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Bovine Herpes Virus 1 (BHV-1) and Herpes Simplex Virus  
Type 1 (HSV-1) Promote Survival of Latently Infected  
Sensory Neurons, in Part by Inhibiting Apoptosis
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Abstract: α-Herpesvirinae subfamily members, including herpes simplex virus type 1 (HSV-1) and bovine herpes virus 1 (BHV-1), 
initiate infection in mucosal surfaces. BHV-1 and HSV-1 enter sensory neurons by cell-cell spread where a burst of viral gene expres-
sion occurs. When compared to non-neuronal cells, viral gene expression is quickly extinguished in sensory neurons resulting in neu-
ronal survival and latency. The HSV-1 latency associated transcript (LAT), which is abundantly expressed in latently infected neurons, 
inhibits apoptosis, viral transcription, and productive infection, and directly or indirectly enhances reactivation from latency in small 
animal models. Three anti-apoptosis genes can be substituted for LAT, which will restore wild type levels of reactivation from latency 
to a LAT null mutant virus. Two small non-coding RNAs encoded by LAT possess anti-apoptosis functions in transfected cells. The 
BHV-1 latency related RNA (LR-RNA), like LAT, is abundantly expressed during latency. The LR-RNA encodes a protein (ORF2) 
and two microRNAs that are expressed in certain latently infected neurons. Wild-type expression of LR gene products is required for 
stress-induced reactivation from latency in cattle. ORF2 has anti-apoptosis functions and interacts with certain cellular transcription fac-
tors that stimulate viral transcription and productive infection. ORF2 is predicted to promote survival of infected neurons by inhibiting 
apoptosis and sequestering cellular transcription factors which stimulate productive infection. In addition, the LR encoded microRNAs 
inhibit viral transcription and apoptosis. In summary, the ability of BHV-1 and HSV-1 to interfere with apoptosis and productive infec-
tion in sensory neurons is crucial for the life-long latency-reactivation cycle in their respective hosts.
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α-Herpesvirinae Subfamily Members 
are Important Pathogens in their 
Respective Hosts
Herpes simplex virus type 1 (HSV-1) and bovine herpes 
virus 1 (BHV-1) are both important pathogens in their 
respective natural hosts and both are α-herpesvirinae 
subfamily members. For example, HSV-1 is the 
cause of one of the most frequent and serious viral 
eye infections in the United States, with over 400,000 
affected individuals.1 Following primary infection 
of the eye, latency is established in sensory neurons 
within trigeminal ganglia (TG).2,3 HSV-1 reactivates 
sporadically from TG and the infectious virus can be 
detected on surfaces of the eye, where it can cause 
recurrent ocular disease. Reactivation from latency 
is necessary for recurrent ocular HSV-1 infections.4,5 
Long-term oral acyclovir treatment only reduces 
ocular HSV-1 recurrences by 41%.6 Herpes simplex 
virus type 2 (HSV-2) is the cause of the most common 
sexually transmitted disease, and sporadic recurrent 
genital lesions occur periodically. Two genital herpes 
vaccine trials failed7,8 indicating there is a need for 
new and effective therapies that will reduce the inci-
dence of recurrent HSV-1 and HSV-2 disease.

Bovine herpes virus 1 (BHV-1) is an important 
pathogen of cattle as it induces clinical signs in 
the upper respiratory tract of cattle and is immune-
suppressive. BHV-1 establishes latency in sensory 
neurons, but periodically reactivates from latency, 
and thus is widespread in cattle.2,9–11 BHV-1 infec-
tion inhibits cell-mediated immunity,12–15 CD8+ 
T cell recognition of infected cells,16–19 and induces 
apoptosis in CD4+ T cells.20,21 Two viral regula-
tory proteins, bICP0 and bICP27, inhibit interferon 
dependent transcription.10,22–25 Infection also erodes 
mucosal surfaces of the upper respiratory tract, 
which can allow bacterial pathogens to colonize the 
lower respiratory tract.26–28

Acute Infection Results in High Levels 
of Infectious Virus and Apoptosis
Binding and entry of HSV-1 and BHV-1 to mamma-
lian cells are mediated by viral glycoproteins and cel-
lular factors.29–31 A cellular receptor (HveA or HVEM) 
is primarily expressed in activated T cells and belongs 
to the tumor necrosis factor receptor family.32 Entry 
of HSV-1  into epithelial and fibroblasts is mediated 

by another membrane glycoprotein, HveB or HveC.33 
HveC is an entry mediator for HSV-1 and BHV-1 
and is abundantly expressed in neurons. Additionally, 
soluble HveC blocks viral entry in neuronal-like cell 
lines.33 After uncoating, the viral genome enters the 
nucleus and productive infection is initiated.

HSV-1 and BHV-1 gene expression is tightly regu-
lated in three distinct phases during productive infec-
tion of cultured cells: immediate early (IE), early (E), 
or late (L).34 IE RNA expression does not require pro-
tein synthesis and is stimulated by VP16, a viral struc-
tural protein.35 E gene expression requires at least one 
IE protein, and E genes encode nonstructural proteins 
that stimulate viral DNA replication. L gene expres-
sion is maximal after viral DNA replication, requires 
IE protein production, and L proteins comprise the 
virion particle. Although a vigorous immune response 
leads to viral clearance following primary infection, 
BHV-1 and HSV-1 establish a life-long latent infec-
tion in ganglionic sensory neurons, primarily TG, or 
sacral dorsal root ganglia.2,3,9,36 Approximately 40% 
of sensory neurons appear to harbor viral genomes 
during latency.37–41

Five HSV-1 IE genes encode ICP0, ICP4, ICP22, 
ICP27, or ICP47. ICP442–45 and ICP2746–48 are 
required for virus growth in tissue culture. ICP4 
represses IE gene expression44,49–53 but activates E 
or L gene expression by interacting with RNA poly-
merase II transcription factors and specifically bind-
ing viral DNA.49,54 ICP27 redistributes small nuclear 
ribonucleoprotein complexes, interferes with splic-
ing of IE transcripts, and promotes E and L poly A 
site selection.55–58 ICP47 prevents transport of anti-
genic peptides into the endoplasmic reticulum59 and 
inhibits CD8+ T cell responses.60 ICP22 enhances 
viral gene expression, in part by modifying RNA 
polymerase II.61 ICP0  increases steady-state levels 
of viral mRNA and stimulates all viral promoters.62 
ICP0 also binds several cellular proteins: (1) elonga-
tion factor 1-α63; (2) cyclin D364; (3) an ubiquitin-
specific protease65,66; and (4) promyelocytic leukemia 
(PML) protein.67–69 Interactions between ICP0 and 
chromatin-remodeling enzymes activate viral tran-
scription by multiple mechanisms, including seques-
tering histone deacetylase (HDAC) inhibitors.70,71 
Secondly, HSV-1 ICP0 interacts with HDAC272 and 
blocks histone deacetylation to stimulate viral gene 
expression.73,74 ICP0 also alters a complex that inhibits 
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gene expression (REST/CoREST/HDAC repressor 
complex).73 Since ICP0 can remove histones from 
viral chromatin during productive infection,75 ICP0 
may have similar functions during reactivation from 
latency. These activities of ICP0 promote virus repli-
cation in differentiated cells.76 BHV-1 encoded ICP0 
(bICP0) has similar functions as ICP0.10

Viral infection routinely leads to apoptosis in cul-
tured cells.77–80 Killing of infected cells by apoptosis 
in vivo can reduce inflammation, alter immune recog-
nition, reduce burst size, and thus prevent virus spread. 
Premature apoptosis of infected cells limits production 
of infectious virus and limits viral spread. Members 
of the α-herpesvirinae subfamily induce apoptosis 
after infection of cultured cells.81–86 HSV-183,84,87–89 and 
BHV-190 can also inhibit apoptosis in a cell type depen-
dent manner after infection of cultured cells. HSV can 
induce DNA damage, and consequently apoptosis, 
even in the absence of productive infection.91–95 Two 
viral proteins, US1.5 and UL13, activate caspase 3 in 
the absence of other viral proteins, indicating these 
viral proteins play an important role during virus 
mediated apoptosis.96 Finally, ICP0 is also a trigger 
for apoptosis in the context of productive infection, in 
part because it activates viral gene expression.

HSV-1 encodes several proteins (ICP27, Us3, 
Us5, gJ, gD, and LAT) that have anti-apoptosis 
activity.83–85,87,88,97–105 Us3 is a serine/threonine protein 
kinase that inhibits cleavage and activation of the 

pro-apoptotic Bcl-2 family member, Bad. Us3 protein 
expression in cultured cells, in the absence of other 
viral proteins, inhibits caspase 3 activation, a crucial 
executioner caspase that commits cells to apoptosis. 
As expected, US3  inhibits the pro-apoptotic activity 
of US1.5 and UL13 by blocking caspase 3 activation.96 
These anti-apoptotic genes play an important role in 
the pathogenic properties of HSV-1.

Viral Genes Expressed During 
Latency Regulate the Latency-
Reactivation Cycle
The HSV-1 latency associated transcript is 
abundantly expressed during latency and 
regulates the latency-reactivation cycle
The HSV-1 latency associated transcript (LAT) is 
abundantly expressed in sensory gangionic neurons of 
mice, rabbits, or humans that are latently infected.106–114 
LAT is predominantly expressed in the nucleus 
of latently infected neurons suggesting it is a non-
protein coding regulatory RNA. LAT is antisense to 
ICP0 and overlaps ICP0 mRNA sequences (Fig. 1B), 
suggesting LAT inhibits ICP0 expression by an anti-
sense mechanism. Although the ability of LAT to 
repress ICP0 expression may be important, LAT 
sequences that promote spontaneous reactivation 
in a rabbit ocular model of infection do not overlap 
ICP0 mRNA sequences.115
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Figure 1. Location of genes within the HSV-1 repeats. (Panel A) UL and US denote the unique sequences of the long (L) and short (S) components of the 
genome. The boxes depict repeat sequences. (Panel B) Transcription map of the repeat region. Location and orientation of LAT,111,112 ICP0, α134.5,253,254 
ORFP,150 L/STs255 are indicated by solid lines. 
Note: Partially mapped transcripts (αX and αX) are denoted by dashed arrows.256,257
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Splicing of the 8.5 kb LAT transcript yields 
a stable  2  kb LAT and an unstable  6.5 kb LAT 
(Fig.  1B).107,111,116 Correct splicing of the 2 kb LAT 
is necessary for establishment and maintenance of 
latency.117,118 In general, the 2 kb LAT is not capped, 
is poly A-, appears to be circular, and is a stable 
intron.119,120 A subset of LAT is detected in the cyto-
plasm97,121,122 and is associated with polyribosomes 
or splicing factors.97,123 Small non-coding RNAs can 
regulate gene expression,124,125 promote neuronal dif-
ferentiation,126 or inhibit apoptosis127 suggesting LAT 
is a non-coding regulatory RNA.

A study by Umbach et  al128 concluded that LAT 
is a microRNA (miRNA) precursor which encodes 
four miRNAs, two within LAT promoter sequences 
(Fig. 2A and B). LAT miR-H6, reduces ICP4 protein 

steady state levels but not ICP4 RNA levels. Protein 
levels, not RNA levels, of ICP0 are inhibited by the 
LAT miRNA, miR-H2-3p. Within the first 1.5 kb 
of LAT coding sequences, two small RNAs (sRNAs), 
LAT sRNA1 and sRNA2, were identified (Fig. 2B). 
The sRNAs are larger than mature miRNAs (typically 
23 nucleotides long) and the sequence of both pos-
sess extensive secondary structure. The sRNAs can 
be detected in TG of mice latently infected with wild-
type HSV-1, but not in TG of mice latently infected 
with a LAT null mutant.79,129 LAT sRNA2, but not 
LAT sRNA1, reduced ICP4 protein levels in transient 
transfection assays. Both LAT sRNAs inhibit produc-
tive infection in mouse neuroblastoma cells, however 
LAT sRNA1  inhibited productive infection more 
efficiently than LAT sRNA2.130 Collectively, these 
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Figure 2. Schematic of putative factors encoded within the LAT locus. (Panel A) Schematic of genes within the long repeats that contain the LAT locus. 
The large arrow indicates the primary LAT transcript. The solid rectangle represents the sTable 2 kb LAT intron. Initiation of LAT transcription is denoted 
by the arrow at +1 (genomic nucleotide 118801). Several restriction enzyme sites and the relative locations of the ICP0 and ICP34.5 transcripts are 
shown for reference. The location of the 6 microRNAs (miR-H1-6) that is located within the 8.5 kb LAT128 are shown. (Panel B) Partial restriction map 
of LAT and position of LAT open reading frames (L1-8) within the first 1.5 Kb of strain McKrae LAT coding sequences, which were based on previous 
studies.148 The numbering system of the ORFs was consistent with a previous study.148 Only the ORFs with at least 30 amino acids are shown (the 
number of amino acids in each ORF is denoted by the numbers in brackets). Open circles denote the position of two LAT small RNAs that are encoded 
within the first 1.5 kb LAT coding sequences.258 Positions of UOL transcript, AL transcript, and ORFs located on the opposite strand of LAT (AL2 and 
AL3) are shown. The number of amino acids of AL2 and AL3 are in brackets. Nucleotide positions relative to the start of LAT transcription are not shown 
in parenthesis.
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studies provide evidence that the LAT encoded miR-
NAs and sRNAs promote latency by interfering with 
expression of important viral transcriptional regula-
tory proteins.

The LAT locus encodes additional transcripts 
(Fig. 2B). More than one transcript, including UOL 
(Upstream of LAT)131 are located within LAT pro-
moter sequences. Expression of the UOL transcript 
or protein does not reduce reactivation from latency 
in rabbits.132 An antisense to LAT (AL) transcript 
is expressed from the first 1.5 kb of LAT coding 
sequences and appears to encode a protein.133 Two 
additional small open reading frames (ORFs) that are 
antisense to LAT (AL2 and AL3) are present in LAT 
coding sequences. An AL3 transcript is expressed 
during productive infection and in TG of mice latently 
infected with wild-type HSV-1, but not a LAT null 
mutant virus.134 An AL3-specific polyclonal antibody 
detected a protein in a subset of TG neurons in latently 
infected mice. A transcript encompassing AL2 has not 
been detected during productive infection or latency 
(unpublished data).

LAT null HSV-1  mutants have been examined 
in various small animal models.2,3 Although two 
studies concluded that LAT does not play a role in 
latency,135,136 most have provided evidence that LAT 
is important. This discrepancy may be due to the 
strain of virus or mouse that was used for specific 
studies. LAT enhances the establishment of latency 
in mice137,138 and in rabbit ocular infection models,139 
in part by reducing lytic cycle viral gene expression in 
TG of mice.140,141 By enhancing the establishment 
of latency, LAT would increase the pool of latently 
infected neurons; thus indirectly increasing the inci-
dence of reactivation from latency.

As a result of stress or other external stimuli, reac-
tivation from latency can occur, resulting in virus 
shedding (Fig.  4). The McKrae strain of wild-type 
HSV-1, however not a LAT null mutant, is consistently 
detected in tears of infected rabbits, due to spontane-
ous reactivation.139,142–145 These same LAT null mutants 
grow with wild-type efficiency in cultured cells and 
in acutely infected rabbits. When just the first 1.5 kb 
of LAT coding sequences (Fig. 2B) is expressed from 
the HSV-1  genome, wild-type levels of spontane-
ous reactivation from latency occur in rabbits.139 
Similar results were observed using another virulent 
strain of HSV-1 (17 syn+) in a rabbit eye model.146,147 

The first 1.5 kb of LAT coding sequences does not 
overlap ICP0, suggesting that antisense repression of 
ICP0 expression by LAT is not important for sponta-
neous reactivation in the rabbit ocular model of infec-
tion. The factors encoded by the first 1.5 kb of LAT 
coding sequences that promote spontaneous reactiva-
tion have not been fully characterized.

Although certain studies suggested LAT does not 
encode a protein,148 other studies have concluded 
that a protein encoded within LAT sequences is 
expressed.131,149–154 These proteins were suggested to 
either substitute for ICP0 functions,153,154 interfere 
with binding of ICP4 to DNA,152 or their functions 
were not described. The proposed LAT proteins are 
mapped downstream of the critical first 1.5 kb of the 
primary LAT transcript, a region that appears both 
sufficient and necessary for the wild type spontane-
ous reactivation phenotype in rabbit models.139,155 
Within the first 1.5 kb of LAT coding sequences, 
8 potential ORFs have been identified in the McKrae 
strain (Fig.  2B).148 The L2 ORF (Fig.  2B) appears 
to be expressed in TG of latently infected mice.156 
Although LAT is not absolutely required for the 
latency-reactivation cycle in small animal models, 
its importance may be underestimated using small 
animal models and measuring latency in terms of 
weeks or months, not decades.

The BHV-1 latency related RNA  
is abundantly expressed in sensory  
neurons and is necessary for  
reactivation from latency
Latency related (LR) RNA is abundantly expressed in 
TG neurons of calves that are latently infected.111,157 
Two different start sites of LR-RNA transcription 
(Fig.  3A) have been identifed suggesting this has 
functional significane. It is clear that the LR gene 
encodes more than one product.11,36 For example, the 
LR gene contains two-well defined ORFs (ORF2 and 
ORF1; Fig. 3B) and two reading frames that lack an 
initiating methionine (RF-B and RF-C). As a result 
of alternative splicing of polyA+ LR-RNA in TG of 
infected calves (Fig.  3A),158,159 ORF2 can be fused 
with ORF1 protein coding sequences or RF-B. The 
ORF2/ORF1 fusion protein stably interacts with the 
cellular transcription factor C/EBP-alpha.160 C/EBP-
alpha RNA and protein levels increase in TG neurons 
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during dexamethasone induced reactivation from 
latency. Over-expression of C/EBP-alpha enhanced 
productive infection,161 suggesting that ORF2 seques-
ters C/EBP-alpha and reduces the efficieny of produc-
tive infection during the latency-reactivation cycle.

One day after calves are infected and during 
latency, splicing of LR-RNA in TG is such that ORF2 
is intact,159 suggesting ORF2 expression is important 
for the latency-reactivation cycle. ORF2  interacts 

with Notch1 and Notch3, components of the Notch 
signaling pathway.162 Mammalian Notch receptor 
family members (Notch1-4) are membrane tethered 
transcription factors that regulate many developmen-
tal and physiological processes.163,164 For example, 
Notch promotes neuronal maintenance, development, 
and differentiation.165–167 Notch3168 and Notch1169,170 
promote cell survival by activating a protein kinase, 
(AKT) which inhibits apoptosis. Notch family mem-
bers can also induce apoptosis,163,164 suggesting 
Notch influences cell survival by cell-type dependent 
mechanisms. When the Notch receptor is engaged 
by one of its five transmembrane ligands (Jagged1, 
Jagged2, Delta-like1, Delta-like3, or Delta-like4), 
the Notch intracellular domain (ICD) is cleaved by 
specific proteases, and subsequently translocates 
to the nucleus. In the nucelus, Notch ICD inter-
acts with members of the CSL family of transcrip-
tional factors, CBF1, Su(H), or Lag1 (also referred 
to as RBP-J binding proteins) subsequently acti-
vating downstream genes. Notch1, but not Notch3, 
enhances BHV-1 productive infection163 and Notch1 
activates the BHV-1 immediate-early transcription 
unit 1 (IEtu1) and bICP0 early promoters. Notch1 and 
Notch3 trans-activated the late glycoprotein C (gC) 
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Figure 3. Schematic of the BHV-1 LR gene and surrounding genes. 
(Panel A) The start sites for LR transcription during latency and productive 
infection were previously described.159,259 (Panel B) Organization of LR 
ORFs and 3′ terminus of bICP0. ORF-1 and ORF-2 are located in the LR 
gene and have the potential to encode a 40 or 25 kd protein respectively. 
Notes: Reading Frames B (RF-B) and C (RF-C) are open reading frames 
that lack an initiating Met. The (*) denotes the position of stop codons that 
are in frame with the respective ORF. The positions of ORF-E and bICP0, 
which are antisense to LR-RNA, are also shown.
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promoter. ORF2 interferes with the ability of Notch1 
to trans-activate the bICP0 early promoter and Notch1 
or Notch3 mediated activation of the gC promoter162 
suggesting this function is important for establish-
ing and/or maintaining latency. Notch3 RNA levels 
are higher during dexamethasone  (DEX) induced 
reactivation from latency, suggesting Notch family 
members stimulate productive infection during reac-
tivation from latency. Activation of Notch signaling 
in post-mitotic-neurons or neuroblastoma cells inhib-
its neurite sprouting165,171–174 and axon repair,175 which 
can lead to neuronal degeneration and apoptosis.176–178 
Conversely, neurite sprouting correlates with regen-
eration of damaged axons and dendrites.175 ORF2 
promotes neuruite sprouting and neuronal differen-
tiation of mouse neuroblastoma cells when Notch1 or 
Notch3 is over-expressed.179 Collectively, these stud-
ies suggest that ORF2 interactions with Notch family 
members promote the establishment and maintenace 
of latency by (1) interfering with viral gene expres-
sion necessary for productive infection, (2) support-
ing a mature neuronal phenotype, and (3) overcoming 
the deleterious effects of Notch expression during 
stress-induced reactivation from latency.

Although the results from the LR mutant virus sug-
gested that proteins encoded by the LR gene are nec-
essary for the latency-reactivation cycle, non-protein 
coding functions within LR-RNA have also been 
identified. For example, the intact LR gene inhibits 
the ability of bICP0 to stimulate productive infection 
in a dose-dependent manner.180,181 Insertion of three 
in-frame stop codons at the amino-terminus of the 
first ORF within the LR gene (ORF2) inhibited bICP0 
repression with similar efficiency as the wild-type LR 
gene, suggesting expression of a LR protein is not 
required.181 LR gene products also inhibit mammalian 
cell growth,182,183 and the cell growth inhibitory func-
tion of the LR gene maps to a 463-bp fragment that 
lacks a significant open reading frame.182 Two miR-
NAs located upstream of ORF2 are expressed during 
latency.184 These miRNAs, or larger sRNAs contain-
ing these miRNAs, reduced bICP0 protein levels in 
transient transfection assays.

A small ORF located within the LR promoter is 
designated ORF-E (Fig. 3B). ORF-E is antisense to 
the LR transcript and is downstream of bICP0 coding 
sequences, but does not overlap bICP0. A transcript 

that encompasses ORF-E is expressed during produc-
tive infection and in TG of latently infected calves.185 
The LR promoter contains multiple cis-acting motifs, 
has a neuronal specific binding domain,186–188 and 
contains a long AT-rich motif (40/53 nucleotides are 
A or T) that may promote ORF-E transcription. When 
ORF-E protein coding sequences are fused in frame 
with green fluorescent protein (GFP) sequences, GFP 
protein expression is detected in the nucleus of mouse 
or human neuroblastoma cells. In contrast, the ORF-
E-GFP fusion protein is detected throughout rabbit 
skin cells. In transient transfection assays, ORF-E 
promotes neurite formation in mouse neuroblastoma 
cells,189 which may support a mature neuronal pheno-
type following infection.

LAT and LR Gene Products Inhibit 
Apoptosis
LAT inhibits apoptosis
LAT expressing plasmids interfere with apoptosis 
in transiently transfected cells, and LAT expressing 
viruses inhibit apoptosis in TG of infected mice or 
rabbits.117,190–192 The anti-apoptotic functions of LAT 
correlate with promoting spontaneous reactivation 
from latency.191,193 In the context of promoting spon-
taneous reactivation from latency in the rabbit model 
(model), inhibiting apoptosis is the most important 
function of LAT as three different anti-apoptosis 
genes129,194–196 restore wild-type levels of spontaneous 
reactivation from latency to a LAT null mutant. LAT 
may encode other functions because the LAT null 
mutants that express cellular anti-apoptosis genes 
have reduced virulence, in spite of reactivating from 
latency with wild-type frequency. LAT expressing 
plasmids, in the absence of other viral genes, inhibit 
caspase 8- and caspase 9-induced apoptosis,193,197 the 
two major apoptotic pathways in mammals.198–200 LAT 
also inhibits caspase 3 activation.201

LAT sRNA1 and sRNA2 cooperate to inhibit cold-
shock induced apoptosis in mouse neuroblastoma 
cells.130 Introduction of ATGTTG mutations in 
ORFs within the first 1.5 kb of LAT coding sequences 
impairs the anti-apoptotic functions of LAT,202 sug-
gesting that LAT either encodes a functional protein or 
alters RNA structure. Two of these ATGTTG muta-
tions are within LAT sRNA1 and sRNA2, and intro-
ducing these mutations into the small RNAs inhibits 
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their ability to inhibit apoptosis.130 At this time, it is 
not clear how these sRNAs interfere with apoptosis. 
It will also be important to construct a recombinant 
virus with these same mutations and test whether the 
spontaneous reactivation incidence is affected.

LAT also inhibits GrzB induced apoptosis in 
transient transfection studies.203 GrzB is released 
from CD8+ T cells as well as other specific lympho-
cytes; GrzB has features similar to apical caspases, 
and can induce apoptosis in most cell types.204–207 
Inhibiting GrzB induced apoptosis may be impor-
tant for the latency-reactivation cycle because CD8+ 
T lymphocytes control HSV infection in sensory 
ganglia.208,209

The LR gene encodes more than one 
product that inhibits apoptosis
A mutant BHV-1 strain with 3 stop codons after the 
initiating methionine codon of ORF-2 (LR mutant 
virus) does not express detectable levels of ORF-2101 
but expresses reduced levels of ORF1  in cultured 
cells during productive infection.210 The LR mutant 
virus grows less efficiently in the ocular cavity and 
TG, but grows almost as efficiently as wild-type 
BHV-1  in the nasal cavity, and does not reactivate 
from latency following DEX treatment.211,212 The 
LR mutant virus induces higher levels of apoptosis 
in TG neurons of infected calves,213 and a LR gene 
expressing plasmid with the same stop codon muta-
tions does not effectively inhibit apoptosis.214,215 
ORF2 expression in the absence of other viral 
genes inhibits apoptosis in transiently transfected 
cells,216,217 suggesting that ORF2 is a dominant func-
tion encoded by the LR gene. ORF2, like LAT, can 
inhibit caspase 8 and caspase 9 mediated apoptosis; 
however the mechanism by which it inhibits apopto-
sis is not known.

Two microRNAs encoded within the LR gene 
(Fig. 3A) interfere with bICP0 protein expression184 
and cold shock induced apoptosis in transfected 
mouse neuroblastoma cells (Neuro-2A cells).218 Since 
cold shock induced apoptosis in Neuro-2A cells is 
inhibited by casapse 3 and caspase 9  inhibitors,219 
the microRNAs must influence these apoptotic sig-
naling pathways. The ability of the microRNAs to 
stimulate the anti-apoptotic transcription factor 
NF-αB220–223 seems to be important for inhibiting 
cold-shock induced apoptosis. In summary, these 

results provide additional evidence that interfering 
with apoptosis is crucial for a successful life-long 
latent infection.

Why is Inhibiting Neuronal Apoptosis 
Important During the Latency-
Reactivation Cycle?
The latency-reactivation cycle has been operation-
ally divided into three distinct steps: establishment, 
maintenance, and reactivation (Fig.  4). Following 
acute infection where high levels of infectious virus 
are produced, virus particles enter sensory neurons. 
Initial entry of the viral genome into a sensory neu-
ron results in a burst of lytic cycle viral gene expres-
sion and infectious viruses are produced. Viral gene 
expression is then extinguished, with the excep-
tion of HSV-1 LAT and BHV-1 LR gene products. 
Neuronal cell factors,2,9 LAT encoded microRNAs 
plus sRNAs,128,130 and LR encoded functions162,184 
interfere with various aspects of productive infection. 
During acute infection and establishment of latency, 
neuronal and satellite cells undergo apoptosis when 
small animal models are infected with HSV-2224 or 
HSV-1.225–227 BHV-1 replication and gene expres-
sion also occur in TG of acutely infected calves, 
resulting in apoptosis of neurons and non-neuronal 
cells.192,213,228

HSV-1 LAT192 and the LR gene213 enhance neuronal 
survival during the establishment of latency. The ability 
of LAT229 and the LR gene179 to promote a mature neu-
ronal phenotype and sprout neurites may also promote 
establishment of latency by stimulating repair of dam-
aged neurons following infection. Successful estab-
lishment correlates with an increase in the number of 
infected neurons that survive and enhances the prob-
ability that reactivation from latency occurs.

Maintenance of latency is a phase that lasts for the 
duration of the host’s life and is operationally defined 
as a period when infectious virus is not readily 
detected. In general, abundant expression of viral 
genes required for productive infection does not occur. 
LAT or LR gene products are abundantly expressed 
during the maintenance of latency. Expression of LAT 
correlates with an increase of latently infected neu-
rons during the maintenance of latency,230 suggesting 
latently infected sensory neurons are exposed to apop-
totic stimuli during the maintenance of latency. It is 
reasonable to predict that LAT and LR gene products 
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actively participate in maintaining a latent infection 
in sensory neurons.

Reactivation from latency is initiated by external 
stimuli (stress, immunosuppression, or UV light for 
example), which ultimately must stimulate viral gene 
expression.36,231,232 Abundant viral gene expression 
can be detected in sensory neurons and infectious 
virus can be isolated from TG, ocular swabs, and/or 
nasal swabs. Stress leads to elevated corticosteriod 
levels, which has rapid effects on neural activity.233,234 
DEX, a synthetic corticosteriod, induces viral gene 
expression,235 stimulates an HSV-1 origin of replica-
tion (Ori-L) in neuronal cells,55 and alters splicing pat-
terns in the absence of protein synthesis.236 DEX and 
other apoptosis stimulators can also stimulate HSV-1 
reactivation from latency.237,238 BHV-1 reactivation 
from latency is induced by DEX, in part because it 
stimulates expression of cellular transcription factors 
and viral gene expression while repressing expression 
of LR gene products.9,11,36 Prolonged exposure to cor-
ticosteroids can also induce immunosuppression, in 
part by inducing apoptosis in lymphocytes.239 A subset 
of neurons that successfully reactivate from latency 
to produce infectious virus may not survive;240–242 
however it is not clear if this is the fate for all neu-
rons that produce infectious virus during reactivation 
from latency. Most latently infected neurons that are 
exposed to reactivation stimuli re-establish latency 
and do not produce infectious virus.243,244 Given that 
sensory neurons are terminally differentiated cells, 
inhibiting apoptosis during the latency-reactivation 
cycle is crucial for life-long latent infections of 
α-herpesvirinae subfamily members.

Numerous studies have demonstrated that 
infiltrating lymphocytes in TG regulate the 
latency-reactivation cycle. For example, a persistent 
cell-mediated immune response occurs in TG during 
latency and CD8+ T lymphocytes inhibit reactivation 
from latency.208,209,245–250 Release of granzyme B from 
CD8+ T cells into latently infected neurons helps to 
inhibit reactivation from latency by cleaving the viral 
transcriptional trans-activator, ICP4.251 Since it is well 
established that granzyme B activates caspase 3 and 
the intrinsic pathway of apoptosis,207 the ability of LAT 
and perhaps LR gene products to inhibit apoptosis is 
important to overcome the effects of granzyme B. 
The ability of HSV-1 to inhibit major histocompat-
ibility complex (MHC) class I presentation in sensory 

neurons correlates with successful reactivation252 
providing further evidence that CD8+ T cells monitor 
latently infected neurons. In conclusion, the ability of 
HSV-1, HSV-2, and BHV-1 to reactivate from latency 
is regulated by complex virus-host interactions.

Perspectives
Although genetic and functional studies have dem-
onstrated that LAT and the LR gene regulate the 
latency-reactivation cycle, there are many unanswered 
questions. For example, identifying the functions of 
various transcripts, the small non-coding RNAs, and the 
ORFs within LAT are crucial to understand the role these 
various factors play in the latency-reactivation cycle. It 
would not be surprising to find that one or more of these 
factors encoded within the LAT locus regulate certain 
neuronal specific functions that maintain normal func-
tions. It will be difficult to make additional LAT mutant 
viruses as many of these factors overlap and deletion of 
these sequences would likely interfere with expression 
of more than one LAT encoded factor. Consequently, 
many of these studies will have to be performed in tran-
sient transfection assays in primary neurons or neuro-
blastoma cells. Finally, examining LAT in small animal 
models in terms of weeks after acute infection may not 
accurately reflect the latency-reactivation cycle in the 
context of life-long latency in humans.

With respect to the LR gene, there are no studies that 
have determined whether ORF1, ORF-E, or the microR-
NAs play a role in the latency-reactivation cycle. Further-
more, functional analysis of ORF-1 and ORF-E has not 
been performed. Identifying the cellular proteins that inter-
act with ORF-1 and ORF-E may provide insight into their 
functions. In summary, the finding that sequences encom-
passing LAT and the LR gene encode for more than one 
transcript and/or small non-coding RNAs implies many 
functions are necessary to successfully regulate the life-
long latency-reactivation in the natural host.
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