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Abstract: MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expressions by targeting the mRNAs especially in the 
3′UTR regions. The identification of miRNAs has been done by biological experiment and computational prediction. The computational 
prediction approach has been done using two major methods: comparative and noncomparative. The comparative method is dependent 
on the conservation of the miRNA sequences and secondary structure. The noncomparative method, on the other hand, does not rely 
on conservation. We hypothesized that each miRNA class has its own unique set of features; therefore, grouping miRNA by classes 
before using them as training data will improve sensitivity and specificity. The average sensitivity was 88.62% for miR-Explore, 
which relies on within miRNA class alignment, and 70.82% for miR-abela, which relies on global alignment. Compared with global 
alignment, grouping miRNA by classes yields a better sensitivity with very high specificity for pre-miRNA prediction even when a 
simple positional based secondary and primary structure alignment are used.
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Introduction
Mature miRNAs are small 22 nucleotides long, non-
coding RNAs. They are expressed in a wide variety 
of organisms including viruses, plants, and animals.1–3 
They have significant role in posttranscriptional con-
trol of eukaryotes genome causing degradation of the 
mRNA transcripts or blocking translation.4–5 In most 
eukaryotic genomes, miRNA genes are transcribed by 
RNA-polymerase-II to primary miRNA (pri-miRNA).6 
This pri-miRNA is then further processed by RNAse-III 
endonuclease Drosha into precursor miRNA (pre-
miRNA), which is 60 to 100 nucleotides long, on aver-
age, and forms a stem-loop secondary structure.7 The 
pre-miRNA is then processed to form the small double 
stranded RNAs by the endonuclease Dicer, which also 
initiates the formation of the RNAinduced silencing 
complex (RISC).8 One strand of the double stranded 
RNA is incorporated with the RISC and targets the 
mRNA transcripts to block gene expression.9

miRNAs have been involved in some critical dis-
eases including heart disease10 and cancer.11 In can-
cer, miRNAs can function as both oncogenes and 
suppressors.12 Several classes of miRNAs such as 
miR-15, let-7, miR-16, miR-342, miR-223, and miR-
107 have been reported to be involved in acute pro-
myelocytic leukemia (APL).13 The oncogene YES 
and STAT1, which are responsible in the proliferation 
of the colon cancer cells, are targeted by miR-145, 
thereby making this particular miRNA class a colon 
cancer suppressor.14 In lung cancer, miR-34 has been 
shown to have an important role on the PRIMA-1 
regulation, which is a small molecule that restores 
the cancer cell suppression function.15 The identifica-
tion of the involvement of miRNAs in several cancers 
has assisted researchers to develop some potential 
therapeutics for cancer cure.16 The significant role of 
miRNAs in human health has made the continuing dis-
covery of novel miRNAs in the genome important.

Laboratory experiments have been conducted 
to discover miRNAs by direct cloning and short 
RNA sequencing. However, it is difficult to identify 
miRNAs with low levels of expression using only 
laboratory techniques.17 Hence, computational predic-
tions have been needed to support the identification of 
novel miRNAs. There are two major computational 
approaches for predicting miRNAs: comparative and 
noncomparative methods. The comparative method 
relies on the conservation of miRNAs across the 

genome of organisms. Some examples of computational 
method using the comparative method are miRScan,2,18 
miRAlign,19 ERPIN,20 and microHarvester.21 For 
miRNAs that do not have conserve sequences, non-
comparative methods are needed. Some examples 
of the noncomparative method are triplet-SVM,22 
miPred,23 PromiR,24 and miR-abela.25 The rationale 
behind the noncomparative methods is to design com-
puter program to learn and distinguish between real 
pre-miRNA and pseudo pre-miRNA. Hence most of 
the noncomparative methods are based on the utiliza-
tion of Support Vector Learning Machine (SVM) and 
hidden Markov model (HMM). Many of the miRNA 
prediction algorithms were developed based on broad 
assumptions.26 A study by Bram and Aggrey27 showed 
marked variability in sensitivity and specificity in 
predicting chicken pre-miRNA across classes using 
ERPIN, PromiR, and miR-abela.

In this study, we have developed a comparative 
method (miR-Explore) to demonstrate that grouping 
chicken miRNAs by classes increases sensitivity and 
specificity of the prediction method even when a sim-
ple direct positional secondary structure alignment 
is used. The basic idea of the current approach was 
to create a consensus structure of the pre-miRNA for 
each miRNA class and use this consensus structure to 
perform alignment with the query sequence.

Materials and Methods
Training data
A set of data was taken from the known pre-miRNA in 
chicken, human, mouse, zebra fish, fugu, worms, frog, 
chimpanzee, gorilla, platypus, pig, fruit fly, and buf-
falo, sequences which are available in the microRNA 
database miRBase.9 The data selected were based on 
the available miRNA classes in chicken. For example, 
if chicken has miR-1 class, then all available known 
miR-1 class pre-miRNA in the other organisms would 
be selected in this data set. The training data were 
taken from 80% of the sequences in the data set that 
best represents each miRNA class. In order to ascer-
tain a good consensus structure, only classes that have 
5 or more known pre-miRNAs were chosen to be part 
of the training data.

Positive data and negative data
The remaining 20% of the sequences that were 
not used as the training data were used as a query 
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(positive data) for prediction. The negative data was 
taken from all coding sequences in human and mouse 
sequences from the University of California Santa Cruz 
(UCSC) genome browser.28 These coding sequences 
were scanned for hairpin-like structures as a final nega-
tive data set. There were 33,932 hairpin-like structures 
in mouse and 36,662 hairpin-like structures in human. 
The hairpin-like structures scanning was done by using 
the program written by Sewer et  al for miR-abela.25 
Negative data for comparison with PromiR were 
5000 random sequences of length 300 nucleotides 
from coding genes, tRNA, and rRNA of chicken taken 
from the UCSC genome browser.

Programming and testing
The training data set was aligned using multiple 
alignment of RNAs (MARNA)29 to obtain the consen-
sus structure with 80% primary and secondary struc-
ture identity. The identity percentage was defined as the 
number of the nucleotides that are conserved among 
all of the training sequences in a particular column of 
the secondary structure. These consensus structures 
along with their primary sequence information were 
then used for alignment with the query sequence. The 
query sequence was limited to a minimum length of 
300 nucleotides. The minimum length of 300 nucle-
otides was to allow the program to initiate the align-
ment process. The average length of the consensus 
sequence was 150 nucleotides as miR-Explore cannot 
take a query sequence that is shorter than the length 
of the consensus structure. The alignment was done 
based on the information of the position of the sec-
ondary and primary structure. An alignment data from 
MARNA provided the consensus secondary structure 
on the first row along with the primary structure infor-
mation in the rest of the rows (Fig. 1). A sliding win-
dow was created with a length similar to the number 
of characters including gaps and unpaired nucleotides 
in the output of the MARNA alignment. The sliding 
window was used to scan the query sequence starting 

from position 1. The consensus structures were made 
up of gaps and hairpin structures, which consist of 
stem and loop. In Figure 1, the stem starts in positions 
1 and 75. The query sequence is a primary sequence 
without any gaps. Hence the alignment inserts gaps to 
the query sequence and shifts the gaps to align with the 
consensus structure and its corresponding nucleotide 
pairs in the stem. If an alignment matched the second-
ary structure and the corresponding stem nucleotides 
in the exact position shown in the MARNA align-
ment, then it was counted as one, otherwise it was 
zero. A match was defined as the same nucleotides in 
a particular column of a consensus secondary struc-
ture of the query sequence and the training sequence. 
The scoring method was a simple 0 and 1 to repre-
sent match or mismatch. The maximum score that an 
alignment can receive is the same as the number of 
pairs in the consensus secondary structure. Because 
each miRNA class has its own number of pairs in the 
secondary structure, the score of each miRNA class 
was different. This required normalization of the 
score to enable each miRNA class to attain a standard-
ized score. The standardized score was calculated as 
standardized score  =  (NMA/NMC) × 100%, where 
NMA = number of matched secondary structure and 
nucleotide stems in the alignment and NMC = num-
ber of nucleotide pair in the stem of the consensus 
structure.

The same scoring system was used for both nega-
tive and positive data. Since we used 80% identity 
in the construction of the consensus structure, and 
this approach is a direct position to position exact 
comparison, the program was considered a hit when 
the standardized score from a query sequence was 
at least 80%. We compared the current approach 
(miR-Explore) with miR-abela25 and PromiR.24 miR-
abela was tested using the same positive and nega-
tive data, while PromiR was tested using the negative 
data from 5000 randomly selected sequences of 
length 300 nucleotides from chicken coding genes, 

Figure 1. An example of alignment output from MARNA where ‘(’ and ‘)’ indicates the stem in the secondary structure, ‘.’ is a mismatch and ‘—’ is a gap.
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tRNA, and rRNA. The positive data for PromiR test 
were taken from the same data set used to test the 
other two programs, except that only chicken data 
were used. We tested PromiR with only chicken posi-
tive data because this program requires sequences to 
be inputted individually, which is laborious and time 
consuming. Therefore, we tested PromiR against 
miR-Explore and miR-abela using only chicken data, 
and miR-Explore was tested against miR-abela using 
data set across species.

The sensitivity and specificity were calculated.
Sensitivity = TP/(TP + FN) where TP (true positive) 

is the number of pre-miRNA predicted as pre-miRNA, 
and FN (false negative) is the number of pre-miRNA 
predicted as non–pre-miRNA.

Specificity = TN/(TN + FP) where TN (true negative) 
is the number of non–pre-miRNA predicted as non–
pre-miRNA, and FP (false positive) is the number of 
non–pre-miRNA predicted as pre-miRNA.

For accuracy measurement, we used Mathews 
Correlation Coefficient (MCC).30 MCC is a measure 
of the quality of binary classification. It takes into 
account true and false positives and negatives. The 
value of MCC ranges between -1 and +1 where +1 
represents a perfect prediction, 0 represents a random 
prediction, and -1 represents completely inverted 
predictions. The formula to calculate the MCC is as 
follows, where TP is true positive, TN is true negative, 
FP is false positive and FN is false negative.

	
MCC

TP TN FP FN

(TP FP)(TP FN)(TN FP)(TN FN)
= -× ×

+ + + +

Results and Discussion
The sensitivity and specificity for miR-Explore, miR-
abela, and PromiR using only chicken data are shown 
in Table 1. The specificity for miR-Explore and miR-
abela was 99.99%, and that of PromiR was 99.00%. 

The specificity of these programs was high using 
chicken data. However, there was marked variability 
in their sensitivity. miR-Explore had 88% sensitivity, 
whereas miR-abela and PromiR had 78% and 53% sen-
sitivity, respectively. The differences in sensitivity could 
be due to that fact that both miR-abela and PromiR were 
developed using mostly human and other mammalian 
training data whereas miR-Explore included chicken 
data as part of the training data. The training data in 
the secondary structure profiling can affect the sensi-
tivity of a program that is dependent on the program. 
In principle, PromiR, a probabilistic colearning method 
based on a hidden Markov model,24 was developed to 
identify both close and distant homologs. Our results 
demonstrate that either the chicken is too distant from 
humans or some of generalized assumptions under 
which PromiR was develop do not hold. PromiR scans 
the stem of the stem-loop candidates to determine the 
signal of the Drosha cleavage site. However, multiple 
factors govern the Drosha cleavage site.31 Therefore, 
it is possible that the PromiR did not capture most of 
the factors affecting Drosha cleavage in chicken data 
thereby limiting its sensitivity. Whereas, miR-abela was 
developed based on Support Vector Machine (SVM), 
miR-Explore utilized both real pre-miRNA and pseudo 
pre-miRNA as the training data and used general fea-
tures of pre-miRNA to train the computer to learn and 
distinguish between the two.

In general, there are some global features of 
pre-miRNAs that can be used as data for pre-miRNA 
prediction programs. These features include but 
are not limited to the nucleotide length, number of 
bulges, and minimum free energy. In the most recent 
miRNA prediction programs, these features have been 
generalized.32 The advantage of using these generalized 
miRNA features is that they are able to predict novel 
miRNAs that belong to previously unknown classes. 
Despite of the advantage of using the generalized miRNA 
features, the results shown in Table 1 suggest that using 

Table 1. Sensitivity and specificity of PromiR, miR-Explore and miR-abela in predicting pre-miRNA.

Speciesa PromiR miR-Explore miR-abela
GGA GGA HSA MMU DRE Others Averageb GGA HSA MMU DRE Others Averageb

Sensitivity 53.00 91.00 92.00 89.00 95.00 86.00 88.00 78.00 78.00 74.00 82.00 65.00 71.00
Specificity 90.00 99.99 99.99 99.99 99.99 99.99 99.99 99.99 99.99 99.99 99.99 99.99 99.99

Notes: aGGA = chicken; HSA = human; MMU = Mouse; DRE = zebra fish; Others = fugu, worms, frog, chimpanzee, gorilla, platypus, pig, drosophila and 
buffalo; baverage was calculated as the ratio between the total number of predicted pre-miRNA and the total number of pre-miRNA in the test data.
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global features without adequate training data that can 
represent all organisms will have reduced sensitivity in 
identifying new miRNA for species that are not well 
represented in the training data.

The test results of comparing miR-Explore and 
miR-abela using an expanded set of positive and nega-
tive data are also shown in Table 1. The detailed pre-
dictive results of different organisms for miR-Explore 
and miR-abela are provided in Supplementary tables 1 
and 2, respectively. The central hypothesis for this study 
was that each miRNA class has its own unique set of 
features; therefore, grouping miRNA by classes before 
using them as training data will improve sensitivity 
and specificity. Both miR-Explore and miR-abela are 
highly efficient in detecting true negative miRNAs. 
The sensitivity of miR-Explore was higher than miR-
abela for every species compared including humans. 
The average sensitivity was 88.62% for miR-Explore 
and 70.82% for miR-abela. The calculation of MCC 
for miR-Explore yield a coefficient of 0.90 whereas 
miR-abela has a coefficient of 0.75. Compared with 
global alignment, grouping miRNA by classes yielded 
a better sensitivity with very high specificity for pre-
miRNA prediction even when a simple positional based 
secondary and primary structure alignment were used. 
The grouping technique also yielded a higher MCC 
coefficient compared with the program using general-
ized features of pre-miRNA. It can be argued that as 
much as each class has its own unique features, there 
are other features that are conserved across classes and 
species. The ability to predict miRNA with increased 
sensitivity depends on the amount of conserved ele-
ments captured in the secondary structure. For exam-
ple, the training data for miR-21 were from humans, 
chickens, and mice, yet miR-Explore had 100% sensi-
tivity in predicting miR-21 in other species that were 
not used in the training data. The features of miR21 
could have been conserved well across species. On 
the other hand, miR125 could be least conserved even 
within the class and across species, and any predictive 
algorithm based on global alignment would yield rela-
tively poor sensitivity.

There are some limitations to miR-Explore. First, 
this approach is dependent on previously known 
miRNA precursor class and can only predict novel 
miRNA with that particular class. Second, miR-Explore 
relies on the conservation of miRNAs within a class 
and cross species and the availability of known miRNA 

data. When there are inadequate known miRNA data 
that can be used to build the consensus structure, the 
sensitivity may decline. Third, the alignment method 
of this approach is very simple. We used the positional 
information of the secondary structure along with the 
corresponding primary structure nucleotide, yet we 
were able to achieve a high sensitivity and specificity. 
Improving the alignment algorithm could improve the 
sensitivity and specificity.

Conclusion
It is difficult to develop a perfect miRNA prediction 
program; therefore, to detect miRNA computation-
ally, more than one program may be needed.23 In this 
study, we have shown that grouping miRNA by classes 
before using them as training data will improve sen-
sitivity and specificity. However, this approach can 
only predict pre-miRNA of known classes. Even 
though the sensitivity of PromiR and miR-abela may 
not be as good as that of miR-Explore, as ab initio 
methods, they have the potential to predict a novel 
miRNA in unknown classes. Each program has its 
own strengths and limitations that can complement 
each other. miR-Explore is a new technique that can 
contribute to the future discovery of novel miRNA.
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Supplementary Tables

Table S1. Sensitivity and specificity of miR-Explore in predicting pre-miRNA across species.

Class Specificity Sensitivity
Chicken Human Mouse Zebra fish Others Average

let-7 99.75% 2,2 2,2 2,2 2,2 38,39 97.87%
miR1 100.00% 2,2 2,2 2,2 2,2 12,12 100.00%
miR7 100.00% 1,2 1,2 2,2 1,2 13,16 75.00%
miR9 100.00% 2,2 2,2 2,2 2,2 14,19 81.48%
miR10 100.00% 2,2 2,2 2,2 2,2 10,14 81.82%
miR15 100.00% 2,2 2,2 2,2 2,2 9,10 94.44%
miR16 100.00% 2,2 2,2 2,2 2,2 8,8 100.00%
miR17 100.00% 1,1 1,1 1,1 2,2 5,5 100.00%
miR18 100.00% 1,1 1,1 1,1 2,2 7,7 100.00%
miR19 99.96% 2,2 2,2 2,2 2,2 10,13 85.71%
miR20 100.00% 2,2 2,2 2,2 2,2 6,6 100.00%
miR21 100.00% 1,1 1,1 1,1 2,2 4,4 100.00%
miR22 100.00% 1,1 1,1 1,1 2,2 4,5 90.00%
miR23 100.00% 1,1 2,2 2,2 2,2 9,9 100.00%
miR24 100.00% 1,1 2,2 1,2 2,2 6,6 92.31%
miR26 100.00% 1,1 2,2 2,2 2,2 6,6 100.00%
miR27 100.00% 1,1 2,2 2,2 2,2 9,9 100.00%
miR29 99.98% 2,2 2,2 2,2 2,2 14,17 88.00%
miR30 99.99% 1,2 2,2 1,2 2,2 16,18 84.62%
miR31 99.99% 1,1 0,1 1,1 2,2 11,11 93.75%
miR32 100.00% 1,1 1,1 1,1 N/A 3,3 100.00%
miR33 100.00% 2,2 1,1 1,1 N/A 9,9 100.00%
miR34 100.00% 1,2 2,2 2,2 0,1 14,14 90.48%
miR92 99.81% 0,1 0,2 0,2 2,2 17,21 67.86%
miR99 100.00% 1,1 2,2 2,2 2,2 4,5 91.67%
miR100 100.00% 1,1 1,1 1,1 2,2 8,8 100.00%
miR101 100.00% 2,2 2,2 2,2 2,2 7,8 93.75%
miR103 100.00% 2,2 2,2 2,2 1,1 7,7 100.00%
miR106 100.00% 1,1 2,2 2,2 N/A 6,6 100.00%
miR107 100.00% 1,1 1,1 1,1 1,1 4,4 100.00%
miR122 100.00% 2,2 1,1 1,1 1,1 3,3 100.00%
miR124 99.99% 2,2 2,2 2,2 2,2 15,15 100.00%
miR125 99.97% 0,1 0,2 0,2 0,2 0,16 0.00%
miR126 100.00% 1,1 1,1 1,1 1,1 3,3 100.00%
miR128 100.00% 2,2 2,2 2,2 2,2 6,6 100.00%
miR130 100.00% 2,2 2,2 2,2 2,2 7,7 100.00%
miR133 100.00% 2,2 2,2 2,2 2,2 11,14 86.36%
miR135 100.00% 2,2 2,2 2,2 2,2 9,10 94.44%
miR137 100.00% 1,1 1,1 1,1 2,2 5,6 90.91%
miR138 100.00% 1,2 2,2 1,2 1,1 1,4 54.55%
miR140 100.00% 1,1 1,1 1,1 1,1 3,3 100.00%
miR142 100.00% 1,1 1,1 1,1 1,1 4,4 100.00%
miR144 100.00% 1,1 1,1 1,1 1,1 3,3 100.00%
miR146 100.00% 2,2 2,2 2,2 2,2 5,5 100.00%
miR147 100.00% 2,2 2,2 1,1 N/A 3,3 100.00%
miR148 100.00% 1,1 2,2 2,2 1,1 4,4 100.00%
miR153 100.00% 1,1 2,2 1,1 2,2 6,6 100.00%
miR155 100.00% 0,1 0,1 0,1 0,1 0,2 0.00%
miR181 100.00% 2,2 2,2 2,2 2,2 15,18 88.46%
miR183 100.00% 1,1 1,1 1,1 1,1 2,5 66.67%

(Continued)
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Table S1. (Continued)

Class Specificity Sensitivity
Chicken Human Mouse Zebra fish Others Average

miR184 100.00% 1,1 1,1 1,1 1,1 9,9 100.00%
miR187 100.00% 1,1 1,1 1,1 1,1 3,3 100.00%
miR190 99.99% 1,1 1,1 1,1 1,1 7,8 91.67%
miR193 100.00% 2,2 1,1 1,1 2,2 3,6 75.00%
miR194 100.00% 1,1 2,2 2,2 2,2 5,5 100.00%
miR196 100.00% 2,2 2,2 2,2 2,2 9,9 100.00%
miR199 100.00% 2,2 2,2 2,2 2,2 8,9 94.12%
miR200 100.00% 2,2 2,2 2,2 2,2 9,9 100.00%
miR202 100.00% 1,1 1,1 1,1 1,1 3,3 100.00%
miR203 100.00% 1,1 1,1 1,1 1,1 3,3 100.00%
miR204 100.00% 2,2 1,1 1,1 2,2 5,5 100.00%
miR205 100.00% 2,2 1,1 1,1 1,1 4,4 100.00%
miR206 100.00% 1,1 1,1 1,1 1,1 3,3 100.00%
miR211 100.00% 1,1 1,1 1,1 N/A 2,2 100.00%
miR214 100.00% 1,1 1,1 1,1 1,1 4,4 100.00%
miR215 100.00% 1,1 1,1 1,1 N/A 3,3 100.00%
miR216 99.99% 2,2 1,1 1,1 2,2 4,8 85.71%
miR217 100.00% 1,1 1,1 1,1 1,1 4,4 100.00%
miR218 100.00% 2,2 2,2 2,2 2,2 8,8 100.00%
miR219 100.00% 1,1 1,1 1,1 1,1 8,10 85.71%
miR221 100.00% 1,1 1,1 1,1 1,1 4,4 100.00%
miR222 100.00% 1,1 1,1 1,1 1,1 3,3 100.00%
miR223 100.00% 1,1 1,1 1,1 1,1 3,4 87.50%
miR301 100.00% 1,1 1,1 1,1 1,1 5,5 100.00%
miR302 100.00% 0,2 0,2 0,2 N/A 0,8 0.00%
miR365 100.00% 2,2 2,2 2,2 2,2 3,5 84.62%
miR367 100.00% 1,1 1,1 1,1 N/A 2,2 100.00%
miR375 100.00% 1,1 1,1 1,1 1,1 5,5 100.00%
miR383 100.00% 1,1 1,1 1,1 N/A 3,3 100.00%
miR429 100.00% 1,1 1,1 1,1 1,1 3,5 77.78%
miR449 100.00% 0,1 0,1 0,1 N/A 0,4 0.00%
miR451 100.00% 1,1 1,1 1,1 1,1 2,2 100.00%
miR454 100.00% 1,1 N/A N/A 1,1 2,2 100.00%
miR455 100.00% 1,1 1,1 1,1 1,1 2,2 100.00%
miR460 100.00% N/A N/A N/A N/A 1,1 100.00%
miR466 100.00% 0,1 N/A 0,2 N/A 1,4 14.29%
miR489 100.00% 1,1 1,1 1,1 1,1 2,2 100.00%
miR490 100.00% N/A N/A N/A N/A 2,2 100.00%
miR499 100.00% 1,1 1,1 N/A N/A 3,3 100.00%
miR551 100.00% 1,1 1,1 1,1 N/A 3,3 100.00%
miR1306 100.00% N/A N/A N/A N/A 1,1 100.00%
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Table S2. Sensitivity of miR-abela in predicting pre-miRNA across species.

Class Sensitivity miR-abela
Chicken Human Mouse Zebra fish Others Average

let-7 2,2 0,2 1,2 2,2 26,39 65.96%
miR1 2,2 2,2 1,2 2,2 10,12 85.00%
miR7 2,2 2,2 2,2 2,2 14,16 91.67%
miR9 2,2 2,2 2,2 2,2 16,19 88.89%
miR10 2,2 2,2 1,2 2,2 11,14 81.82%
miR15 1,2 1,2 0,2 2,2 3,9 41.18%
miR16 2,2 2,2 2,2 1,2 7,8 87.50%
miR17 0,1 0,1 0,1 0,2 1,5 10.00%
miR18 2,2 0,1 1,1 2,2 3,7 61.54%
miR19 2,2 2,2 2,2 2,2 8,13 76.19%
miR20 1,2 1,2 1,2 1,2 3,6 50.00%
miR21 1,1 1,1 1,1 2,2 3,4 88.89%
miR22 1,1 1,1 1,1 2,2 3,5 80.00%
miR23 1,1 2,2 2,2 2,2 5,9 75.00%
miR24 0,1 1,2 1,2 2,2 1,6 38.46%
miR26 1,1 2,2 2,2 2,2 3,6 100.00%
miR27 0,1 1,2 1,2 1,2 4,9 43.75%
miR29 2,2 2,2 2,2 2,2 13,17 84.00%
miR30 1,2 2,2 2,2 2,2 11,18 69.23%
miR31 1,1 1,1 1,1 0,2 8,11 68.75%
miR32 1,1 1,1 1,1 N/A 2,3 83.33%
miR33 2,2 1,1 1,1 N/A 8,9 92.31%
miR34 1,2 1,2 1,2 1,1 14,14 85.71%
miR92 1,1 2,2 2,2 2,2 17,21 92.86%
miR99 1,1 1,2 1,2 1,2 0,5 33.33%
miR100 0,1 0,1 0,1 2,2 5,8 53.85%
miR101 2,2 2,2 2,2 2,2 5,8 81.25%
miR103 2,2 1,2 2,2 1,1 1,7 50.00%
miR106 0,1 1,2 0,2 N/A 4,6 45.45%
miR107 0,1 0,1 1,1 1,1 0,4 25.00%
miR122 2,2 1,1 1,1 1,1 2,3 87.50%
miR124 2,2 2,2 1,2 1,2 11,15 73.91%
miR125 1,1 2,2 1,2 2,2 6,16 52.17%
miR126 1,1 1,1 1,1 1,1 2,3 85.71%
miR128 2,2 2,2 2,2 2,2 3,6 78.57%
miR130 1,2 2,2 1,2 2,2 5,7 73.33%
miR133 2,2 2,2 2,2 2,2 9,14 77.27%
miR135 2,2 2,2 2,2 0,2 9,10 83.33%
miR137 1,1 1,1 1,1 2,2 5,6 90.91%
miR138 0,2 1,2 0,2 0,1 1,4 18.18%
miR140 1,1 1,1 1,1 1,1 3,3 100.00%
miR142 1,1 1,1 0,1 1,1 3,4 75.00%
miR144 1,1 1,1 1,1 1,1 2,3 85.71%
miR146 2,2 1,2 2,2 2,2 4,5 84.62%
miR147 0,2 1,2 0,1 N/A 2,3 37.50%
miR148 0,1 1,2 2,2 0,1 1,4 40.00%
miR153 1,1 2,2 1,1 2,2 5,6 91.67%
miR155 0,1 0,1 1,1 1,1 1,2 50.00%
miR181 1,2 1,2 1,2 1,2 5,18 34.62%
miR183 0,1 0,1 0,1 0,1 3,5 33.33%
miR184 1,1 1,1 1,1 1,1 7,9 84.62%
miR187 1,1 0,1 0,1 0,1 0,3 14.29%
miR190 1,1 1,1 1,1 1,1 6,7 90.91%
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http://www.la-press.com


Sebastian and Aggrey

142	 Bioinformatics and Biology Insights 2013:7

Table S2. (Continued)

Class Sensitivity miR-abela
Chicken Human Mouse Zebra fish Others Average

miR193 1,2 1,1 0,1 2,2 4,6 66.67%
miR194 1,1 1,2 1,2 2,2 4,5 75.00%
miR196 2,2 2,2 2,2 2,2 6,9 100.00%
miR199 2,2 2,2 1,2 2,2 3,9 58.82%
miR200 2,2 2,2 2,2 2,2 7,9 88.24%
miR202 1,1 1,1 1,1 1,1 3,3 100.00%
miR203 1,1 1,1 1,1 1,1 3,3 100.00%
miR204 2,2 1,1 1,1 1,2 4,5 81.82%
miR205 2,2 1,1 1,1 1,1 3,4 88.89%
miR206 1,1 1,1 1,1 1,1 2,3 85.71%
miR211 1,1 1,1 1,1 N/A 2,2 100.00%
miR214 1,1 1,1 1,1 1,1 4,4 100.00%
miR215 1,1 1,1 1,1 N/A 3,3 100.00%
miR216 0,2 1,1 0,1 0,2 5,8 42.86%
miR217 1,1 1,1 1,1 1,1 3,4 87.50%
miR218 2,2 2,2 2,2 2,2 5,8 81.25%
miR219 1,1 1,1 1,1 1,1 5,10 64.29%
miR221 1,1 1,1 1,1 1,1 3,4 87.50%
miR222 1,1 1,1 1,1 1,1 3,3 100.00%
miR223 1,1 1,1 1,1 1,1 4,4 100.00%
miR301 1,1 0,1 0,1 0,1 0,5 11.11%
miR302 1,2 2,2 1,2 N/A 8,8 85.71%
miR365 1,2 1,2 2,2 1,2 3,5 61.54%
miR367 0,1 1,1 1,1 N/A 0,2 40.00%
miR375 1,1 0,1 0,1 1,1 3,5 55.56%
miR383 0,1 0,1 0,1 N/A 0,3 0.00%
miR429 1,1 0,1 1,1 1,1 4,5 77.78%
miR449 1,1 1,1 1,1 N/A 2,4 71.43%
miR451 1,1 1,1 1,1 1,1 2,2 100.00%
miR454 1,1 N/A N/A 1,1 1,2 75.00%
miR455 1,1 1,1 1,1 1,1 2,2 100.00%
miR460 N/A N/A N/A N/A 1,1 100.00%
miR466 0,1 N/A 1,2 N/A 4,4 71.43%
miR489 1,1 1,1 1,1 1,1 2,2 100.00%
miR490 N/A N/A N/A N/A 0,2 0.00%
miR499 1,1 1,1 N/A N/A 2,3 80.00%
miR551 1,1 1,1 1,1 N/A 3,3 100.00%
miR1306 N/A N/A N/A N/A 0,1 0.00%
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