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Abstract
Background: Methods for array normalization, such as median and quantile normalization, were developed for mRNA expression 
arrays. These methods assume few or symmetric differential expression of genes on the array. However, these assumptions are not 
necessarily appropriate for microRNA expression arrays because they consist of only a few hundred genes and a reasonable fraction of 
them are anticipated to have disease relevance.
Methods: We collected microRNA expression profiles for human tissue samples from a liposarcoma study using the Agilent microRNA 
arrays. For a subset of the samples, we also profiled their microRNA expression using deep sequencing. We empirically evaluated 
methods for normalization of microRNA arrays using deep sequencing data derived from the same tissue samples as the benchmark.
Results: In this study, we demonstrated array effects in microRNA arrays using data from a liposarcoma study. We found moderately 
high correlation between Agilent data and sequence data on the same tumors, with the Pearson correlation coefficients ranging from 
0.6 to 0.9. Array normalization resulted in some improvement in the accuracy of the differential expression analysis. However, even 
with normalization, there is still a significant number of false positive and false negative microRNAs, many of which are expressed at 
moderate to high levels.
Conclusions: Our study demonstrated the need to develop more efficient normalization methods for microRNA arrays to further 
improve the detection of genes with disease relevance. Until better methods are developed, an existing normalization method such as 
quantile normalization should be applied when analyzing microRNA array data.
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Background
MicroRNAs (miRNAs) are a class of short noncod-
ing RNAs.1,2 They regulate gene expression posttran-
scription through base pairing with mRNAs to induce 
their degradation and translational repression.1,2 
Humans have over 1000 miRNAs, which may target 
about 60% of protein-coding genes.3 MiRNAs have 
been linked to a number of cancer types in several 
studies of individual miRNAs.4,5 In recent years, the 
microarray technology has become available to study 
miRNAs in a high-throughput fashion, and it has been 
increasingly used to study the role of miRNAs in dis-
eases such as cancer.6–12

Similar to mRNA arrays, miRNA arrays also 
exhibit array effects (that is, systematic variation 
due to experimental factors such as array manu-
facture batch, lab technician, and image scanner). 
We demonstrate this here with a data example from 
a liposarcoma study. Liposarcoma, the most com-
mon soft tissue sarcoma,3 is subdivided into three 
biologic groups, one of which consists of well-dif-
ferentiated liposarcoma (WD) and dedifferentiated 
liposarcoma (DD). In a study of miRNA expression 
in liposarcoma at Memorial Sloan-Kettering Can-
cer Center (MSKCC), we collected miRNA arrays 
for 56  tissue samples: 7 normal adipose, 24 WD, 
and 25 DD14 using the Agilent miRNA arrays (Agi-
lent Technologies, Santa Clara CA), which have 

an 8-plex format with eight arrays printed on a 
glass slide arranged as two rows and four columns. 
Arrays were generated over a period of 6 months 
(September 1, 2009 through February 28, 2010). 
Figure 1 shows a boxplot of the data (unnormalized 
foreground data on the log2 scale), with one box per 
array. Boxes are ordered by array slide and produc-
tion date and colored by tissue type. It is obvious 
that array difference due to tissue type is dominated 
by differences due to array production period and 
array slide.

Proper normalization is essential in the analysis 
of array data to remove systematic variation due to 
experimental process and to make data from different 
arrays comparable.15–18 This issue has been extensively 
studied in the context of mRNA expression arrays, 
with a number of normalization methods proposed.19–24 
A typical assumption of these normalization methods 
is that few genes are differentially expressed or that 
differential expression is symmetric.16,17,21 These exist-
ing normalization methods have been directly applied 
to miRNA arrays.25–28 However, miRNA array data 
have a number of distinct differences from mRNA 
array data. For example, the number of miRNA genes 
is relatively small, and differential expression is likely 
to be common and asymmetric as most miRNAs are 
expected to be expressed in a very tissue-specific 
manner.29–32 It is unclear whether existing normalization 
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Figure 1. Boxplot of the foreground intensity on the log2 scale for the Agilent arrays (n = 56) in the liposarcoma study. 
notes: Data at the probe level with no normalization are displayed with one box per array. The arrays are ordered by array slide, with vertical lines between 
slides. Colors indicate the sample type (white for normal adipose tissue, violet for WD, and blue for DD). 
Abbreviations: LPS, liposarcoma; BA, background adjustment.
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methods, developed for mRNA arrays, are appropriate 
for miRNA arrays.33,34

Three previous reports have studied the perfor-
mance of normalization methods for miRNA arrays. 
Rao et al35 compared several normalization methods 
using an in-house array platform, with duplicate 
arrays for 26 human tissues and 10 mouse tissues. 
They used the similarity between duplicate arrays 
as a performance metric. Lopez-Romero et al36 
examined the performance of median and quantile 
normalization for Agilent arrays and used the vari-
ability between biological replicates to measure nor-
malization  performance. Pradervand et al33 assessed 
normalization methods using Agilent arrays, defin-
ing true positives as a set of 59 genes that were 
claimed as differentially expressed by all normal-
ization methods under study. These previous studies 
are important but limited by their choice of perfor-
mance measure and also their definition of “true” 
positives.

We set out to assess normalization methods for 
miRNA arrays when the performance measure is 
to detect differentially expressed genes (a com-
mon goal in array studies) and the true positive 
genes are determined by an independent experi-
mental methodology using the RNA samples 
derived from the same set of tissue samples. We 
used a set of  Agilent arrays for 56 tissue samples 
collected at MSKCC. A subset of these samples 
was also profiled by Solexa sequencing of small 
RNA libraries at the Tuschl lab of the Rockefeller 
 University. The small RNA libraries were prepared 
using a customized protocol that has been carefully 
developed and extensively calibrated at the Tuschl 
lab.37–40 We used the sequence data on the same set 
of samples as the benchmark to empirically evalu-
ate the effect of normalization on the Agilent array 
data and compare the performance of normalization  
methods.

Materials and Methods
Data collection
Our study included 56 human tissue samples. Data 
on these samples were collected at MSKCC and the 
Rockefeller University as part of a study of miRNA 
expression alterations in liposarcomagenesis. Details 
of data collection, such as sample acquisition, RNA 
isolation, and Solexa sequencing, were described in 

Ugras et al.37,39–42 Expression arrays were processed 
at the MSKCC Genomic Core Lab using the Agilent 
Human miRNA arrays (version V2.0). Agilent array 
data were available for all 56 samples (7 normal adi-
pose, 24 WD, and 25 DD). Solexa deep sequencing 
data were available for 28 of the samples (14 WD 
and 14 DD) using the same RNA samples as the Agi-
lent arrays. Agilent arrays measure 799 miRNAs, 
and  Solexa has reads on 597 miRNAs. These two 
platforms have 486 miRNAs in common, which we 
focused on in our analysis.

Statistical analysis of Solexa data
We looked for miRNAs differentially expressed between 
WD and DD by comparing the relative abundance (that 
is, clone count for a given miRNA divided by the total 
clone count in a tissue sample), using a moderated t test as 
implemented in the R package LIMMA.43  Differentially 
expressed miRNAs were then selected using a P value 
cutoff P , 0.0001; we expected , 1 miRNA to have 
such small a P value by chance. In order to descriptively 
look at the distribution of Agilent data and how array 
normalization affects the data distribution, we selected 
three groups of miRNAs based on their abundance: 
(1) miRNAs ranked among the top 20 most abundant in 
each sample for all 28 samples, which we call “ always-
on” miRNAs; (2) miRNAs that had zero count in all 
28 samples, which we call “always-off” miRNAs; and 
(3) a random subset of 20 other miRNAs, which we call 
“sometimes-on” miRNAs.

Statistical analysis of Agilent data and 
evaluation of normalization methods
We evaluated differential expression based on the 
Agilent data using the moderated t test implemented 
in the LIMMA package.43 The P values, fold changes, 
and the selected top miRNAs were then compared 
with those from the Solexa data, which were con-
sidered to be the benchmark. For each individual 
array, we assessed the agreement between the Agi-
lent and Solexa data among all miRNAs and the 
agreement among ‘always-on’ and ‘sometimes-on’ 
miRNAs using  Pearson correlation.

To assess the effect of array normalization, 
we repeated the aforementioned analysis of Agi-
lent data, but with normalization. We tested four 
normalization methods using their implementa-
tions in the R software: (1) median normalization 
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(http://www.affymetrix.com) using R package, 
affy; (2) quantile normalization20,21 using R 
package, processCore; (3) cyclic loess normal-
ization24 using R package, affy; and (4) variance 
stabilizing normalization19 using R package, vsn.

The data preprocessing pipeline was as follows: 
(1) the probe-level foreground intensity data were 
log2 transformed, (2) the log2 probe-level foreground 
intensity data were normalized, and (3) the normal-
ized probe-level data were converted to gene-level 
data by taking the average of probes corresponding to 
the same miRNA gene.

An exception was made for variance stabilizing 
normalization, where the data were first normalized 
and then log2 transformed.

Three of the normalization methods—quantile, 
cyclic loess, and variance stabilizing—depend on 
the entire set of samples being normalized together. 
In the analysis results we report here, we normal-
ized the data for the 56 samples and then performed 
differential expression analysis in the 28 samples 
that have sequence data available. Similar analysis 
results were found when normalization was applied 
only to the 28 samples.

Results
Analysis of Solexa data
Comparing between WD (n = 14) and DD (n = 14), 
25 miRNAs were differentially expressed at a 
P value cutoff of 0.0001 (Fig. 2). We refer to 
these 25 miRNAs as DE25 hereafter. Among these 
25 miRNAs, 2 are upregulated, and 23 are downreg-
ulated in DD (a more aggressive subtype than WD). 
The two upregulated miRNAs are miR-9 and miR-
21: miR-9 has been reported to positively regulate 
the malignant progression of cancer;44 miR-21 has 
been shown to target a number of tumor suppres-
sors such as PTEN and BCL2.45,46 The 23 down-
regulated miRNAs include miR-143, miR-190, and 
miR-652, which have been shown to be relevant 
to cancer.47–51 We are in the process of character-
izing their roles in liposarcoma and have recently 
published our results from functional studies of 
miR-143.41

Seven miRNAs were always-on (Fig. 3A). They 
are miR-21, miR-22, miR-26a, let-7a, let-7b, let-7f, 
and let-7i. While the miRNAs that are on (that is, 
ranked as top 20 abundant in a given sample) in each 
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Figure 2. Volcano plot for the comparison of relative abundance (% clone 
count) between WD and DD. 
notes: The X axis is the log2 (fold change); the Y axis is the -log10 
(P value). MiRNAs that are significant (P , 0.0001) are indicated in red.

individual sample accounted for about 75% of the 
clone count (Fig. 3B), the seven always-on miRNAs 
shared across the samples accounted for about 50% 
of the clone count (Fig. 3C). Twenty-eight miRNAs 
were always-off.

Analysis of Agilent data  
with no normalization
A scatter plot of the Solexa data (log2 clone count) 
versus the Agilent data for each array is pro-
vided in Supplementary Figure 1. As expected, 
the  Solexa data showed a wider dynamic range 
than the Agilent data and had better resolution 
for miRNAs expressed at low levels. The two 
data types had moderate agreement across all 
miRNAs, with the Pearson correlation ranging 
between 0.58 and 0.85 (Fig. 4). When limiting 
the comparison to the always-on and sometimes-
on miRNAs, the  Pearson correlation between the 
two data types increased, ranging from 0.79 to 
0.95 (Supplementary Fig. 2). Distributions of the 
always-on, always-off, and sometimes-on miR-
NAs on each array are shown in Supplementary 
Figure 3. Based on the Agilent data with no normal-
ization, 7 miRNAs were differentially expressed 
(P , 0.0001), which included 4 of the DE25 miRNAs  
(Table 1).
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Analysis of Agilent data 
with normalization
Results of the Agilent data after normalization are 
provided in Table 1 and Figure 4.

•	 When median normalization was applied, 
6 miRNAs were differentially expressed, includ-
ing 5 of the DE25 miRNAs.

•	 When quantile normalization was applied, 
16 miRNAs were differentially expressed, 
including 11 of the DE25 miRNAs. The Pearson 
correlation between the two data types ranged 
between 0.61 and 0.85 among all miRNAs (Fig. 4), 
and from 0.79 to 0.95 among the always-on  
and sometimes-on miRNAs (Supplementary 
Fig. 2).
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Figure 3. (A) The number of the top K abundant mirNAs shared among all liposarcoma samples (black), shared among all WD (red), or shared among 
all DD (blue). The data are derived from the Solexa sequencing. (B) relative abundance explained by the top K abundant mirNAs in each sample. Its 
distribution among 28 liposarcoma samples is shown as a boxplot for each K. (c) relative abundance explained by the top K abundant mirNAs shared 
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Figure 4. Histogram of correlation coefficients between Agilent data and Solexa data on each sample. 
Abbreviations: CLN, cyclic loess normalization; VSN, variance stabilizing normalization.

•	 Similar to quantile normalization, cyclic loess 
normalization claimed differential expression for 
15 miRNAs including 10 DE25 miRNAs and 
resulted in Pearson correlation between the two data 
types of 0.62 to 0.86 among all miRNAs and 0.80 
to 0.95 among the always-on and sometimes-on 
miRNAs.

•	 Also similar were the results with variance 
stabilizing normalization, which claimed 
differential expression for 14 miRNAs including 
4 DE25 miRNAs and resulted in Pearson correlation 
between the two data types of 0.63 to 0.89 among 
all miRNAs and 0.81 to 0.96 among the always-on 
and sometimes-on miRNAs.

To summarize, median normalization resulted 
in some improvement in the accuracy of the differ-
ential expression analysis, and the other three nor-
malization methods led to a greater, yet still limited, 
improvement.

effects of background adjustment
We also evaluated the effect of background adjust-
ment method in combination with array normalization 
on the accuracy of detecting differentially expressed 
miRNAs. We assessed the effect of background 
adjustment on the analysis of Agilent data by subtract-
ing background intensity from foreground intensity 
before log2 transformation. Background subtraction 
slightly improved the detection of differential expres-
sion. When combined with quantile, cyclic loess, or 
variance stabilizing normalization, background sub-
traction slightly increased the number of true posi-
tives detected while maintaining a similar number of 
false positives (results not shown).

Discussion
In summary, using data from a liposarcoma study, 
our study demonstrated that (1) array effects can 
significantly affect the detection of differentially 
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Table 1. Comparison of differentially expressed mirNAs 
claimed to be positive (P , 0.0001) or negative 
(P . 0.0001) by Agilent data versus those declared to be 
positive or negative by the Solexa data. 

normalization method
none 
(+, −)

Median 
(+, −)

Quantile 
(+, −)

cyclic  
loess 
(+, −)

Variance 
stablizing 
(+, −)

solexa
+ 4, 21 5, 20 11, 14 10, 15 10, 15
− 3, 458 1, 460 5, 456 5, 456 4, 457

note: The numbers of false positive and false negative 
miRNAs identified are indicated in bold for each normal-
ization method.
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Figure 5. Scatter plot of mean expression among WD (n = 14) versus 
among DD (n = 14).
notes: Red indicates miRNAs that are claimed to be significant by both 
the Solexa and Agilent data. Orange is for mirNAs that are claimed to be 
significant by the Solexa data only. Green is for miRNAs that are claimed 
to be significant by the Agilent data only. Grey is for miRNAs that are 
claimed to be significant by neither the Solexa data nor the Agilent data. 
Agilent data are quantile normalized.

expressed miRNAs and (2) statistical methods for 
normalizing the arrays can improve the detection to 
some extent.

Array effects are not unique to our liposarcoma 
data, and we have observed pervasive array effects in 
other miRNA array datasets such as those collected 
by the Cancer Genome Atlas (TCGA), a multi-insti-
tutional effort led by the National Cancer Institute 
that aims to catalogue major cancer-causing genome 
alterations in human tumors through multi-dimen-
sional genomic profiling.52 Plots showing array effects 
in the TCGA ovarian miRNA data are provided in the 
supplementary materials.

In our study, quantile, cyclic loess, and variance 
stabilizing normalization performed similarly, and all 
three performed better than median normalization. 
Quantile normalization has some practical advantages 
over cyclic loess and variance stabilizing normaliza-
tion, as cyclic loess normalization takes much more 
computer time and variance stabilizing normalization 
results in negative values that need to be arbitrarily 
set to 1 before log2 transformation.

More importantly, our study indicated the need for 
better normalization methods for miRNA data. Even 
with quantile normalization, the numbers of false 
positive and false negative miRNAs are still signif-
icant, and some of these miRNAs are expressed at 
moderate to high levels (Fig. 5). Hence these false 
miRNAs are not just a result of the low resolution of 
Agilent array at low expression levels, and there is 
still a need to develop more efficient normalization 
methods for miRNA arrays. Until better methods are 
developed, an existing normalization method such as 

quantile normalization should be applied when ana-
lyzing miRNA array data.

The sequence data used as a benchmark are imper-
fect, but they offer the considerable advantage of 
being derived from an independent method. In addi-
tion to analyzing the sequence data by comparing the 
relative clone counts, we also analyzed the sequence 
data by comparing the clone count using an exact test 
for the negative binomial distribution and the edgeR 
package, which calculates an effective library size 
for each sample to adjust for potential sequence com-
position bias and allows for a dispersion parameter 
to account for extra variability,53,54 and arrived at the 
same conclusions. Nevertheless, our study demon-
strates an additional line of evidence that array nor-
malization is useful for miRNA arrays but that better 
methods are needed.

conclusions
There is a need to develop more efficient normal-
ization methods for miRNA arrays to improve the 
detection of genes with disease relevance. Until 
better methods are developed, an existing normaliza-
tion method such as quantile normalization should be 
applied when analyzing miRNA array data.
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List of Abbreviations
miRNA, microRNA; WD, well-differentiated lipos-
arcoma; DD, dedifferentiated liposarcoma; MSKCC, 
Memorial Sloan-Kettering Cancer Center; DE25, the 
top 25 most significant microRNAs identified in the 
liposarcoma sequence data.

Data Availability
Data used in this study are available upon request.

Acknowledgements
We thank Dr. Jaya Satagopan for helpful comments 
to the paper and Joseph Kanik for his excellent secre-
tarial support.

Author contributions
LXQ designed the study. SS and TT collected the data. 
LXQ conducted the analysis. LXQ and SS wrote the 
manuscript. All authors reviewed and approved of the 
final manuscript.

Funding
This work was supported by the National Institutes 
of Health (CA151947 to LXQ and SS; CA047179 to 
SS and LXQ; and CA140146 to SS and LXQ). The 
funding agents have no role in the study design, in the 
collection, analysis, and interpretation of data, in the 
writing of the manuscript, or in the decision to sub-
mit the manuscript for publication. Funding for open 
access charge: National Institutes of Health.

competing Interests
Author(s) disclose no potential conflicts of interest.

Disclosures and ethics
As a requirement of publication author(s) have provided 
to the publisher signed confirmation of compliance 
with legal and ethical obligations including but not 
limited to the following: authorship and contributor-
ship, conflicts of interest, privacy and confidentiality 
and (where applicable) protection of human and ani-
mal research subjects. The authors have read and con-
firmed their agreement with the ICMJE authorship and 
conflict of interest criteria. The authors have also con-
firmed that this article is unique and not under consid-
eration or published in any other publication, and that 
they have permission from rights holders to reproduce 
any copyrighted material. Any disclosures are made in 

this section. The external blind peer reviewers report 
no conflicts of interest.

References
 1. Ambros V. The functions of animal microRNAs. Nature. 2004;431(7006): 

350–5.
 2. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. 

Cell. 2004;116(2):281–97.
 3. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by 

adenosines, indicates that thousands of human genes are microRNA targets. 
Cell. 2005;120(1):15–20.

 4. He L, Thomson JM, Hemann MT, et al. A microRNA polycistron as a poten-
tial human oncogene. Nature. 2005;435(7043):828–33.

 5. O’Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT. c-Myc-
regulated microRNAs modulate E2F1 expression. Nature. 2005;435(7043): 
839–43.

 6. Dyrskjot L, Ostenfeld MS, Bramsen JB, et al. Genomic profiling of 
microRNAs in bladder cancer: miR-129 is associated with poor outcome 
and promotes cell death in vitro. Cancer Res. 2009;69(11):4851–60.

 7. Jares P, Campo E. Genomic platforms for cancer research: potential diag-
nostic and prognostic applications in clinical oncology. Clin Transl Oncol. 
2006;8(3):161–72.

 8. Merritt WM, Lin YG, Han LY, et al. Dicer, Drosha, and outcomes in patients 
with ovarian cancer. N Engl J Med. 2008;359(25):2641–50.

 9. Roldo C, Missiaglia E, Hagan JP, et al. MicroRNA expression abnormali-
ties in pancreatic endocrine and acinar tumors are associated with distinc-
tive pathologic features and clinical behavior. J Clin Oncol. 2006;24(29): 
4677–84.

 10. Strausberg RL, Simpson AJ, Old LJ, Riggins GJ. Oncogenomics and 
the development of new cancer therapies. Nature. 2004;429(6990): 
469–74.

 11. Yang N, Kaur S, Volinia S, et al. MicroRNA microarray identifies Let-7i as 
a novel biomarker and therapeutic target in human epithelial ovarian cancer. 
Cancer Res. 2008;68(24):10307–14.

 12. Zhang L, Volinia S, Bonome T, et al. Genomic and epigenetic alterations 
deregulate microRNA expression in human epithelial ovarian cancer. Proc 
Natl Acad Sci U S A. 2008;105(19):7004–9.

 13. Fletcher C, Unni K, Mertens F. Pathology and Genetics of Tumours of Soft 
Tissue and Bone. Lyon, France: IARC Press; 2002.

 14. Barretina J, Taylor BS, Banerji S, et al. Subtype-specific genomic alterations 
define new targets for soft-tissue sarcoma therapy. Nat Genet. 2010;42(8): 
715–21.

 15. Khoury MJ, McBride CM, Schully SD, et al. The Scientific Foundation for 
personal genomics: recommendations from a National Institutes of Health-
Centers for Disease Control and Prevention multidisciplinary workshop. 
Genet Med. 2009;11(8):559–67.

 16. Nguyen DV, Arpat AB, Wang N, Carroll RJ. DNA microarray experiments: 
biological and technological aspects. Biometrics. 2002;58(4):701–17.

 17. Quackenbush J. Microarray data normalization and transformation. Nat 
Genet. 2002;32 Suppl:496–501.

 18. Ransohoff DF. How to improve reliability and efficiency of research about 
molecular markers: roles of phases, guidelines, and study design. J Clin 
Epidemiol. 2007;60(12):1205–19.

 19. Huber W, von Heydebreck A, Sueltmann H, Poustka A, Vingron M. 
Parameter estimation for the calibration and variance stabilization of 
microarray data. Stat Appl Genet Mol Biol. 2003;2:Article 3.

 20. Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP. 
 Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res. 
2003;31(4):e15.

 21. Irizarry RA, Hobbs B, Collin F, et al. Exploration, normalization, and sum-
maries of high density oligonucleotide array probe level data. Biostatistics. 
2003;4(2):249–64.

 22. Li C, Wong WH. Model-based analysis of oligonucleotide arrays: 
expression index computation and outlier detection. Proc Natl Acad Sci 
U S A. 2001;98(1):31–6.

http://www.la-press.com


empirical evaluation of normalization for microrNA arrays

Cancer Informatics 2013:12 91

 23. Schadt EE, Li C, Ellis B, Wong WH. Feature extraction and normaliza-
tion algorithms for high-density oligonucleotide gene expression array data.  
J Cell Biochem Suppl. 2001;Suppl 37:120–5.

 24. Yang YH, Dudoit S, Luu P, et al. Normalization for cDNA microarray data: 
a robust composite method addressing single and multiple slide systematic 
variation. Nucleic Acids Res. 2002;30(4):e15.

 25. Garzon R, Fabbri M, Cimmino A, Calin GA, Croce CM. MicroRNA expres-
sion and function in cancer. Trends Mol Med. 2006;12(12):580–7.

 26. Pan Q, Luo X, Chegini N. Differential expression of microRNAs in myome-
trium and leiomyomas and regulation by ovarian steroids. J Cell Mol Med. 
2008;12(1):227–40.

 27. Perkins DO, Jeffries CD, Jarskog LF, et al. microRNA expression in the 
prefrontal cortex of individuals with schizophrenia and schizoaffective 
 disorder. Genome Biol. 2007;8(2):R27.

 28. Sengupta S, den Boon JA, Chen IH, et al. MicroRNA 29c is down-
 regulated in nasopharyngeal carcinomas, up-regulating mRNAs encoding 
extracellular matrix proteins. Proc Natl Acad Sci U S A. 2008;105(15): 
5874–8.

 29. Dennis L. MicroRNAs in early embryonic development: Dissecting the role 
of miR-290 through miR-295 in mouse. [dissertation]. Cambridge, MA: 
MIT; 2008.

 30. Marson A, Levine SS, Cole MF, et al. Connecting microRNA genes to 
the core transcriptional regulatory circuitry of embryonic stem cells. Cell. 
2008;134(3):521–33.

 31. Rosenfeld N, Aharonov R, Meiri E, et al. MicroRNAs accurately identify 
cancer tissue origin. Nat Biotechnol. 2008;26(4):462–9.

 32. Sharma S, Kelly TK, Jones PA. Epigenetics in Cancer. Carcinogenesis. 
2010;31(1):27–36.

 33. Pradervand S, Weber J, Thomas J, et al. Impact of normalization on miRNA 
microarray expression profiling. RNA. 2009;15(3):493–501.

 34. Tricoli JV, Jacobson JW. MicroRNA: Potential for Cancer Detection, 
Diagnosis, and Prognosis. Cancer Res. 2007;67(10):4553–5.

 35. Rao Y, Lee Y, Jarjoura D, et al. A comparison of normalization techniques for 
microRNA microarray data. Stat Appl Genet Mol Biol. 2008;7(1):Article 22.

 36. Lopez-Romero P, Gonzalez MA, Callejas S, Dopazo A, Irizarry RA. 
 Processing of Agilent microRNA array data. BMC Res Notes. 2010;3:18.

 37. Hafner M, Renwick N, Brown M, et al. RNA-ligase-dependent biases in 
miRNA representation in deep-sequenced small RNA cDNA libraries. RNA. 
2011;17(9):1697–712.

 38. Hafner M, Renwick N, Pena J, Mihalovic A, Tuschl T. Barcoded cDNA librar-
ies for miRNA profiling by next-generation sequencing. In: Hartmann RK, 
Bindereif A, Schon A, Westhof E, editors. Handbook of RNA Biochemistry. 
Weinheim, Germany: Wiley-VCH; 2005.

 39. Farazi TA, Brown M, Morozov P, et al. Bioinformatic analysis of barcoded 
cDNA libraries for small RNA profiling by next-generation sequencing. 
Methods. 2012;58(2):171–87.

 40. Hafner M, Renwick N, Farazi TA, Mihailovic A, Pena JT, Tuschl T. 
 Barcoded cDNA library preparation for small RNA profiling by next-
 generation sequencing. Methods. 2012;58(2):164–70.

 41. Ugras S, Brill E, Jacobsen A, et al. Small RNA sequencing and functional 
characterization reveals MicroRNA-143 tumor suppressor activity in 
 liposarcoma. Cancer Res. 2011;71(17):5659–69.

 42. Barcoded cDNA library preparation for small RNA profiling by next-
generation sequencing. Hafner M, Renwick N, Farazi TA, Mihailović 
A, Pena JT, Tuschl T. Methods. 2012 Oct;58(2):164–70. doi: 10.1016/j.
ymeth.2012.07.030. Epub 2012 Aug 7. PMID:22885844.

 43. Smyth GK. Linear models and empirical bayes methods for assessing dif-
ferential expression in microarray experiments. Stat Appl Genet Mol Biol. 
2004;3:Article 3.

 44. Ma L, Young J, Prabhala H, et al. miR-9, a MYC/MYCN-activated microRNA, 
regulates E-cadherin and cancer metastasis. Nat Cell Biol. 2010;12(3):247–56.

 45. Si ML, Zhu S, Wu H, Lu Z, Wu F, Mo YY. miR-21-mediated tumor growth. 
Oncogene. 2007;26(19):2799–803.

 46. Meng F, Henson R, Lang M, et al. Involvement of human micro-RNA in 
growth and response to chemotherapy in human cholangiocarcinoma cell 
lines. Gastroenterology. 2006;130(7):2113–29.

 47. Yamamoto Y, Yoshioka Y, Minoura K, et al. An integrative genomic anal-
ysis revealed the relevance of microRNA and gene expression for drug-
 resistance in human breast cancer cells. Mol Cancer. 2011;10:135.

 48. Rauhala HE, Jalava SE, Isotalo J, et al. miR-193b is an epigenetically 
regulated putative tumor suppressor in prostate cancer. Int J Cancer. 
2010;127(6):1363–72.

 49. Li XF, Yan PJ, Shao ZM. Downregulation of miR-193b contributes to 
enhance urokinase-type plasminogen activator (uPA) expression and 
tumor progression and invasion in human breast cancer. Oncogene. 
2009;28(44):3937–48.

 50. Beezhold K, Liu J, Kan H, et al. miR-190-mediated downregulation of 
PHLPP contributes to arsenic-induced Akt activation and carcinogenesis. 
Toxicol Sci. 2011;123(2):411–20.

 51. Calin GA, Liu CG, Sevignani C, et al. MicroRNA profiling reveals distinct 
signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci 
U S A. 2004;101(32):11755–60.

 52. Cancer Genome Atlas Research Network. Comprehensive genomic char-
acterization defines human glioblastoma genes and core pathways. Nature. 
2008;455(7216):1061–8.

 53. Robinson MD, Smyth GK. Moderated statistical tests for assessing differ-
ences in tag abundance. Bioinformatics. 2007;23:2881–7.

 54. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor pack-
age for differential expression analysis of digital gene expression data. 
 Bioinformatics. 2010;26:139–40.

http://www.la-press.com


Qin et al

92 Cancer Informatics 2013:12

supplementary Figures

0 5 10

0
5

10

15 0 5 10

0
5

10

15 0 5 10

0
5

10

15 0 5 10

0
5

10

15

0 5 10

0
5

10

15 0 5 10

0
5

10

15 0 5 10

0
5

10

15 0 5 10

0
5

10

15

0 5 10

0
5

10

15 0 5 10

0
5

10

15 0 5 10

0
5

10

15 0 5 10
0

5
10

15

0 5 10

0
5

10

15 0 5 10

0
5

10

15 0 5 10

0
5

10

15 0 5 10

0
5

10

15

0 5 10

0
5

10

15 0 5 10

0
5

10

15 0 5 10

0
5

10

15 0 5 10

0
5

10

15

0 5 10

0
5

10

15 0 5 10

0
5

10

15 0 5 10

0
5

10

15

0 5 10

0
5

10

15

0 5 10
0

5
10

15

0 5 10

0
5

10

15

0 5 10

0
5

10

15

0 5 10

0
5

10

15

0

A

Figure s1A. Scatter plot between the deep sequencing data (x axis) and the Agilent data (y axis). 
note: No normalization.

http://www.la-press.com


empirical evaluation of normalization for microrNA arrays

Cancer Informatics 2013:12 93

0 5 10

0
5

10

15 0 5 10
0

5
10

15

0
5

10

0 5 10 15 0 5 10

0
5

10

15

0 5 10

0
5

10

15 0 5 10

0
5

10

15 0 5 10

0
5

10

15 0 5 10

0
5

10

15

0 5 10

0
5

10

15 0 5 10

0
5

10

15 0 5 10

0
5

10

15 0 5 10

0
5

10

15 0 5 10

0
5

10

15

0 5 10

0
5

10

15 0 5 10

0
5

10

15 0 5 10

0
5

10

15 0 5 10

0
5

10

15

0 5 10

0
5

10

15 0 5 10

0
5

10

15 0 5 10

0
5

10

15 0 5 10

0
5

10

15

0 5 10

0
5

10

15 0 5 10

0
5

10

15 0 5 10

0
5

10

15

0 5 10

0
5

10

15

0 5 10

0
5

10

15

0 5 10

0
5

10

15

0 5 10

0
5

10

15

5

B

Figure s1B. Scatter plot between the deep sequencing data (x axis) and the Agilent data (y axis). 
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TCGA ovarian cancer: miRNA expression

Figure s4. Boxplot of the foreground intensity on the log2 scale for a subset of the Agilent arrays (n = 104) in the TCgA ovarian study. 
notes: TCgA is a multi-institutional effort led by the National Cancer Institute that aims to catalogue major cancer-causing genome alterations in human 
tumors through multi-dimensional genomic profiling. One of the first three human tumor types TCGA studied was ovarian cancer. The tumor tissue samples 
were collected nation-wide, and the miRNA arrays were generated centrally at a Cancer Genome Characterization Center. We downloaded the first 226 
ovarian arrays at the TCgA data portal. The 226 arrays belong to 26 array slides, with the number of arrays per slide ranging from 2 to 6. (Some arrays 
on each slide are used for the characterization center’s internal controls and their data are not publicly available.) To simplify interpretation, we only 
looked at the row-1 arrays from slides that have all four row-1 arrays available, which consisted of 104 arrays from 26 slides. The arrays exhibit noticeable 
differences between array slides and arrays within a slide; these differences are not readily interpretable by tumor differences alone. Data at the probe 
level with no normalization are displayed with one box per array. The arrays are ordered by array slide and colored to distinguish neighboring slides.
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