation of a radioac-
tive metabolite that exhibited the same retention time 
as pregnenolone by HPLC analysis.55 The occurrence 
of pregnenolone in the pineal gland was also demon-
strated by GC-MS analysis.55

Subsequently, the expressions of several key ste-
roidogenic enzymes, including cytochrome P4507α, 
3α-HSD, 3β-HSD, 5α-reductase, 5β-reductase, 
cytochrome P45017α,lyase, 17β-HSD, and cytochrome 
P450arom have been demonstrated in the pineal 
gland of both juvenile chickens and juvenile quail 
(Fig. 4).54,55 To clarify the biosynthetic pathways of 
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neurosteroids in the pineal gland, biochemical studies 
combined with HPLC and GC-MS analyses were fur-
ther conducted. Pineal gland homogenates from quail 
chicks were incubated with tritiated pregnenolone and 
subsequent reversed-phase HPLC analysis detected 
the formation of 7α- and/or 7β-hydroxypregnenolone 
(Fig. 4).55 In addition, progesterone, allopregnano-
lone and/or epipregnanolone, androstenedione, tes-
tosterone, 5α- and/or 5β-dihydrotestosterone, and 
estradiol-17β were produced from the precursor 
 pregnenolone (Fig. 4).55 Although isomers such as 7α- 
and 7β-hydroxypregnenolone; allopregnanolone and 
epipregnanolone; and 5α- and 5β-dihydrotestosterone 
were not separated from each other by HPLC analysis, 
the formation of these neurosteroids in the pineal gland 
was demonstrated by GC-MS analysis.55  Derivatives 
of synthetic 7α- and 7β-hydroxypregnenolone, 
progesterone, allopregnanolone, epipregnano-
lone, androstenedione, testosterone, 5α- and 
5β-dihydrotestosterone, estradiol-17β, and the purified 
nonradioactive steroids produced by the pineal gland 
were applied to GC-SIM analysis, which showed the 
same mass spectral characteristics: m/z 386 for 7α- and 
7β-hydroxypregnenolone, m/z 510 for progesterone, 
m/z 514 for allopregnanolone and epipregnanolone, 
m/z 482 for androstenedione, m/z 680 for testoster-
one, m/z 486 for 5α- and 5β-dihydrotestosterone, and 
m/z 664 for estradiol-17β.55 Unlike HPLC analysis, 
GC-MS analysis was capable of separating several 
pairs of isomers: 7α- and 7β-hydroxypregnenolone; 
allopregnanolone and epipregnanolone; and 5α- 
and 5β-dihydrotestosterone.55 As  summarized 
in Figure 4, the neurosteroids produced in the 
pineal gland were thus identified as 7α- and 
7β-hydroxypregnenolone, progesterone, allopreg-
nanolone,  epipregnanolone, androstenedione, tes-
tosterone, 5α- and 5β-dihydrotestosterone, and 
estradiol-17β.55 These data provide the first evidence 
for de novo  neurosteroidogenesis in the pineal gland 
in any vertebrate class.

Identification of major neurosteroids 
synthesized in the pineal gland
To identify major neurosteroids synthesized in 
the pineal gland, the pineal glands from quail 
chicks were cultured in medium 199 with tritiated 
 pregnenolone. HPLC analysis revealed that preg-
nenolone was converted primarily into 7α- and/or 

7β-hydroxypregnenolone and allopregnanolone and/
or epipregnanolone in the pineal gland.55 HPLC analy-
sis and real-time PCR in the pineal gland revealed that 
the synthesis of 7α- and/or 7β-hydroxypregnenolone 
and the expression of Cyp7b mRNA occur in both sexes 
of adult and juvenile quail, but they are significantly 
higher in juveniles than in adults.55  Allopregnanolone 
and/or epipregnanolone synthesis and Srd5a mRNA 
expression were also higher in juveniles than in 
adults of both sexes.55 The synthesis of 7α- and/
or 7β-hydroxypregnenolone and the expression of 
Cyp7b mRNA were higher in the pineal gland than in 
the cerebellum and diencephalon.55 Allopregnanolone 
and/or epipregnanolone synthesis and Srd5a mRNA 
expression were also higher in the pineal gland than 
in the cerebellum and diencephalon.55

The pineal glands of quail chicks were cultured 
and the release of major neurosteroids was analyzed 
by GC-MS. Significant amounts of 7α-hydroxy-
pregnenolone and allopregnanolone were found to be 
released from the pineal gland into the culture medium 
unlike 7β-hydroxypregnenolone and epipregnano-
lone (Fig. 4).55 In sum, 7α-hydroxypregnenolone 
and allopregnanolone appear to be the major neu-
rosteroids secreted from the pineal gland (Fig. 4).

Light-dependent synthesis of pineal 
7α-hydroxypregnenolone and its 
biological action on locomotion
The original finding that the chicken pineal gland 
actively produces 7α-hydroxypregnenolone came 
from the analysis of light-dependent regulation of the 
circadian clock.54 The circadian clock is the internal 
time-measuring system that controls daily rhythms 
of physiology and behavior even in the absence of 
external time cues. The phase of the circadian clock is 
adjusted by environmental stimulus such as light and 
food in a time-of-day-dependent manner (See review 
by Hirota and Fukada117). For example, a light pulse 
given at early night and late night induced phase delay 
and advance, respectively, while the one at subjec-
tive daytime caused no significant phase shift. Such 
a phase-dependent light response of the circadian 
clock is conserved across species, but its mechanism 
still remains to be solved. The chick pineal gland is 
one of the best organs to work on this issue, because 
it expresses intrinsic photoreceptive opsins, such 
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as pinopsin,118 which confer light-sensitivity on the 
pineal circadian clock governing rhythmic production 
of melatonin (See review by Fukada and Okano119).

To approach the molecular mechanism of the light-
dependent phase-shift of the circadian clock, genes 
induced by a light pulse at different times of a day in 
the chicken pineal gland were searched by GeneChip 
analysis by comparing dark-reared  juvenile chicks 
with those exposed to light at various times of the day: 
daytime, early night, or late night. This comprehen-
sive transcriptome analysis revealed that a light pulse 
at early night induced a number of genes involved in 
cholesterol biosynthesis that are the targets of a tran-
scription factor, sterol regulatory element- binding 
protein (SREBP).54 In addition to the target gene 
expression, the light pulse at early night also stim-
ulated the formation of the active form of SREBP 
transcription factor. Noticeably, the light response of 
SREBP-target genes was parallel to that of E4bp4. 
E4bp4 encodes a transcription factor that represses 
a core clock gene Per2, hence, associated with the 
phase-delay of the chick pineal clock (Fig. 5).120,121 
E4bp4 turned out to be a new target gene of SREBP, 
revealing a new role of SREBP in the photic input 
pathway of the circadian clock.54

The photic induction of a series of genes involved in 
cholesterol biosynthesis suggested a possible produc-
tion of cholesterol (and its derivatives) in the pineal 

gland for physiological response to the light. The 
analysis of neurosteroidogenesis eventually revealed 
that the chick pineal gland actively produces and 
secretes 7α-hydroxypregnenolone (Fig. 5).54 In accor-
dance with the transcriptional changes in response to 
the light pulse, 7α-hydroxypregnenolone production 
was stimulated at a specific time of the day, that is, 
it was activated by a light pulse given at early night 
but not at late night and daytime.54 Furthermore, the 
locomotor activity of dark-reared juvenile chicks was 
stimulated by light exposure more strongly at early 
night than at late night and daytime.54 Intriguingly, 
the light-dependent stimulation of the locomotor 
activity at early night is reduced by Px.54 Collectively, 
the pineal production of 7α-hydroxypregnenolone is 
stimulated by light in a time-of-day-dependent man-
ner under the control of the circadian clock, and these 
unexpected properties may be essential for regulation 
of locomotor activity (Fig. 5).

Biological action of pineal 
allopregnanolone in Purkinje cell survival
Because the two major pineal neurosteroids, 
7α-hydroxypregnenolone and allopregnanolone, are 
abundantly released from the pineal gland of juve-
nile birds,55 not only pineal 7α-hydroxypregnenolone 
but also pineal allopregnanolone may play important 
roles in the brain of birds during development.
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In birds, the pineal gland is located near the 
cerebellum (Fig. 6A). The cerebellar cortex has been 
used as an excellent model to study synaptic forma-
tion and transmission of neural networks because it 
forms relatively simple neuronal networks as com-
pared with those of other brain regions. The Purkinje 
cell is a principal cerebellar neuron that integrates 
the process of memory and learning. It is known 
that in birds and mammals, Px induces cell loss in 
the brain including Purkinje cells during develop-
ment.122,123 This observation suggests that allopreg-
nanolone and/or 7α-hydroxypregnenolone secreted 
by the pineal gland may be involved in Purkinje cell 
survival during development. To test this hypoth-
esis,  Haraguchi et al55 conducted a series of experi-
ments in the male juvenile quail. Px decreased the 
concentration of allopregnanolone in the cerebellum 
and induced apoptosis of Purkinje cells, whereas 
administration of allopregnanolone to Px quail chicks 
increased the concentration of allopregnanolone in 
the cerebellum and prevented apoptosis of Purkinje 
cells.55 In contrast to allopregnanolone, administra-
tion of 7α-hydroxypregnenolone to Px quail chicks 
did not rescue Purkinje cell death.55 Haraguchi et al55 
further indicated that pineal allopregnanolone reaches 

the cerebellar Purkinje cells by diffusion as shown by 
injection of 3H-allopregnanolone close to the pineal 
lumen (Fig. 6B). Thus, allopregnanolone secreted 
by the pineal gland is considered to be an important 
factor for Purkinje cell survival during development 
(Fig. 6B). Although 7α-hydroxypregnenolone did not 
facilitate Purkinje cell survival, this neurosteroid is 
involved in the regulation of locomotion in birds52,54 
as mentioned above.

It is well known that caspase-3 plays an impor-
tant role in Purkinje cell death in vertebrates.124,125 
 Caspase-3 is a crucial mediator of apoptosis124 in 
vertebrates including birds.125,126 Importantly, Px 
increased the number of Purkinje cells that expressed 
active caspase-3, a key protease in apoptotic  pathway, 
in quail chicks and administration of allopregnano-
lone to Px quail chicks decreased the number of 
Purkinje cells expressing active caspase-3.55 These 
findings indicate that the neuroprotective effect of 
pineal allopregnanolone on Purkinje cells is associ-
ated with the decrease in caspase-3 activity during 
development. Accordingly, pineal allopregnanolone 
exerts antiapoptotic effects in Purkinje cells by sup-
pressing the activity of caspase-3 during development 
(Fig. 6B). This is a new function of the pineal gland 
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for the prevention of Purkinje cell death in the devel-
oping cerebellum.

It was generally accepted that the pineal gland 
transduces photoperiodic changes to the neuroen-
docrine system by executing rhythmic secretion of 
melatonin. However, the formation of neurosteroids 
in the pineal gland was, until recently, unknown in 
vertebrates. Our recent studies provide new evidence 
that the pineal gland is a major neurosteroidogenic 
organ and produces allopregnanolone far more abun-
dantly than other brain regions. Importantly, pineal 
allopregnanolone acts on cerebellar Purkinje cells to 
prevent their programmed cell death during devel-
opment. This is a paradigm shift of neurosteroid 
formation and action by the discovery of pineal allo-
pregnanolone that facilitates neuronal survival in the 
cerebellum, because it was generally believed that 
neurosteroids are produced only in neurons and glial 
cells in the brain and other nervous systems.

conclusions
Studies conducted over the past two decades have 
demonstrated that the brain of birds has the capac-
ity of synthesizing various neurosteroids de novo 
from cholesterol. It appears, however, that the bio-
synthetic pathways leading to the formation of neu-
rosteroids in the avian brain are still incompletely 
elucidated. 7α-Hydroxypregnenolone, a newly 
discovered neurosteroid produced by cytochrome 
P4507α in the avian brain, acts as an important neu-
romodulator to increase locomotor activity. The 
stimulatory action of 7α-hydroxypregnenolone may 
be mediated by the dopaminergic system. Melatonin 
acts on neurons expressing cytochrome P4507α to 
regulate 7α-hydroxypregnenolone synthesis, thus 
inducing diurnal locomotor changes. In this way, 
7α-hydroxypregnenolone-producing neurons may 
play a pivotal role in the integration of circadian 
information that affects locomotor activity in birds. 
On the other hand, until recently, it was generally 
believed that neurosteroids are produced in neurons 
and glial cells in the brain and other nervous systems. 
However, there is now evidence that, in the juvenile 
chicken and quail, the pineal gland, an endocrine 
organ located close to the brain, actively produces 
a variety of neurosteroids de novo from cholesterol. 
7α-Hydroxypregnenolone is a major pineal neuros-
teroid that stimulates locomotor activity of juvenile 

birds, connecting light-induced gene expression with 
locomotion. The other major pineal neurosteroid allo-
pregnanolone prevents cell death of Purkinje cells by 
suppressing the activity of caspase-3 during cerebel-
lar development. Interaction of brain and pineal neu-
rosteroids in the regulation of brain functions deserve 
further investigations in birds.
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