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Abstract: The use of antibiotics is unavoidable in trying to treat acute infections and in the prevention and control of chronic infections. 
Over the years, an ever increasing number of infections has escalated the use of antibiotics, which has necessitated action against an 
emerging bacterial resistance. There seems to be a continuous acquisition of new resistance mechanisms among bacteria that switch 
niches between human, animals, and the environment. An antibiotic resistant strain emerges when it acquires the DNA that confers the 
added capacity needed to survive in an unusual niche. Once acquired, a new resistance mechanism evolves according to the dynamics of 
the microenvironment; there is then a high probability that it is transferred to other species or to an avirulent strain of the same species. 
A well understood model for studying emerging antibiotic resistance and its impact is Pseudomonas aeruginosa, an opportunistic patho-
gen which is able to cause acute and chronic infections in nosocomial settings. This bacterium has a huge genetic repertoire consisting 
of genes that encode both innate and acquired antibiotic resistance traits. Besides acute infections, chronic colonization of P. aeruginosa 
in the lungs of cystic fibrosis (CF) patients plays a significant role in morbidity and mortality. Antibiotics used in the treatment of such 
infections has increased the longevity of patients over the last several decades. However, emerging multidrug resistant strains and 
the eventual increase in the dosage of antibiotic(s) is of major concern. Though there are various infections that are treated by single/
combined antibiotics, the particular case of P. aeruginosa infection in CF patients serves as a reference for understanding the impact of 
overuse of antibiotics and emerging antibiotic resistant strains. This mini review presents the need for judicious use of antibiotics to treat 
various types of infections, protecting patients and the environment, as well as achieving a better treatment outcome.
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Introduction
Evolutionary events are, in general, dependent on 
spatial and temporal factors that initiate or drive 
changes in a biological entity. Bacteria are well stud-
ied for their response to extracellular factors in the 
human body forcing them to choose between acute 
and chronic mode of infections. Highly virulent 
strains of bacteria are able to cause acute infections 
with marked symptoms. In immune compromised 
individuals, even less virulent bacteria are capable 
of causing infections. These opportunistic patho-
gens manifest chronic infections through prolonged 
colonization of the human body. Given interventions 
from the environment, new pathogens emerge and 
less pathogenic bacteria become infectious by acquir-
ing virulent traits through horizontal gene transfer.1 
Infectious diseases are responsible for more than a 
quarter of deaths worldwide. In other words, treat-
ments that require the use of antibiotics are on the 
rise, as is the emerging resistance to antimicrobials 
among bacteria. In industrialized nations such as the 
US, more than half of antibiotics used in livestock 
and animal agriculture are for therapeutic purposes, 
and about 60%–80% of total antibiotics are used for 
prophylactic or nontherapeutic purposes to promote 
growth and to improve feed efficiency (Fig. 1).2,3 In 
this scenario, gut microbiota and other microorgan-
isms continually exposed to sub-inhibitory concentra-
tions of antibiotics pave the way for the development 
of resistance following adaptation to unusual niches. 
Bacteria that can thrive in diverse niches have a 
serious impact on therapeutic choices available for 

 treating  infections. This review highlights the com-
bined effects of human genetic disease, opportunistic 
bacterial infections, and drug treatments that lead to 
emerging antimicrobial resistance.

cystic Fibrosis and P. aeruginosa
Cystic fibrosis (CF) is one of the most common auto-
somal recessive genetic disorders among Caucasians. 
It is caused by mutation in the cAMP-regulated chlo-
ride channel, the CF transmembrane conductance 
regulator gene (CFTR), which leads to generalized 
exocrinopathy. As a consequence, dysregulated air-
way surface liquid in the lungs, accumulation of 
mucus, and thickened secretions contribute to the 
defective mucociliary clearance of microbes. In addi-
tion, continuous buildup of mucus creates a gradi-
ent of oxygen concentration in the lung environment 
and contributes significantly to the pathogenicity 
of lungs affected by CF. Mucus plugs create a suit-
able environment for bacteria to colonize and persist 
in the unusual niche where mucus also serves as a 
nutrient.4 Poor prognosis of CF and the resulting mor-
tality are attributed to microbial infections and per-
sistent inflammatory response against pathogens in 
the lung.5 Though the CF lung environment harbors 
different species of bacteria, only a few are found to 
be predominant, including Pseudomonas aeruginosa, 
Staphylococcus aureus, Burkholderia cepacia com-
plex, Haemophilus influenzae, Stenotrophomonas 
maltophilia, and Achoromobacter xylosoxidans.6–8 
Among bacteria responsible for deteriorating lung 
function, the role of P. aeruginosa has been explored 
widely in the context of global population struc-
ture, emergence of antibiotic resistance, and chronic 
colonization of CF lung through the formation of 
biofilms.5,9,10  Infection rates increase steadily with 
age, reaching up to 80% of adults 25 years or older 
colonized with P. aeruginosa.14,15

A huge genetic repertoire and mosaic genome 
structure makes P. aeruginosa a versatile opportu-
nistic pathogen in nosocomial settings, particularly 
conditions involving burns and wounds, meningitis, 
endocarditis, and microbial keratitis. In the CF lung, 
P. aeruginosa displays a common phenotype irre-
spective of the genetic content, including mucoidy, 
lipopolysaccharide modifications, lack of flagella and 
pili, and upregulated antibiotic efflux after prolonged 
colonization.11–13 Controlled expression of genes in 
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Figure 1. Usage and distribution of antibiotics.

http://www.la-press.com


Cystic fibrosis, chronic infections and antibiotic resistance

Microbiology Insights 2013:6 31

the genome backbone, DNA insertions, and in the 
extra-chromosomal elements equip P. aeruginosa to 
colonize CF lung and gradually outcompete other 
bacteria in the microenvironment. Besides intrinsic 
resistance mechanisms P. aeruginosa develops resis-
tance to antibiotics during the course of accumulation 
of mutations in genes that encode antibiotic targets. 
Resistance is also conferred in this bacterium through 
the acquired gene cassettes from elsewhere.

Resistance to Antibiotics
Antibiotic resistance mechanisms in bacteria include 
enzymatic inactivation, target modification, over-
 expression or by-pass, sequestration, intracellular 
localization, increased efflux and decreased influx, and 
physical blockade through biofilm formation (Fig. 2). 
In addition, resistance to antibiotics arises because of 
spontaneous or induced mutations in genes associated 
with the resistance traits. In a community setting such 
as the lung of CF patients, microbes evolve by various 
means. To date investigations have revealed de novo 
incorporation of new genes and small sequence 
changes that lead to changes in the function of exist-
ing genes. Gene duplication and divergence of one or 
both of the copies, as well as shuffling and swapping 
of large domains of DNA, have also been observed.

Bacteria in the form of biofilms show increased 
resistance to several antibiotics when compared to 
planktonic or free living counterparts. The mini-
mal inhibitory concentration of tobramycin for 
P. aeruginosa microcolonies/biofilm, grown in arti-
ficial sputum medium, increased at least 50 times 
compared to planktonic forms.4 Biofilm bacteria 
sometimes display up to a thousand-fold increase in 
antibiotic resistance, when compared to planktonic 
bacteria.16 This characteristic is because of reduced 
diffusion or entrapment of antibiotics by exopolysac-
charide matrix, slow growth rates, development of 
dormant persister cells, and the expression of antibi-
otic efflux or modifying proteins.10,17–19 The exopoly-
saccharide alginate produced by P. aeruginosa has 
been shown to retard the movement of cationic 
antimicrobial peptides, quaternary ammonium com-
pounds, and aminoglycoside antibiotics through the 
matrix, thereby reducing the effective concentration 
of antibiotics.20 In addition to the mentioned factors, 
sub-MIC levels of antibiotics promote adaptation 
of P. aeruginosa to the CF lung milieu through the 
accumulation of mutations in antibiotic target genes, 
eventually aiding survival in the hostile environ-
ment.21–23 Subinhibitory concentrations of aminogly-
cosides enhanced biofilm formation by P. aeruginosa 
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Figure 2. Innate and acquired antibiotic-resistance mechanisms in bacteria. 
note: examples of antibiotics to which different mechanisms confer resistance are included within braces.
Information adapted from Sundsfjord et al67 and Schofield.68 

Abbreviations: Ag, aminoglycosides; Ml, macrolides; Tc, Tetracyclines; Ol, Oxazolidinones; Ls, Lincosamides; SgA, Streptogramin A; SgB, Streptogramin B; 
Pm, Pleuromutilins; Ql, quinolones; Na, nalidixic acid; Nb, novobiocin; Sf, sulfonamides; Tp, trimethoprim; Mp, mupirocin; Cm, chloramphenicol;  
Fm, fosfomycin; Rm, rifamycins; Ni, nitroimidazoles; Pc, penicillins; Cs, cephalosporins; Mb, monobactams; Cp, carbapenems; Px, polymyxins; Fa, fusidic 
acid; bL, beta-lactams; Bt, bacitracin; As, antiseptics.

http://www.la-press.com


Sriramulu

32 Microbiology Insights 2013:6

through  aminoglycoside response regulator (arr), by 
modulating intracellular levels of a secondary mes-
senger molecule, cyclic-di-GMP.40 Periplasmic glu-
cans produced by clinical isolates of P. aerguinosa 
bind aminoglycosides, thereby reducing its effective 
concentration.36,37  Bacteriophages are reservoirs of 
antimicrobial resistance genes and play an important 
role in restructuring bacterial genomes.41,42

A study on CF sputum microbiology in the US 
from 1995 to 2008 involving different CF centers 
showed P. aeruginosa resistance to tobramycin and 
amikacin became increasingly prevalent and antibi-
otic resistance increased among other bacteria in the 
CF lung.27 The emergence of antibiotic resistant iso-
lates is mostly connected to mutations in the DNA 
mismatch repair system.28 In addition, bacteria in the 
CF lung that are often exposed to the oxygen radi-
cals generated by polymorphonuclear leukocytes (as 
a result of chronic inflammation) often damage DNA. 
Hyper-mutators arise due to mutations in mismatch 
repair genes mutS, mutL, and in DNA oxidative repair 
system genes mutT and mutY. They have developed 
resistance to antibiotics through increased produc-
tion of beta-lactamases and MexCD-OprJ efflux 
pump.22,23,29 Hypoxic conditions altered stoichiometry 
of multidrug efflux pump linker protein expression 
towards a dominant MexEF-OprN, which conferred 
resistance to antibiotics.33,34 Similarly, upregulation 
of the MexXY efflux system is necessary for adapta-
tion of P. aeruginosa to the CF lung environment.19

Spontaneous or induced mutations—single or 
multiple—in antibiotic target genes confer  resistance. 
Mutations in the domain V of 23S rRNA con-
ferred azithromycin resistance in P. aeruginosa.35 
 Extensively drug resistant, high risk clones pos-
sess mutations in multiple genes, including oprD, 
gyrA, parC, and mexZ, and overproduction of AmpC 
and AadB, all of which are involved in antibiotic 
 resistance.39 Mutation in cbrA (a sensor kinase of the 
cbrAB two-component regulatory system) enhanced 
biofilm formation and conferred resistance to poly-
myxin B, ciprofloxacin, and tobramycin.38 These 
genetic variations in a P. aeruginosa population offer 
the advantage of an insurance effect. The ‘insurance 
hypothesis’ states that diversity within a population pro-
vides protection for the community as a whole against 
a wide range of adverse or changing  conditions.30 A 
shift in the bacterial metabolism to suit the nutrient 

status of a microenvironment also leads to the devel-
opment of antibiotic resistance. In a study, the proto-
type strain of worldwide spread P. aeruginosa clone 
C displayed slow growth rate and a unique proteome 
pattern in 2D-gels. Identification of protein spots 
revealed down-regulation of proteins involved in the 
metabolism of amino acids and fatty acids, as well as 
of proteins involved in antibiotic influx.31

P. aeruginosa modulates production of virulence 
factors in a cell-density dependent fashion through 
quorum-sensing (QS) circuitry. QS consists of a las 
and rhl N-acyl homoserine lactone system that pro-
duces 3-oxo-C12- and C4-homoserine lactones, 
respectively.24 The third QS 2-alkyl-4-quinolone sys-
tem produces 2-heptyl-4-quinolone and  Pseudomonas 
quinolone signal.25 These QS systems not only engage 
in intra-species communication within biofilms, but 
also affect other species and the host.26 P. aeruginosa 
lasR mutants exhibited metabolic shift, decreased 
oxygen consumption, and increased nitrate utili-
zation, which are predicted to confer resistance to 
frequently used antibiotics tobramycin and ciproflox-
acin, in response to the conditions in the CF lung.32 
Therefore, targeting QS in P. aeruginosa may attenu-
ate virulence and increase susceptibility of bacteria in 
biofilms to antibiotics.

Antibiotic use and economic 
considerations in cF
Bacterial infections contribute significantly to the eco-
nomic burden and costs associated with treatment and 
care for individuals. In the case of chronic infections 
such as in CF, they constitute a lifetime commitment to 
covering healthcare costs, particularly for  antibiotics. 
In the United States, the average basic yearly medi-
cal cost per CF patient is $48,098; almost half of this 
cost is disbursed towards anti-Pseudomonal antibiotic 
tobramycin.15,43,44 This estimation does not include 
additional medical expenses incurred for transplanta-
tions, malnutrition, CF-associated diabetes, and other 
related complications.43 Moreover, there has been a 
steady increase in the costs of prescription drugs, out-
patient visits, durable medical equipment, and diag-
nostic procedures, with the highest cost incurred for 
treating and caring of CF patients older than 30 years 
of age.44 Antibiotics must be administered not only 
during exacerbations but also for stable suppres-
sive therapies so as to maintain low bacterial levels 
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in the airways and to improve lung function.45 An 
 extrapolation of data from a study in a single Chicago 
hospital showed that total extra costs in all United 
States hospitals for treating resistant infections could 
rise to US$ 25–35 billion.46 In the United Kingdom, 
40% of P. aeruginosa isolates associated with CF 
infection were resistant to 2 or more antibiotics.47 
Under such circumstances, treatment strategy includes 
administering a combination of antibiotics with differ-
ent modes of action, further increasing the cost.

The treatment for CF-related infections starts with 
oral and inhaled therapies in an outpatient setting, and 
the use of intravenous route for patients with severe 
exacerbations. The antibiotic course in general con-
sists of at least two agents, with differing mechanisms 
of action against bacteria, chosen based on drug sus-
ceptibility testing. Sometimes, treatment involves 
multiple antibiotics to have a synergistic effect 
depending on the sensitivity pattern, patient tolerance, 
drug availability, and preference.48 The fluoroquinolo-
nes, ciprofloxacin or levofloxacin, are the most com-
monly used oral agents to treat exacerbations caused 
by P. aeruginosa infection. Oral macrolide (azithro-
mycin) treatment has been shown to improve lung 
function and other clinical markers through its anti-
inflammatory effects, enhanced chloride efflux from 
airway epithelial cells, altered biofilm formation, and 
its direct antioxidant property.49–52 These agents are 
often combined with an inhaled course of tobramycin, 
aztreonam or colistin. Intravenous regimens include 
anti-Pseudomonal beta-lactams (pipercillin or ticar-
cillin), third-generation cephalosporins (ceftazidime), 
fourth-generation cephalosporins (cefepime), car-
bapenems (meropenem or imipenem), or monobac-
tams (aztreonam), combined with an aminoglycoside 
(amikacin, gentamicin or tobramycin).53,54 During 
pulmonary exacerbations, high doses of gentamicin 
and tobramycin, usually at 10–15 mg/kg/day, are 
needed. Though the life expectancy of CF patients 
has improved with the use of antibiotics, risks remain 
in the form of nephrotoxicity, vestibular dysfunction, 
and loss of hearing from ototoxicity, especially with 
the use of intravenous aminoglycosides.55 During 
pregnancy in CF patients, administration of tobramy-
cin crosses placenta and accumulates in the amniotic 
fluid, fetal plasma, and in the kidneys. Though there is 
no evidence of congenital defects, damage to the VIII 
cranial nerve and nephrotoxicity can be expected.

The type and combination of antibiotics, dosage, 
and treatment schedules vary between countries, hos-
pitals and centers, as well as between CF patients. 
For example, the 20 year old Copenhagen Model fol-
lowed by the Copenhagen CF Center targeted early 
eradication of P. aeruginosa infections. The model 
consisted of inhaled colistin and intravenous cipro-
floxacin for 3 months. In this regimen, 80% of CF 
patients were free of chronic P. aeruginosa infection 
for up to 15 years and the recovered bacterial iso-
lates showed less resistance to those antibiotics.14,56–58 
 In-house  standardized long term and low dose treat-
ment regimens also proved effective against S. aureus, 
S.  pneumoniae, and H. influenzae in Danish CF 
patients.59 Such treatments are effective only in the 
case of early infection or colonization irrespective of 
the age of patients. It is nearly impossible to eradicate 
chronic colonization of P. aeruginosa in the form of 
biofilms.56 However, antibiotics can keep the second-
ary infection status under control and can improve 
lung function, which is important for the day to day 
wellbeing of CF patients.

co-Infections in cF
Besides P. aeruignosa, bacteria such as S. aureus, 
B. cepacia complex, and H. influenzae often infect CF 
patients. It is common in newborns in the early stages 
of CF and in older patients. CF airways also attract 
several atypical microbes (for example, Inquilinus 
limosus, Gluconobacter spp., Agrobacterium spp., 
Ochrobactrum spp.), which are of environmental 
origin.60–62 Though asymptomatic, atypical bacteria 
in the airways may cause inflammatory response in 
the absence of typical CF pathogens.63 In the case 
of multispecies infections, it is often difficult to 
point signs and symptoms to a specific bacterium. 
 Therefore, CF patients are required to receive an 
additional set of single or combination antibiotics, 
depending on the susceptibility information. Anti-
biotics used for S. aureus infection—cephalexin, 
amoxicillin/clavulanic acid, dicloxacillin, clin-
damycin, doxycycline, minocycline, trimethoprim-
sulfamethoxazole, linezolid, vancomycin, nafcillin, 
tigecycline, quinupristin-dalfopristin; for infections 
with B. cepacia complex—ceftazidime, meropenem, 
trimethoprim-sulfamethoxazole, doxycycline, mino-
cycline; for S. maltophilia infection—fluoroquinolo-
nes, ceftazidime, ticarcillin-clavulanate, minocycline, 
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trimethoprim-sulfamethoxazole; for Acinetobacter 
xylosoxidans – carbapenems,  minocycline, pipercillin-
tazobactam, ciprofloxacin; for O. anthropi and 
Brevundimonas diminuta infection—imipenem and 
tobramycin; for infections with Nontuberculous 
Mycobacteria (Mycobacterium avium complex 
and M. abscessus)—macrolides (azithromycin or 
clarithromycin), rifampin, ethambutol, amikacin, 
imipenem, tigecycline, linezolid, moxifloxacin.

The inventory of atypical species in the CF airways 
expanded with the increasing number of metagenomic 
studies, systematic sequencing of 16S ribosomal RNA, 
and other molecular signatures.41,42,60,64,65 Though the 
number of bacterial species identified from the CF 
airway samples increased, the interaction between 
members of CF microbiota and the subsequent 
pathophysiological outcome needs  elucidation. Adding 
to existing complications, CF disease per se evolved 
into a multi-organ and multi-infection disease.

conclusion
New forms of resistance in bacteria spread rapidly via 
intra-species and inter-species gene transfers in the 
environment, where community biofilms are common. 
The emergence and persistence of multidrug-resistant 
bacteria poses significant challenges to public health. 
Higher resistance rates correlate with a nation’s 
higher per capita antibiotic consumption. According 
to the Center for Disease Control and Prevention, the 
USA has estimated that every year, around one-third 
of the prescriptions are unnecessary.66 So far, there is 
no consensus on the best use of a single or combina-
tion antibiotic strategy to treat CF-related infections 
worldwide. It is also impractical to have a generalized 
therapeutic option to treat infections associated with 
CF, which is a highly heterogeneous disease condi-
tion. However, early eradication of bacterial infection/
colonization may be a suitable option for efficient use 
of antibiotics in CF patients, achieving control over 
the development of antibiotic resistance in the future. 
On the humanitarian side, it would be appropriate to 
implement public health awareness measures against 
antibiotic resistant microbes. This could be achieved 
by continuously emphasizing prevention and fight-
ing against the spread of emerging resistance through 
rational use of antibiotics and suitable infection con-
trol measures. Educating CF patients and their family 
members to maintain proper hygiene and protection 

may be an initial step towards avoiding unnecessary 
exposure to pathogens.
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