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Introduction
Today’s search engines and digital libraries offer 
little or no support for discovering those scientific 
artifacts (hypotheses, supporting/contradicting state-
ments, findings) that form the core of scientific written 
 communication. Building a view over the supporting 
or contradicting statements for a particular hypothesis, 
or summarizing the findings associated with it, is cur-
rently extremely difficult and time consuming. For 
example, consider the hypothesis: “Human apolipo-
protein E4 alters the amyloid-β 40:42 ratio and pro-
motes the formation of Cerebral Amyloid Angiopathy.” 
Searching directly for this text in PubMed (currently 
hosting over 22 million articles) yields only the article 
that contains this exact hypothesis in its title. No other 
publications that might discuss it, support it, or contra-
dict it are being returned. Furthermore, from a scientific 
perspective, it is important to differentiate between the 
different states the nature of knowledge may take. For 
example, the statement “aromatic hydrocarbon receptor 
(AhR) agonists suppress B lymphopoiesis” represents 
a fact, according to Jensen et al,1 while in the context 
of the same article, the statement “two prototypic AhR 
agonists, 7,12-dimethylbenz [a]anthracene (DMBA) 
and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) alter 
stromal cell cytokine responses” is a hypothesis that 
requires investigation (the example has been adapted 
from the ART corpus).2

Over the course of the last ten years, most research 
has focused on mining and analyzing concepts (or 
named entities) captured within such scientific arti-
facts and more predominantly on genes, proteins, and 
their inherent relations.3–6 Systems like GoPubMed,7 
for example, can find articles relatively easily that 
contain concepts mentioned in our initial hypothesis 
example, or in the body of the publications. A simple 
test on PubMed reveals a high number of hits for the 
individual concepts: 3,668 hits for Human Apoli-
poprotein E4; 23,983 hits for amyloid-β; and 1,783 
hits for Cerebral Amyloid Angiopathy.  However, it 
is almost impossible to go through all of these hits 
in order to locate the supporting or contradicting 
 statements. In addition, we currently have no means 
of comparing such statements to detect gaps between 
the accepted knowledge and newly emerging knowl-
edge (ie, paradigm shifts),8 as a means for tracking 
the evolution of hypotheses from incipient phases to 
maturity or decline.

Scientific artifacts, spanning within and across 
multiple publications, provide a rhetorical structure 
to knowledge and enable the analysis of trends and 
evolving general patterns. They have been modeled 
over time via a varied series of rhetorical and argu-
mentation schemes, some of which focus on a rather 
coarse structure,9 other on a finer-grained structure 
with an emphasis on discourse,2,10 argumentation,11 
or diverse linguistic theories, such as the cognitive 
theory of discourse representation12 or the rhetorical 
structure of text theory.13 Additionally, they repre-
sent the key element in fulfilling the vision of nano-
 publications14—ie, lowering the granularity of the 
published information to its most atomic form, thus 
crystallizing the knowledge in the most compact 
and coherent manner and enabling a richer and more 
meaningful processing and integration.

Recently, however, research on discourse analysis 
with a goal of automatically recognizing scientific 
artifacts carrying a rhetorical role has become more 
prominent (see for example the outcomes of the ACL 
2012 Workshop on Detecting Structure in Scholarly 
Discourse).15 As discussed by Liakata et al,16 there are 
three directions that have emerged in this area: (i) sen-
tence or zone classification according to a predefined 
annotation scheme;16–20 (ii) detection and analysis of 
speculative language and hedging;21–23 and (iii) sen-
tence classification according to a multi-dimensional 
scheme for annotating biological events.24–26

In this article, we focus on the first of the directions 
listed above: the recognition of scientific artifacts 
within publications based on an existing annotation 
scheme. Taking into account the local, single publica-
tion perspective, we aim to recognize hypotheses, as 
well as the other scientific artifacts that contextualize 
and crystallize them, and relate them to other works. 
More concretely, we target the recognition of five 
types of statements: (i) hypotheses (HYP)—conjec-
tures on novel ideas/investigations/trends; (ii) motiva-
tion (MOT)—statements that provide the context and 
reasons behind hypotheses; (iii) objectives (OBJ)—
propositions that transform hypotheses in measurable 
goals; (iv) background (BAC)—aspects describing 
existing information on the topic of the hypothesis; 
and (v) findings (FIN)—conclusions or observations 
pertaining to the initial hypothesis. These statements 
could also act as scaffolding for a structured abstract 
of the corresponding manuscript.
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The process of automatically recognizing scien-
tific artifacts in biomedical publications is particularly 
 challenging. In addition to the inherently complex nature 
of the task, as the interpretation of what is or is not a 
hypothesis or a motivational statement is fairly subjec-
tive, the domain is very poor in annotated resources. 
Currently, there is in principle a single openly pub-
lished corpus of annotated scientific artifacts—the ART 
corpus,2,27 which focuses on chemistry and biochemistry. 
Consequently, in order to achieve our goals, we adapted 
the CoreSC (Core Scientific Concepts)10 scheme (used 
to annotate the ART corpus) for our needs. At the same 
time, this has also provided us with a common ground 
for comparing our results to existing research.

The text mining field, within or outside the bio-
medical scope, consists of a wealth of algorithms and 
methods, which can usually be classified into two 
main categories: rule-based methods and (statistical) 
Machine Learning methods. Rule-based approaches 
achieve satisfactory results, in particular in Bio-NER 
(Biomedical Named Entity Recognition) tasks such as 
gene or protein mentioning.28,29 They rely on diction-
aries, thesauri, and manually crafted rules to perform 
exact or partial matching. Unfortunately, such meth-
ods are not appropriate for recognizing scientific arti-
facts due to the ambiguous and complex nature of their 
structure. One could probably envision a method that 
combines several shallow and deep neuro- linguistic 
programming (NLP) techniques to produce a series of 
cascaded transducers. However, the ratio between the 
amount of manual work required and the flexibility of 
the end results is not favorable.

On the other hand, Machine Learning (ML) tech-
niques have proved to perform well, both in Bio-
NER tasks, as well as in the recognition of scientific 
artefacts.16,19,25,30 They are fairly robust and versatile, 
and capable of detecting patterns that are hard to 
encode in rules. The main drawback of the ML meth-
ods is the necessity of training data, which should 
contain, in principle, a fair distribution of examples 
for each of the target classes.

Lately, the focus has shifted towards hybrid meth-
ods, either by exploiting the best aspects of both the 
above-mentioned types of techniques, eg, by using 
rules to bootstrap the ML classification process,31,32 or 
by aggregating several ML techniques into cascaded 
classifiers.3 The latter has showed promising results in 
Bio-NER contexts. Consequently, we have followed 

this direction and designed our recognition process 
as a sentence-based classification via an ensemble 
of four classifiers. The finer-grained annotation level 
required to capture the content and conceptual struc-
ture of a scientific article16 has motivated our choice 
of sentence-based classification. This article aims to 
bring the following contributions, envisioned to sup-
port other researchers working on the topic, as well as 
to enable the development of automated mechanisms 
for building argumentative discourse networks or for 
tracking the evolution of scientific artifacts: (i) we pro-
pose, develop and evaluate a hybrid Machine Learn-
ing ensemble, as opposed to the existing research that 
makes use of a single classification technique; and 
(ii) we use classification features built strictly from a 
local, publication perspective, as opposed to corpus-
wide statistics used within all the other approaches. 
This last aspect can make the difference between a 
model biased towards the domain/corpus used for 
training and one that makes use of more generic ele-
ments and hence displays an increased versatility. Our 
experimental results show that such a model achieves 
accuracy comparable to the state of the art, even with-
out relying on corpus-based features.

Methods
Data
As mentioned in the previous section, our goal is to 
recognize and classify five types of sentences. To cre-
ate training and test data for classification, we have 
adapted the ART corpus to serve our specific goals. 
The ART corpus2,27 consists of 256 articles from 
chemistry and biochemistry, annotated according to 
the CoreSC scheme at sentence level. The CoreSC 
annotation scheme10 defines 11 types of general scien-
tific concepts that can be found in publications, some 
of which may have attributes attached to them. These 
attributes denote the difference between the aspects 
related to the publication under scrutiny and those 
pertaining to pre-existing work (ie, New vs. Old). In 
addition, they may also signal certain positive or neg-
ative elements related to the current or previous work 
(ie, Advantage vs. Disadvantage).

Table 1 provides an overview of the CoreSC types 
and their mapping to our categories. There are a few 
notes worth mentioning here. Firstly, we have merged 
the original GOA and OBJ categories under a single 
Objective (OBJ) class as they both refer to aspects 
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Table 1. The CoreSC annotation scheme10 and its adapta-
tion to our goals.

Category Description Re-purposed 
category

hypothesis  
(hYP)

A statement that needs  
to be confirmed by  
experiments and data

hypothesis 
(hYP)

Motivation  
(MOT)

The reasons supporting  
the investigation

Motivation 
(MOT)

Background  
(BAC)

Accepted background  
knowledge and previous  
work

Background 
(BAC)

goal (gOA) The target state of the 
investigation

Objective 
(OBJ)

Object (OBJ) The main theme or product  
of the investigation

Objective 
(OBJ)

Method-New  
(MeT)

Means by which the  
investigation is carried  
out and the goal is planned  
to be achieved

Out of scope 
(O)

Method-Old  
(MeT)

A method proposed  
in previous works

Background 
(BAC)

experiment  
(eXP)

An experimental method Out of scope 
(O)

Model  
(MOD)

A description of the model  
or framework used in the  
investigation

Out of scope 
(O)

Observation  
(OBS)

A statement describing  
data or phenomena  
encountered during the  
investigation

Finding (FIN)

result  
(reS)

A factual statement  
about the outcome  
of the investigation

Finding (FIN)

Conclusion  
(CON)

A statement that connects  
observations and results  
to the initial hypothesis

Finding (FIN)

Notes: The left column presents the original annotation scheme used 
in the ArT corpus, while the right column shows the transformations we 
have applied to re-purpose this scheme to our goals.

Table 2. The coverage of the re-purposed classes from the ArT corpus.2

Category No.  
sentences

Coverage Re-purposed  
category

No.  
sentences

Coverage

hYP 780 1.95% hYP 780 1.95%
MOT 541 1.35% MOT 541 1.35%
BAC 7,606 19.05% BAC 10,229 25.62%
MeT (old) 2,623 6.57%
gOA 582 1.45% OBJ 1,743 4.36%
OBJ 1,161 2.90%
MeT (new) 1,658 4.15% O 9,172 22.97%
eXP 3,858 9.66%
MOD 3,656 9.15%
OBS 5,410 13.55% FIN 17,450 43.71%
reS 8,404 21.05%
CON 3,636 9.10%

Notes: Naturally, by merging some of the initial types, our re-purposed classes gained more weight in the overall corpus distribution.

that take the hypothesis from a conjecture to a mea-
surable goal. Secondly, we have also merged the orig-
inal OBS, RES, and CON into a single Finding (FIN) 
category. Finally, it can be observed that we make a 
distinction between Method-New and Method-Old. 
The CoreSC scheme provides this option, however 
previous classification methods that have used the 
ART corpus, such as Liakata et al,16 merge the two 
under a single Method category. While the method 
proposed by a particular paper (ie, Method-New) is 
not of interest to us, we are interested in capturing 
previous work (ie, Method-Old) as this is also part of 
the background knowledge. All the other categories 
have been marked as outside the scope of our study.

Table 2 lists the statistics of the original corpus 
together with the new statistics that emerged from 
re-purposing the original categories into our new 
classes. Overall, the repurposing has an obvious 
beneficial effect on those categories resulting from a 
merge. For example, GOA + OBJ now cover 4.36% 
rather that 1.45% and 2.90% respectively. However, 
from a distribution perspective, the corpus is now 
heavily skewed, in particular, towards the FIN cat-
egory, which covers 43.71% of the total number of 
sentences.

Classifiers
Our method relies on an ensemble of four classifi-
ers, trained and tested on the above-described data 
via nine-fold cross validation. Four divergent clas-
sifiers have been trained, each using a different 
package. Two of the classifiers were represented by 
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 Conditional Random Fields33 chunkers, trained using 
the  MALLET34 and the CRF++ (http://crfpp.google-
code.com/) packages. Both are freely available and 
were used to train forward parsing chunkers.  MALLET 
was trained without feature induction and with dense 
weights, while the CRF++ chunker was trained with 
the hyperparameter set to 3.5. The ensemble has been 
completed with two Support Vector Machines35 clas-
sifiers provided by the YamCha package.36 Both are 
multi-class classifiers trained using a second-degree 
polynomial kernel. The difference between the two 
was the training method: one was trained using the 
one vs. one method, while the other using the one vs. 
all method.

To combine the results from all four classifiers, 
we used different aggregation strategies. In addition 
to individual classification, we also experimented 
with:

•	 Set operations—results of the individual  classifiers 
have been treated as sets, which have then been 
combined using direct or composite operations. 
Direct operations refer to combinations of pairs 
of single classification results (eg, YamCha1vs1 ∪ 
MALLET), while composite operations refer to 
combinations of direct operations (eg, (CRF++ ∪ 
YamCha1vs1) ∩ (MALLET ∪ YamCha1vsAll)). 
In both cases, we have used union and intersection 
as basic set operators.

•	 Simple majority voting—results from the indi-
vidual classifiers have been treated as votes for 
a particular class. These votes were then counted 
and the winning result was established via a sim-
ple majority. The veto option was used when a tie 
occurred or when the classifiers were in complete 
disagreement. In these cases, the veto owner estab-
lished the final result.

Classification features
We used five types of features to build the classifiers, 
detailed below.

Structure-based features place the sentence under 
scrutiny in the overall picture provided by the linear 
structure of the publication. Four such features were 
used:

•	 Section-based publication placement—the number 
of the top-level section that contains the sentence. 
The abstract was considered to be section 0.

•	 Subsection-based section placement—the number 
of the subsection within a top-level section that 
contains the sentence.

•	 Relative section placement—the paragraphs within 
a section have been split into four parts: (1) the 
first paragraph; (2) the last paragraph; (3) the first 
half of the remaining paragraphs except the first 
and the last; and (4) the second half of the remain-
ing paragraphs. Certain types of sentences tend to 
be present more within the first or last paragraphs 
(usually MOT/OBJ and FIN), while others, which 
describe the main ideas of the section, are part of 
the middle paragraphs.

•	 Relative paragraph placement—similar to the rela-
tive section placement, however seen at the para-
graph level. The split was done between the first 
two sentences, the last to sentences and the rest 
(first half and second half).

The first feature is similar to the SectionId feature 
used by Liakata et al.16

Linguistic features, focuses on the linguistic 
aspects that characterize the sentence’s tokens. Some 
features take discrete values that encode counts, such 
as no, 1, 2, 3+, while others are signaling flags, they 
take yes/no values.

•	 Part of speech tags: adjectives, adverbs, coordinat-
ing conjunctions, and pronouns.

•	 Verb information: type, tense, voice, negation.
•	 Verb classes: the ten verb classes adopted from 

Guo et al.37

•	 Hedging: dictionary-based flag denoting the 
 presence of hedging (eg, seem, may, sometimes, 
possibly) adapted from Medlock et al.22 and 
Szarvas et al.23

•	 Rhetorical relations: flags denoting the presence of 
13 rhetorical relations adapted from the Rhetori-
cal Structure of Text theory.38 These are: antithesis, 
conjunction, circumstance, concession, condition, 
cause, consequence, elaboration, evidence, means, 
preparation, purpose, and restatement. Their actual 
presence is signaled by a series of cue-phrases 
compiled by Marcu.39

Other miscellaneous features take into account ele-
ments usually present within scientific publications:

•	 Figures/tables/citations: the presence of any of 
these elements in the sentence
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•	 Topics: We have performed topic modeling using 
Latent Dirichlet Allocation (LDA)40 on each pub-
lication to compile the five most probable unigram 
and n-gram topics.

Distribution features capture the distribution of a 
certain feature at paragraph level and then encode, 
via discrete values, the coverage of that feature in 
the sentence under scrutiny. We experimented with 
four intervals: 0%–25%, 25%–50%, 50%–75%, and 
75%–100%. The actual features considered were: 
(i) rhetorical relations, (ii) verb classes, (iii) topics, 
(iv) adverbs, (v) pronouns, and (vi) citations.  Sentence 
context (with variable window) includes the features 
of the neighboring sentences. The size of the  window 
specifies the number of adjacent sentences to be 
 considered. We experimented with sizes 1 to 5.

One important aspect of the features we used for clas-
sification is that they are not dependent on the  corpus. 
Independently of the role or target, all features compute 
their values strictly in the context of the  publication. This 
is a major difference between our approach and all the 
other methods described in the literature. For example, 
a third of the features used by Liakata et al16 take into 
account measures compiled at corpus level (some simi-
lar to the concept of “information content”).41 For exam-
ple, topical n-grams compiled at corpus level (instead 
of publication level as we did), grammatical triples 
compiled again on the entire corpus, or section head-
ings usually encountered in biomedical publications. 
According to both the single feature classification, as 
well as the leave-one-out (LOOF) tests, these features 
had a decisive role in achieving a good efficiency. 
 However, it remains unclear whether the same model 
could be applied in another domain, without re-training 
it, or altering some of the features to fit the domain.

Results
As previously mentioned, all experiments detailed 
below were carried out on the re-purposed ART 
 corpus. We performed nine-fold cross-validation with 
stratification and averaged the results. In the follow-
ing sections, we discuss the results achieved by the 
individual classifiers, as well as those achieved via 
different aggregation techniques.

Individual classifier results
Table 3 lists the results achieved by the individual 
classifiers. We can observe that, with the exception of Ta
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one category, MOT, CRF++ and YamCha1vs1 have a 
similar performance, the average difference between 
them being approximately 3%. CRF++ performs bet-
ter on the classes that are better represented in the 
corpus (BAC, OBJ, and FIN), while YamCha1vs1 
performs better on the more problematic classes 
(HYP and MOT). The largest difference in perfor-
mance—of almost 7%—is present in the MOT class, 
which has the lowest coverage in the corpus. Similar 
to CRF++, the other two classifiers—MALLET and 
YamCha1vsAll—have a poor performance on the 
first two classes, and approach to the best score in the 
classes well represented in the corpus.

The precision of CRF++ should be noted. It is 
consistent throughout all classes and is either the 
best or the second best (at a very small difference), 
independently on whether CRF++ achieves the best 
score in that particular class. For example, in the 
MOT class, CRF++ has a 20% precision, although 
the final F1 score is almost the lowest (4%). This 
leads to the conclusion that CRF++ is poor at dis-
criminating classes that don’t have a good cover-
age in the corpus. However, when it does find those 
classes, there are very high chances for these to be 
correctly classified.

Set operations
In order to improve the individual classification 
results, we attempted to aggregate them via different 
direct or combined set operations. Direct set operations 
 represent the aggregation of pairs of single  classifiers, 
eg, CRF++ ∪ MALLET, or  YamCha1vs1 ∩ CRF++, 
while combined set operations aggregate pairs of 
direct set operations, eg, (CRF++ ∪  MALLET) ∩ 
(YamCha1vs1 ∪ YamCha1vsAll). In both cases, we 
used union and intersection as atomic operators.

A series of results of direct set operations are listed 
in Table 4. As expected, the best scores were achieved 
by sets that included at least one of the two best indi-
vidual classifiers, ie, CRF++ and YamCha1vs1. In 
practice, the results follow the same trend as in the 
individual classification. In the first two categories, 
HYP and MOT, the union of the best scoring indi-
vidual classifiers (CRF++ and YamCha1vs1, and 
YamCha1vs1 and YamCha1vsAll,) achieves the 
highest scores (15.30% and 13.44% respectively). 
Similarly, in the OBJ and FIN, the union of CRF++ 
and YamCha1vs1 performs the best—39.42% and Ta
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77.76% respectively. The only exception from this 
pattern can be found in the BAC category, where this 
union achieves the second best score, at a minimal 
difference of 0.38%, behind the union of CRF++ and 
YamCha1vsAll.

Union, as an operator, has a positive impact on 
the recall and a negative impact on precision—
more classes being found dilutes the correctness 
of the classification. This can be clearly seen in the 
above described results: (i) the first two categories 
feature a consistent 4% increase in recall, associ-
ated with a decrease in precision of 2% to 4%; and 
(ii) in the last three categories this is accentuated, as 
the increase in recall is of almost 10%, achieving a 
maximum of 92.65% recall in the union of MALLET 
and  YamCha1vs1. Intersection, on the other hand, has 
the opposite effect: it improves precision (only the 
correct scores are retained from both classifiers) at the 
expense of recall. In our particular case, this has led 
to extremely low scores of under 1% F1 in the first 
two categories and moderate, yet lower, scores in the 
last three categories (not listed here). The only notable 
results are with respect to precision, which peaked at 
30% in HYP, 74% in BAC, and 78% in FIN.

The results for the second type of set operations 
are listed in Table 5. Again, making the distinction 
between the two groups of classes, we can observe 
that the poor performance of MALLET is directly 
reflected in the joint set results in the first two classes, 
while in the last three classes—where the classifi-
ers have a similar performance—the results reflect 
a good complementarity between the approaches. It 
should be noted that we attempted other different set 
combinations, eg, by using intersection first and then 
union, or by combining results in a more serial man-
ner such as combining two approaches then intersect-
ing or adding the results to a third one, and so on. 
However, none of them worked better than the ones 
listed in Table 5, and thus, we have not included them 
in the discussion.

Voting
The last aggregation technique used was a simple 
majority voting. Results are listed in Table 6, where 
the first column represents the veto owner in case of a 
tie or complete disagreement. We can clearly draw a 
mapping between these results and those of the indi-
vidual classifiers, with the remark that voting has, in 
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general, a positive effect over precision and a mod-
erately negative effect over recall (these effects are 
milder than those present in set operations). Similar 
to the results listed in Table 3, the best scores in the 
first two categories were achieved with YamCha1vs1 
as veto owner (9.53% and 7.37%, respectively) and 
in the last three categories with CRF++ as veto owner 
(59.97%, 35.67% and 78.39%). Overall, the voting 
mechanism displays a behavior very similar to the 
paired set operations.

Discussion
In order to get a better understanding of the role and 
importance of the features used for classification, we 
have performed two additional experiments using 
CRF++ as a single classifier. In the first experiment, 
we have trained CRF++ with each individual feature 
from the overall best model. In the second experi-
ment, we have trained it using a leave-one-out set-
ting, ie, from the best CRF++ model we have left out 
one feature at a time. Both experiments used a nine-
fold cross validation with stratification.

Table 7 lists the F1 scores achieved in the one-feature 
setting. It can be clearly observed that in the context 
of the classes that are poorly represented in the corpus, 
no feature was able to perform a correct classification. 
The only exceptions are the context features (listed 
with a “cf_” prefix in the table) that have performed 
surprisingly homogeneously in the OBJ category. On 
the other hand, in the remaining two classes, BAC and 
FIN, we are able to identify a series of discriminative 
features. More concretely, we can observe that some 
of the structural and miscellaneous features have 
performed extremely well: f_citation (51.85% and 
64.24%), f_citaton_distro and f_paperplace (51.56% 
and 68.06%) as well as the linguistic features focused 
on verbs—f_vbclasses (10.76% and 63.11%) and f_
verbs (7.71% and 64.09%). Some of these results are 
particularly interesting because they account for more 
than 80% of the final result—eg, f_citation in BAC 
achieves 51.85% of the maximum 59.88% achieved 
by the entire model, or in FIN, where it scores 64.24% 
of the maximum 76.95% F1. The above observations 
lead to two conclusions: (i) citations and the location 
in the overall paper structure are key elements in dis-
tinguishing background and findings sentences, and 
(ii) background and findings sentences are character-
ized by fairly uniform verb patterns.

Biomedical Informatics Insights 2013:6 23

http://www.la-press.com


groza et al

Table 8. F1 scores for “leave one feature out” classifica-
tion using the best CrF++ model.

Feature HYp MOT BAC OBJ FIn
f_adjectives 10.81 3.16 59.55 37.14 76.60
f_cc 9.65 3.27 59.67 37.11 76.57
f_figs 9.80 2.97 59.13 37.58 76.25
f_pronouns 11.59 4.06 59.62 37.39 76.52
f_relsectplace 8.20 2.67 59.36 34.99 76.10
f_sectionplace 10.73 4.09 59.64 37.21 76.46
f_topics_distro 7.94 1.94 59.77 35.35 76.58
f_verbs 9.61 2.88 59.51 34.13 76.02
f_adverbs 10.36 3.54 59.61 36.64 76.61
f_citation 10.39 4.96 59.68 36.92 76.63
f_hedging 6.91 3.51 59.68 36.03 76.62
f_pronouns_distro 10.63 3.50 59.85 37.82 76.68
f_rhetrel 11.12 4.34 59.93 36.86 76.66
f_tables 10.79 5.03 59.50 36.98 76.23
f_vbclasses 10.03 4.30 59.72 37.40 76.64
f_adverbs_distro 9.80 4.59 59.63 37.54 76.68
f_citation_distro 10.36 3.89 58.90 36.26 76.25
f_paperplace 9.32 3.48 56.94 35.71 74.45
f_relparplace 10.45 3.64 59.53 35.33 76.26
f_rhetrel_distro 9.10 3.23 59.97 36.45 76.63
f_topic 9.64 4.61 59.35 37.17 76.30
f_vbclasses_distro 10.03 4.25 59.54 36.10 76.36
cf_adverbs 9.53 4.94 59.60 37.78 76.74
cf_hedging 9.68 4.39 59.75 36.89 76.77
cf_pronouns 10.51 4.10 59.81 36.42 76.62
cf_rhetrel 10.11 4.83 59.87 36.75 76.69
cf_vbclasses 10.92 4.43 59.70 37.27 76.42
cf_verbs 10.29 2.61 59.77 37.58 76.35

Notes: Similar to the one feature classification, bold numbers denote 
the most interesting F1 scores achieved, this time, by leaving the 
corresponding feature out from the classification model. Interestingly, 
in some cases the F1 score is higher than in the case of the overall 
F1 score achieved by the final model.

Table 7. F1 scores for one feature classification using the 
best CrF++ model.

Feature HYp MOT BAC OBJ FIn
f_adjectives 0.00 0.00 0.00 0.00 61.05
f_cc 0.00 0.00 0.00 0.00 61.05
f_figs 0.00 0.00 0.00 0.00 61.05
f_pronouns 0.00 0.00 0.00 0.00 61.05
f_relsectplace 0.00 0.00 0.00 0.00 61.05
f_sectionplace 0.00 0.00 0.00 0.00 60.98
f_topics_distro 0.00 0.00 0.00 0.00 61.26
f_verbs 0.00 0.00 7.71 0.00 64.09
f_adverbs 0.00 0.00 0.00 0.00 61.05
f_citation 0.00 0.00 51.84 0.00 64.27
f_hedging 0.00 0.00 0.00 0.00 61.05
f_pronouns_distro 0.00 0.00 0.00 0.00 61.05
f_rhetrel 0.00 0.00 0.02 0.00 61.05
f_tables 0.00 0.00 0.00 0.00 61.05
f_vbclasses 0.00 0.00 10.76 0.00 63.11
f_adverbs_distro 0.00 0.00 0.00 0.00 61.33
f_citation_distro 0.00 0.00 51.84 0.00 64.27
f_paperplace 0.00 0.00 51.56 0.00 68.06
f_relparplace 0.00 0.00 0.00 0.00 61.05
f_rhetrel_distro 0.00 0.00 1.37 0.00 61.40
f_topic 0.00 0.00 0.00 0.00 61.05
f_vbclasses_distro 0.00 0.00 21.13 0.00 66.00
cf_adverbs 0.00 0.00 0.00 13.78 60.87
cf_hedging 0.00 0.00 0.00 13.78 61.17
cf_pronouns 0.00 0.00 0.00 13.78 61.17
cf_rhetrel 0.00 0.00 0.32 13.78 61.09
cf_vbclasses 0.00 0.00 12.35 13.78 62.35
cf_verbs 0.00 0.00 4.62 13.78 63.33
Notes: Bold numbers denote the most interesting F1 scores achieved by 
diverse features. We can observe that only the well represented classes 
in the corpus have associated successful F1 scores.

The second experiment complements the first by 
showing the impact of leaving a particular feature out 
of the model. Table 8 lists the F1 scores achieved by 
models that leave out the feature present in the first 
column. In principle, it seems that the large major-
ity of features have a small negative impact on the 
performance of the model. However, due to the fact 
that we are dealing with several classes and we had 
to reach a compromise at the model level, discard-
ing some of the features actually leads to a positive 
effect on the performance. Examples of this phenom-
enon are emphasized in Table 8 with bold font. For 
example, leaving out f_pronouns or f_rhetrel in the 
HYP category leads to an increased F1 of 11.59% and 
11.12%, respectively; the best F1 score achieved by 
CRF++ in this category is 10.95%. Similarly, leaving 
out f_tables or the context feature cf_rhetrel in the 
MOT category increases the F1 score to 5.03% and 

4.83% respectively (from an initial 4.54%). The other 
categories contain similar examples, however, in 
some cases the increase in F1 is marginal, ie, 0.05% 
in BAC (by leaving out f_rhetrel) and up to 0.42% in 
OBJ (by leaving out f_pronouns_distro).

We have continued the analysis of the classifiers 
behavior by looking at the confusion matrix according 
to the best CRF++ model (see Table 9). The HYP class 
is confused in the vast majority of cases with the FIN 
class because the language used to describe findings is 
fairly similar to the one used to state  hypotheses. The 
FIN class is, in general, problematic as it aggregates 
three types of statements (see Table 2— observations, 
results, and conclusions), each of which has simi-
larities with the other classes. Consequently, with the 
exception of the MOT class, this class accounts for 
most of the class-to-class confusions (see BAC or 
OBJ). A final remark can be noted about the O class, 
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those sentences that are outside the scope of our study. 
We can observe that, when compared to the confu-
sions raised by other classes, the O class has a very 
small impact. The only noted exception is the BAC 
class, and this is due to the fact that we have split 
the original ART MET category into MET-New and 
MET-Old and used only one of them within the BAC 
class. Naturally, the choice of features and the cover-
age of each of these classes in the overall corpus are 
responsible for the above listed results.

The experiments presented in these sections 
lead to a series of conclusions. Firstly, hybrid clas-
sification methods depend heavily on the individual 
performance of the underlying classifiers used for 
aggregation. Subject to their configuration, such 
ensembles of classifiers are able to exploit the diver-
sity and consistency among the individual elements 
to reach a final decision. Usually, this decision is 
better than using a single classifier. This can also be 
observed in our case (Table 10). The hybrid meth-
ods have outperformed the individual classifiers, 
with the direct set operations performing constantly 
 better. Nevertheless, the efficiency and applicability 
of such hybrid methods requires consideration on a 
per use-case basis. Secondly, our experiments have 
showed that CRF++ performs fairly consistent when 

the coverage of the target class is reasonable, in addi-
tion to achieving excellent precision results in diverse 
aggregation schemes. Consequently, together with 
YamCha1vs1, this should always be considered as a 
foundation for any ensemble.

related work
As mentioned in the Introduction, the literature con-
sists of several other approaches that have a similar 
goal. However, in the context of our research, the most 
relevant work is that of Liakata et al.16 Consequently, 
within all our experiments we have tried to follow 
similar settings, in order to make the two approaches 
comparable. While it is impossible to compare them 
directly due to the difference in target classes, we 
have performed identical experiments as described in 
the previous section on the 11 classes of interest for 
Liakata et al (Table 11). Overall, our model has been 
outperformed on all classes. However, in most cases, 
with 2 or 3 exceptions, the difference between the 
originally reported score and the best performance 
achieved by one of our models (usually the direct set 
operations) was of only 2%–3%. These are positive 
results if we consider the difference in the types of 
features used for classification.

Our models were built using features only in the 
local context of a publication, while the features con-
tributing mainly to the results of Liakata et al and of 
the other similar approaches have used information 
compiled at the corpus level, such as n-grams, gram-
matical triples, or section titles. We believe this may 
affect the versatility of the classifier and would require 
re-training when applied to a different biomedical 
domain in order to achieve the same  performance. 
Conversely, our classifiers are not biased towards 
the domain of the training corpus and hence may 
be directly applied in a different domain without re-
training and probably without detracting from the ini-
tial accuracy.

In principle, our conjectures throughout the article 
and conclusions discussed above rely on the assump-
tion that the underlying target domain, while not 
necessarily a particular one, does fit into the gen-
eral biomedical area. Biomedical publications, as in 
the case of any other community, have a particular 
structure and share a specific language, aspects that 
are exploited by the models we have trained. This 
structure and language are most probably different 

Table 9. Classification confusion matrix based on the best 
CrF++ model.

HYp MOT BAC OBJ FIn O
hYP 249 1 83 4 398 45
MOT 3 14 396 19 90 19
BAC 39 31 6,208 123 2,409 1,420
OBJ 0 5 368 510 572 288
FIN 58 0 1,399 160 14,665 1,168

Note: Bold numbers denote correctly classified instances.

Table 10. Comparative overview of the F1 scores achieved 
by the different techniques.

HYp MOT BAC OBJ FIn
Individual 13.71 11.72 59.88 37.40 76.93
Direct set  
operations

15.30 13.44 59.85 39.42 77.76

Paired set  
operations

9.59 7.22 59.95 34.99 78.20

Voting 9.53 7.37 59.97 35.67 78.39
Notes: Overall, the proposed hybrid methods perform the best, the most 
consistent aggregation technique being the direct set operations.
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Table 11. Comparative overview of the classification results on the 11 classes proposed by Liakata et al.16

BAC cOn eXp GOA MeT MOT OBS Res MOD OBJ HYp
Liakata et al 62 45 76 28 30 20 51 51 53 34 19
Individual 57 41 73 19 22 11 46 45 34 30 16
Direct set  
operations

56 43 73 20 26 14 48 47 37 31 18

Paired set  
operations

57 40 74 16 19 8 42 43 37 24 13

Voting 57 40 73 17 20 8 44 43 36 27 17

Notes: Bold numbers denote F1 scores close to the ones obtained by Liakata. Overall, our model performs fairly well, with a few exceptions; the decrease 
in efficiency being explained by the increased versatility of our classification model.

in, for example, the case of computer science publi-
cations, and thus a straightforward generalization of 
the trained models are not possible. A comprehensive 
study would be required to enable a clear understand-
ing of the advantages and disadvantages between 
generalization and efficiency in the process of recog-
nizing scientific artifacts. As part of our future work, 
we intend to perform such a study, however by start-
ing from the comparison of different sub-domains of 
the biomedical field.

Conclusions
In this article we have presented a hybrid Machine 
Learning approach for extracting particular sentences 
of interest from scientific publications. Our focus has 
been on hypotheses and their context, ie, motivation, 
background, objectives, and findings, and represents 
the first step towards our general goal of extracting 
and consolidating argumentative discourse networks 
that span across multiple publications. The approach 
consists of an ensemble of classifiers trained to per-
form sentence-based classification.

We have used several aggregation techniques, 
including direct and paired set operations and simple 
majority voting. Experimental results have shown 
the supremacy of hybrid methods over individual 
 classifiers. Our future work will focus on clustering 
similar hypotheses denoting a generic, abstract theme 
and finding their associated supporting and contra-
dicting arguments.
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