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Abstract: The 18,352 pancreatic ductal adenocarcinoma (PDAC) cases from the Surveillance Epidemiology and End Results (SEER) 
database were analyzed using the Kaplan-Meier method for the following variables: race, gender, marital status, year of diagnosis, age 
at diagnosis, pancreatic subsite, T-stage, N-stage, M-stage, tumor size, tumor grade, performed surgery, and radiation therapy. Because 
the T-stage variable did not satisfy the proportional hazards assumption, the cases were divided into cases with T1- and T2-stages (local-
ized tumor) and cases with T3- and T4-stages (extended tumor). For estimating survival and conditional survival probabilities in each 
group, a multivariate Cox regression model adjusted for the remaining covariates was developed. Testing the reproducibility of model 
parameters and generalizability of these models showed that the models are well calibrated and have concordance indexes equal to 0.702 
and 0.712, respectively. Based on these models, a prognostic estimator of survival for patients diagnosed with PDAC was developed and 
implemented as a computerized web-based tool.
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Introduction
Pancreatic cancer is a devastatingly lethal disease, 
with the highest mortality and the lowest one, three, 
and five-year relative survival rates of all cancers 
in the United States.1,2 Although pancreatic cancer 
accounts for a relatively small number of new diag-
noses at approximately 44,000 per year, with over 
37,000 deaths per year,1 pancreatic cancer ranks only 
behind breast, colon, and lung cancer in total US can-
cer mortality.3

Pancreatic cancer is a heterogeneous disease clas-
sified by cancer subtypes according to their cell type 
of origin, structure, and behavior. The majority of 
pancreatic cancer cases are pancreatic ductal adeno-
carcinoma (PDAC),2 which has the most aggressive 
tumor biology and metastatic potential among pan-
creatic cancer histopathologic subtypes.4,5

The median survival time after PDAC diagnosis 
is about four months.6 Only about 19% of patients 
with this disease survive past one year and only about 
2% survive past five years.2 However, the survival of 
patients diagnosed with PDAC may vary significantly 
depending on many factors, including demographic 
characteristics and the pathologic nature of the tumor, 
as well as the type of performed treatment. To esti-
mate the relative impact of the distinct risk factors on 
the survival of patients diagnosed with PDAC, Cox 
proportional regression models have been used.6–8 It 
was shown that the following demographic factors 
have a significant impact on the survival of PDAC: 
gender, race, age at diagnosis,6 marital status,8 and the 
time period of the PDAC diagnosis.6 In addition, the 
following clinical factors have a significant influence 
on the survival of PDAC: tumor size, nodal status, 
and distant metastases.7

The most dramatic influence on the survival of 
patients diagnosed with PDAC is a surgical resection 
of the tumor (with our without adjuvant chemother-
apy and radiation).9 Unfortunately, less than 20% of 
patients diagnosed with PDAC are suitable for surgi-
cal resection.7 For the remaining patients, the extent 
of disease precludes the use of surgical procedures. 
The combination of surgery with radiation and che-
motherapy has been shown by some to improve sur-
vival compared to surgery alone.9

The estimated parameters (values of the rela-
tive impact of risk factors on the survival of cancer 
patients) obtained by the Cox proportional regression 

models are largely varied, depending on the quan-
tity and quality of data used, the set of the consid-
ered variables, and the technical approaches utilized 
in developing these models. The obtained estimates 
depend on the underlying Cox models, the credibility 
of which can be estimated by values of their concor-
dance indexes (c-indexes), which present the prob-
ability that for any pair of randomly drawn patients, 
the patient with the worst outcome estimated by this 
model dies earlier than one with the better estimated 
outcome. A c-index value equal to 0.5 indicates that 
the predictive power of the model is not better than 
random chance, while a level of 1.0 of this index sig-
nifies perfect discrimination.

The Cox proportional hazards regression mod-
els for estimation of survival for patients diagnosed 
with PDAC were used for the development of two 
nomograms.10,11 One nomogram estimates the survival 
for patients who have undergone pancreatectomy of 
the malignancy and accounts for the following vari-
ables (covariates): tumor size, grade, stage, lymph node 
data, resected tissue amount, weight loss, and pancreatic 
subsite.10 This nomogram was constructed using data 
from highly selected patients treated at a single, special-
ized center. The other nomogram predicts the risk of 
perioperative mortality in PDAC patients scheduled to 
undergo pancreatectomy and accounts for patient demo-
graphics (age, gender, race), type of pancreatectomy 
(distal, radical, and other), hospital characteristics (size, 
type), as well as the presence of co-morbidities in PC 
patients (renal failure, neurological disorders, hypothy-
roid, chronic heart failure (CHF), liver disease, uncom-
plicated hypertension, cardiac arrhythmia, diabetes, and 
chronic obstructive pulmonary disease).11 The utility of 
these nomograms to patients diagnosed with PDAC, 
however, is limited to the relatively small fraction of 
patients with resectable PDAC (less than 20%).12,13

Recently, two new Cox regression models were 
developed to estimate the survival for patients with 
resectable and unresectable PDAC.9 These models 
use the following variables: age, gender, race, tumor 
stage, tumor site, tumor grade, and radiotherapy. 
Based on these models, an interactive, online clinical 
calculator was developed to estimate survival proba-
bility for patients diagnosed with PDAC, based on an 
individual’s unique clinicopathological profile. The 
calculator is also capable of estimating conditional 
survival probabilities (defined as the future  survival 
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probability or duration that is calculated after a given 
period of survival that increases over time elapsing 
since the diagnosis of PDAC).14 Because this cal-
culator can estimate personalized survival probabil-
ity, which can influence personal decision making, 
disease-related anxiety, and quality of life of can-
cer patients, it has been proposed for clinical use.9 
 However, this calculator does not provide the stan-
dard errors of the survival estimates and its reliability 
and generalizability were not checked (or at least not 
disclosed in that work) with the use of c-indexes. The 
reliability and generalizability of a model are essen-
tial when a model’s predictions are considered for 
clinical practice.15

In the present work, we used SEER data on 18,352 
pathologically confirmed cases of PDAC, diagnosed 
during 2004–2009,16 and developed Cox proportional 
hazards regression models adjusted by the following 
covariates: race, gender, marital status, time period, 
age at diagnosis, tumor site, tumor size, T-stage, 
M-stage, N-stage, tumor grade, type of surgery, and 
radiotherapy. Based on these models, we developed 
a web-based, real-time prognostic tool for estimat-
ing survival and conditional survival probabilities 
(as well as their corresponding standard errors) for 
patients with PDAC. The reliability and generaliz-
ability of the developed models were proven by their 
calibration and discrimination abilities, validated by 
the use of both “internal” and “external” datasets.

Materials and Methods
In this work, we used cancer data from the Surveil-
lance Epidemiology and End Results (SEER) database 
from 18 geographical areas (San Francisco-Oakland, 
Connecticut, Detroit, Hawaii, Iowa, New Mexico, 
Seattle, Utah, Atlanta, San Jose, Los Angeles, Alaska 
Natives, Rural Georgia, Greater California, Kentucky, 
Louisiana, New Jersey, and Greater Georgia).16 These 
data were published by SEER in April 2012 and con-
tain cases diagnosed up to 2009. From this release, we 
extracted survival data for pancreatic cancer patients 
diagnosed with adenocarcinoma (International Clas-
sification of Diseases for Oncology, 3rd Edition his-
tology codes 8140-8149).

We initially queried 33,252 cases of PDAC diag-
nosed between 2004 and 2009. From this subset 
we excluded: 5,583 cases that did not have pancre-
atic cancer as the primary cancer for the patient, 

999 cases that were not pathologically confirmed; 
one case diagnosed at an age younger than 20 years 
(ages 0–19 are customarily used to classify child-
hood cancers); 2,032 cases of races that were not 
black or white (cases for Asian/Pacific Islanders, 
Native Americans, and individuals of unknown 
race were not available in sufficient quantities); 906 
cases with unknown marital status; 271 cases with 
unknown radiation therapy status; 259 cases with 
unknown surgery status or having non-therapeutic 
procedures; 176 cases marked T0 or Tis stage; and 
4,673 cases with unknown tumor extension. This left 
18,352 cases prior to stratification into subgroups for 
T1/T2 stage and T3/T4 stage.

Data on the remaining 18,352 PDAC cases were 
described by 13 categorical variables (five demographic 
covariates, six clinical covariates, and two medical 
treatment covariates). As demographic categorical 
covariates (the corresponding categories are presented 
in brackets), we used: (i) race (white, black), (ii) gender 
(male, female), (iii) age at diagnosis (quartile groups: 
20–59, 60–69, 70–77, 78+ years), (iv) year (time period) 
of diagnosis (January 1, 2007 through  December 31, 
2009; and January 1, 2004 through December 31, 2006), 
and (v) marital status (married, single). As the clinical 
covariates, we used: (i) tumor site, i.e., pancreatic sub-
site (head, body, tail, other, unknown), (ii) tumor size 
(separated by the median size into 0.0–4.0 and .4 cm 
groups), (iii) AJCC 6th Edition T-stage (T1, T2, T3 and 
T4), (iv) AJCC 6th Edition N-stage (N0, N1, and NX), 
(v) AJCC 6th Edition M-stage (M0, M1, and MX), and 
(vi) tumor grade (low, high, and unknown). Finally, as 
medical treatment covariates we used: (i) pancreatic 
resection (pancreatoduodectomy/total pancreatectomy, 
partial pancreatectomy/pancreatic excision, and no sur-
gery), and (ii) radiation therapy (yes or no therapy). It 
should be noted that comprehensive chemotherapy data 
are not available in the SEER database, and therefore 
the effects of chemotherapy could not be studied in this 
work.

The prognostic effects of these variables were 
studied in univariate models with the Kaplan-Meier 
method and in multivariate Cox proportional hazards 
models, in which the survival function, S, for the fail-
ure time, t, associated with a P × 1 column covariate 
vector, Z, takes the form:

 S t Z S t
Z

( , ) ( ) ,
exp( )= [ ] ′⋅

0

β  (1)
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where S0(t) is the baseline hazard function and β is 
a P × 1 column vector of the regression coefficients 
(the β′ is the transpose of the β). The proportional 
hazard assumptions were assessed by visual inspec-
tion of log-log plots.17 All tests were two-sided with a 
significance level set at P , 0.05.

SAS version 9.2 (SAS Institute Inc., Cary, NC) was 
utilized to estimate the regression coefficients, β, of 
the multivariate Cox models. The estimates, β̂  (here 
and below the sign, “^”, designates an estimate) and 
the estimated covariance matrix of the β parameter 
estimates, ( )ˆˆ ,Cov β  were obtained using the PHREG 
SAS procedure. Estimates of the baseline survival 
function, 0Ŝ  and their standard errors, 0

ˆˆ ( ),SE S  were 
obtained by the PHREG SAS procedure using the 
BASELINE statement.

Outputs of the SAS PHREG procedure were used 
to calculate estimates of the survival probability, Ŝ, 
and standard error, ˆˆ ( ).SE S  For a given time, t, survival 
Ŝ is a function of the two variables:18,19 the baseline 
survival function, 0Ŝ , and the prognostic index, L̂:

 
exp( )
0

ˆ ˆ ,LS S=


 (2)

where

 
ˆˆ ,L Zβ= ′  (3)

Estimates of the standard errors of the estimates 
of the prognostic index, ˆ ˆ( ),SE L  were obtained by the 
formula that is used in SAS PHREG procedure:

 
2 ˆˆ ˆ ˆ( ) ( ) .SE L Z Cov Zβ= ′ ⋅ ⋅  (4)

Estimates of the standard errors of the estimates 
of the survival, ˆˆ ( ),SE S  were calculated by the fol-
lowing formula, obtained by standard rules of error 
propagation,19 and implemented in the PHREG SAS 
procedure:

 

2 2 2 2 2
0 0

0 0

ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ( ) [ / ] ( ) [ / ] ( )
ˆ ˆ ˆ ˆˆ ˆˆ2[ / ][ / ] ( , ).

SE S S S SE S S L SE L

S S S L Cov S L

= ∂ ∂ + ∂ ∂
+ ∂ ∂ ∂ ∂  (5)

In (3), 0
ˆ ˆ[ / ]S S∂ ∂  and ˆ ˆ[ / ]S L∂ ∂  are partial derivatives, 

which can be easily obtained from (2), and the covariance 
0

ˆ ˆˆ ( , )Cov S L  can be evaluated by numerical  experiments. 

We found that 0 0
ˆ ˆˆ ˆ ˆ ˆ( , ) ( ) ( );ˆCov S L SE S SE L≈ ⋅  this 

approximation can be further used in formula (5).
By definition, the conditional survival, S(t2 | t1), 

represents the probability that a patient with cancer 
will survive an additional t2 months, given that the 
patient has already survived a given t1 months. In this 
case, the estimate of the conditional survival, 2 1

ˆ( | ),S t t  
can be presented by formula:

 

1 2 2
2 1

1 1

ˆ ˆ( )ˆ( | ) ˆ ˆ( )

S t t S
S t t

S t S

+= =  (6)

where 2Ŝ  and 1̂S  designate the corresponding  estimates 
of the survival probabilities 1 2

ˆ( )S t t+  and 1
ˆ( ).S t  

 Survival function estimates 1̂S  and 2Ŝ  in formula 
(6) are dependent random variables with covariance 
depending on survival time t1 end t2. Neglecting this 
covariance while using the standard rules of error 
propagation, we can calculate the conservative (upper) 
estimate of the standard error of the estimate of the 
conditional probability, 2 1

ˆˆ[ ( | )],SE S t t  by formula:

 

2 2 2

2 2 1 2
2 1

1 1 2

ˆ ˆ ˆˆ ˆ( ) ( )ˆ[ ( | )] ˆ ˆ ˆ

       = +            

S SE S SE S
SE S t t

S S S

 (7)

where 1̂
ˆ ( )SE S  and 2

ˆˆ ( )SE S  are determined by for-
mula (5).

The accuracy of the Cox models developed in this 
work were assessed by the c-indexes (to estimate the 
discrimination power) and calibration plots (to esti-
mate an agreement between observed outcomes and 
predictions).20 The reproducibility and transportabil-
ity of these models were also checked, as we describe 
below. The reproducibility is defined as the perfor-
mance of a model on a sample of similar patients 
not included in the development of the model, while 
transportability reflects a model’s ability to predict 
among patients from different but “plausibly related” 
populations.21

To estimate the reproducibility of the parame-
ters of the developed models, cross-validation with 
10 iterations was done. For this purpose, the system-
atic sample splits were performed in such a way that 
all patients have served once in the model evaluation 
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dataset. It was done by exclusion in each iteration of 
about 10% of all cases. The end digit in the unique 
patient ID number, by which each case is coded in the 
SEER database, was used as an exclusion criterion. 
Thus, the systematic sample split was done by vary-
ing the exclusion criterion, starting from the digit 0 
and sequentially changing it to digits 1, 2, ... , and 9. 
For each iteration, cases not satisfying the considered 
exclusion criterion were used as the model training 
dataset, while the excluded cases were used as a test-
ing (validation) dataset. The discrimination power 
(c-indexes) of the models, obtained with the use of 
the training dataset, was checked using the testing 
dataset.

The generalizability or transportability of the 
models (i.e., goodness of using the same variables 
and same coefficients) was checked by utilizing 
the models for predicting the survival of the cancer 
patients living in different geographical areas. For 
this purpose, the c-indexes of the models, developed 
by using the cases from distinct geographic areas as 
training datasets, were validated on testing (“exter-
nal”) datasets exclusively containing cases from the 
geographical areas that were not included in the train-
ing datasets.

Results
Estimates of observed survival, stratified by each vari-
able, were obtained using the Kaplan-Meier method. 
For each variable, the proportional hazards assump-
tion was assessed graphically (data not shown) by 
log-log plots.17 We determined that for the following 
12 categorical variables the log-log plots are nearly 
parallel: race, gender, marital status, time period, age 
at diagnosis, tumor site, tumor size, T-stage, M-stage, 
N-stage, tumor grade, type of surgery, and radiation 
therapy. For the T-stage variable, however, the corre-
sponding curves on the log-log plots were not parallel 
(and, as a result, the AJCC 6th Edition stage group 
also demonstrates non-proportional hazards). In fact, 
Figure 1 shows that the curves related to the T1- and 
T2-stages (tumor extension localized to the pancreas) 
are not parallel to the curves related to the T3- and 
T4-stages (tumor extension not localized).

Data on 18,352 PDAC cases were stratified in two 
groups by degree of PDAC localization. The first 
group (which we called localized PDAC, LPDAC) 
contained 5,422 cases, in which the tumor is localized 

within the pancreas (T1- and T2-stages). The second 
group (called extended PDAC, EPDAC) contained 
12,930 cases, in which the tumor is extended beyond 
the pancreas (T3-stage) or is locally advanced and 
involves the celiac axis or the superior mesenteric 
artery (T4-stage). After separation of all PDAC 
cases into these two groups, the proportional hazard 
 assumptions for all categorical variables describing 
the cases in each of these groups were satisfied. This 
allowed us to perform the multivariate Cox regres-
sion analysis for the LPDAC and EPDAC groups 
separately.

In the multivariate Cox regression analysis of 
5,422 cases for the LPDAC group, we initially did 
not use the T-stage variable, which is not needed 
for this group of cases. This is because the LPDAC 
group contained only cases with T1- and T2-stages 
that are different from one another only by the 
tumor size (cases with tumor size equal or less than 
2 cm are T1-stage, and cases with tumor size larger 
than 2 cm are T2-stage),22 but to categorize tumor 
size, the tumor size variable can be used. When per-
forming the Cox analysis, we found that the vari-
able tumor subsite (head, body, tail, and other) does 
not have a significant influence on the survival of 
the LPDAC patients, and thus we did not use this 
variable for the development of the final LPDAC 
Cox model.
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Figure 1. Assessment of the proportional hazards assumption for T-stage.
notes: The assumption is not satisfied due to the non-proportionality of 
T1 and T2 versus T3 and T4, and therefore, T-stage cannot be used in 
the Cox proportional hazards regression model.
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In multivariate Cox regression analysis of 12,930 
cases for the EPDAC group, we initially utilized all the 
variables described in Materials and Methods. How-
ever, the Cox modeling of the EPDAC cases showed 
that the variable tumor subsite (head, body, tail, and 
other) did not have a significant influence on the sur-
vival of the EPDAC patients. Analogously, the variable 
T-stage, which for the EPDAC cases varies by degree 
of tumor extension, also did not have a significant influ-
ence on the survival of the EPDAC patients. Therefore, 
we did not use the variables tumor subsite and T-stage 
for the development of the final EPDAC Cox model.

Tables 1 and 2 present the final results of multi-
variate Cox regression analysis for the LPDAC and 
EPDAC cases, correspondingly. As can be seen from 
these tables, the vast majority of the considered cova-
riates have significant influence on the survival of 
patients diagnosed with PDAC. There is also a good 
qualitative agreement in the estimated contributions 
of similar covariates on the survival of patients diag-
nosed with the localized and extended PDAC. In both 
cases, the performed treatments (surgery and/or radi-
ation therapy) were the most beneficial for survival.

Among the clinical characteristics of a tumor, the 
largest risk factors accelerating death from PDAC 
include the presence of metastasis (M1), poor tumor 
differentiation (high grade), and large (.4 cm) tumor 
size. The involvement of lymph nodes (N1) makes a 
small (likely due to the simultaneous effect of other, 
larger contributors, such as M1-stage), but significant 
contribution to survival for patients diagnosed with 
LPDAC, but not with EPDAC.

Within the demographic characteristics of patients, 
age at diagnosis is the most influential risk factor on 
survival. Gender, race, and marital status make mod-
est and comparable contributions to the survival of 
patients diagnosed with LPDAC and EPDAC.

The accuracy of the Cox models developed for 
the LPDAC and EPDAC cases were assessed by 
the c-indexes and calibration plots.20 The obtained 
c-indexes of these models were equal to 0.702 and 
0.712, respectively. The calibration plots presented in 
 Figures 2 and 3 show how close the survival estimates 
are to the observed values, predicted by these models 
at the time point (chosen to be equal to 12 months). 
As can be seen from these figures, the Cox models 
developed for the LPDAC and EPDAC cases are well 
calibrated.

The reproducibility of the Cox models developed 
for the LPDAC and EPDAC cases were analysed by 
cross-validation with 10 repeats (Table 3).

As can be seen from Table 3, the cross-validated 
c-indexes of the LPDAC and EPDAC models vary 
within the small intervals, (0.687–0.720) and (0.696–
0.732), correspondingly. The averaged values of 
the cross-validated c-indexes were 0.700 and 0.711, 
respectively, which are very close to the c-indexes 
(0.702 and 0.712) initially obtained for LPDAC and 
the EPDAC models. This suggests high reproducibil-
ity of the Cox models for the LPDAC and EPDAC 
cases presented in Table 1 and Table 2.

The generalizability (transportability) of the 
LPDAC and EPDAC models to the PDAC patients liv-
ing in different geographical areas were also checked. 
Specifically, the cases from one of 18 geographic 
areas were considered as “external” datasets and used 
for validation of the LPDAC and EPDAC Cox mod-
els trained by cases collected in other 17 geographic 
areas. Table 4 presents the results of these evaluations. 
Note that this table shows data for the geographical 
areas having more than 100 cases of white and black 
patients, which could be used as external datasets. 
Because the Utah, Hawaii, Alaska, and Rural Georgia 
SEER registries had less than 100 cases to be used 
for external testing of the LPDAC models, we did not 
perform validation for these areas.

As can be seen from Table 4, the c-indexes of 
the LPDAC and EPDAC Cox models for individual 
geographical areas vary within the intervals, (0.651–
0.739) and (0.699–0.739), respectively. The averaged 
values of these indexes for the LPDAC and EPDAC 
models were 0.700 and 0.714, respectively. These 
numbers are very close to the c-indexes (0.702 and 
0.712) initially obtained for the LPDAC and the 
EPDAC Cox models. This suggests that the LPDAC 
and EPDAC models, the parameters of which are 
presented in Tables 1 and 2, are sufficiently general-
ized to be transportable for applications to different 
geographical areas of the US.

Overall, the data presented in Tables 3 and 4 con-
firm high reproducibility and generalizability of the 
LPDAC and EPDAC Cox models developed with 
the use of 18,352 pathologically confirmed cases 
of PDAC diagnosed between 2004 and 2009. This 
allowed us to use the parameters of these models, 
which are presented in Tables 1 and 2, to develop a 
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real-time prognostic estimator of survival for patients 
diagnosed with PDAC.

This tool allows one to estimate the conditional 
survival 2 1

ˆ( | )S t t  and its standard error 2 1
ˆ[ ( | )],SE S t t  

using 0 0
ˆ, ( ), and ( )Cov S SE Sβ β


 

 as unchangeable 
datasets and Z (the personalized demographic and 

clinical data on patients diagnosed with PDAC, as 
well as information on medical treatment), t1 (number 
of months that the patient has already survived after 
the PDAC diagnosis), and t2 (number of additional 
months that the patient will survive) as variable input 
data. Depending on the value of the T-stage variable, 

Table 1. Cox proportional hazards regression model for LPdAC (localized pancreatic ductal adenocarcinoma) survival.

 n Hazard ratio (95% cI) P
Race
 White 4669 1.000
 Black 753 1.153 (1.055, 1.259) 0.002**
gender
 Female 2688 1.000
 Male 2734 1.132 (1.062, 1.207) 0.000***
Age at diagnosis
 20–59 1348 1.000
 60–69 1489 1.118 (1.027, 1.217) 0.010**
 70–77 1262 1.279 (1.171, 1.398) 0.000***
 78+ 1323 1.589 (1.452, 1.740) 0.000***
Year of diagnosis
 2007–2009 3072 1.000
 2004–2006 2350 1.089 (1.024, 1.159) 0.006**
Marital status
 Married 3082 1.000
 Single 2340 1.127 (1.056, 1.202) 0.000***
Tumor size
 ,4 cm 2606 1.000
 4 cm 1822 1.152 (1.075, 1.234) 0.000***
 Unknown 994 1.086 (0.999, 1.181) 0.053 (NS)
N stage
 N0 3343 1.000
 N1 1344 1.096 (1.019, 1.180) 0.014*
 NX 735 1.180 (1.075, 1.296) 0.001***
M stage
 M0 1943 1.000
 M1 3362 1.776 (1.640, 1.923) 0.000***
 MX 117 0.897 (0.714, 1.127) 0.350 (NS)
grade
 Low grade 974 1.000
 high grade 826 1.178 (1.053, 1.317) 0.004**
 Unknown 3622 1.085 (0.989, 1.191) 0.085 (NS)
Pancreatectomy
  Pancreatoduodectomy/ 

total pancreatectomy
568 1.000

  Partial pancreatectomy/ 
pancreatic excision

117 1.120 (0.859, 1.460) 0.404 (NS)

 No surgery 4737 2.942 (2.545, 3.400) 0.000***
Radiation therapy
 Yes radiation 744 1.000
 No radiation 4678 1.291 (1.169, 1.425) 0.000***
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the estimator uses the LPDAC (for T1 and T2 stages) 
or EPDAC (for T3 and T4 stages) models with the cor-
responding unchangeable datasets. The conditional 
survival probability and its standard error have been 
calculated by formulas (6) and (7), respectively.

The estimator is a real-time, web-based computer-
ized tool, compatible with major browsers and user 
devices, including tablets and smart phones. The 
 estimator’s interface implemented on iPad is shown 
in Figure 4.

Table 2. Cox proportional hazards regression model for ePdAC (extended pancreatic ductal adenocarcinoma) survival.

 n Hazard ratio (95% cI) P
Race
 White 11170 1.000
 Black 1760 1.104 (1.041, 1.171) 0.001***
gender
 Female 6321 1.000
 Male 6609 1.105 (1.061, 1.151) 0.000***
Age at diagnosis
 20–59 3739 1.000
 60–69 3723 1.163 (1.104, 1.226) 0.000***
 70–77 2914 1.287 (1.216, 1.361) 0.000***
 78+ 2554 1.632 (1.539, 1.730) 0.000***
Year of diagnosis
 2007–2009 6799 1.000
 2004–2006 6131 1.032 (0.991, 1.074) 0.131 (NS)
Marital status
 Married 7689 1.000
 Single 5241 1.183 (1.134, 1.233) 0.000***
Tumor size
 ,4 cm 5136 1.000
 4 cm 5274 1.221 (1.166, 1.277) 0.000***
 Unknown 2520 1.251 (1.183, 1.322) 0.000***
N stage
 N0 5958 1.000
 N1 5193 1.037 (0.993, 1.084) 0.103 (NS)
 NX 1779 1.145 (1.076, 1.219) 0.000***
M stage
 M0 6958 1.000
 M1 5484 1.541 (1.471, 1.615) 0.000***
 MX 488 1.120 (1.004, 1.249) 0.042*
grade
 Low grade 2959 1.000
 high grade 2500 1.402 (1.317, 1.492) 0.000***
 Unknown 7471 1.054 (0.998, 1.113) 0.059 (NS)
Pancreatectomy
  Pancreatoduodectomy/ 

total pancreatectomy
2264 1.000

  Partial pancreatectomy/ 
pancreatic excision

279 1.268 (1.086, 1.480) 0.003**

 No surgery 10387 2.299 (2.141, 2.469) 0.000***
Radiation therapy
 Yes radiation 3315 1.000
 No radiation 9615 1.494 (1.420, 1.571) 0.000***
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Figure 3. Calibration plot for the ePdAC (extended pancreatic ductal 
adenocarcinoma) survival model.
note: The diagonal dashed line indicates the ideal correspondence 
between observed survival and model-predicted survival.
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Figure 2. Calibration plot for the LPdAC (localized pancreatic ductal 
adenocarcinoma) survival model.
note: The diagonal dashed line indicates the ideal correspondence 
between observed survival and model-predicted survival.

performed by the LPDAC and EPDAC models may 
be inaccurate in up to 30% of patients (discriminative 
power of these models, or c-index ∼ 0.70). One limi-
tation is due to the omission of potentially prognos-
tic variables. Specifically, the LPDAC and EPDAC 
models use variables provided by SEER, while other 
variables, for instance, co-morbidities in PDAC 
patients (such as renal failure, neurological disorders, 
liver disease, and cardiac arrhythmia) that may sig-
nificantly contribute to mortality risk from PDAC are 
not utilized.11

The second limitation is due to the fact that although 
the public-use SEER data on PDAC contains infor-
mation on adjuvant radiation therapy, information on 
chemotherapy data is not provided.23,24 However, about 
85% of the PDAC patients who received radiation 
therapy also received chemotherapy.25  Nevertheless, 
the absence of information on chemotherapy may 
lead to a bias in the estimation of the efficiency of 
radiation therapy when SEER data is used.25

The third limitation is due to the use of the sum of 
the model variables, weighted by their coefficient val-
ues (log hazard ratio) as the prognostic index. In fact, 
estimation of the prognostic index, which is at the 
heart of Cox models, may be accurate for the majority 
of the observed PDAC population, but it may be inac-
curate for relatively small, yet very important patient 
subpopulations. For instance, for LPDAC patients 
who have undergone pancreatectomy for a small sized 
tumor, the benefits of radiotherapy, as determined by 
our LPDAC Cox model, can be overestimated.

Nevertheless, our newly developed LPDAC and 
EPDAC models and computing tool (“estimator”) 
have distinct advantages over the existing models 
and tools, aimed at predicting survival probabilities 
for patients diagnosed with PDAC. Some of these 
advantages are similar to those that were highlighted 
in the work recently published by Katz et al.9 These 
advantages are: (i) the developed models are appli-
cable for the vast majority of PDAC patients (not 
only for those who are qualified for pancreatectomy) 
and (ii) the developed web-based computing tools are 
capable of the real-time prediction of conditional and 
unconditional survival probabilities for the patients 
diagnosed with PDAC. However, LPDAC and 
EPDAC models have additional advantages that can 
be seen by exploring differences between the models 

The estimator is available at: http://registry.unmc.
edu/estimators/PDAC/.

Discussion
As with any other Cox models, the LPDAC and 
EPDAC models developed in this work have several 
potential limitations that may explain why predictions 
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Table 4. Validation of the transportability of the LPdAC and ePdAC Cox proportional hazards regression models to different 
geographical areas.

Geographical  
area

LpDAc model epDAc model
number of cases c-index  

value
number of cases c-index 

valueInternal external Internal external
Bay area 5,115 307 0.722 12,336 594 0.721
Connecticut 5,173 249 0.739 12,092 838 0.729
detroit 5,059 363 0.716 12,150 780 0.717
Iowa 5,129 293 0.728 12,274 656 0.707
New mexico 5,277 145 0.684 12,686 244 0.702
Seattle 5,217 205 0.651 12,208 722 0.712
Atlanta 5,243 179 0.724 12,477 453 0.739
San jose 5,308 114 0.664 13,597 333 0.718
Los angeles 5,035 387 0.679 11,936 994 0.719
greater california 4,055 1,367 0.681 10,198 2,732 0,699
Kentucky 5,111 311 0,694 12,203 727 0.707
Louisiana 5,034 388 0.698 12,221 709 0.703
New jersey 4,897 525 0.711 11,081 1,849 0.718
greater georgia 4,951 471 0.706 11,975 955 0.723

Table 3. Cross-validation of the LPdAC and ePdAC Cox proportional hazards regression models.

cross- 
validation  
repeat

exclusion  
criteria 
(digit)

LpDAc model epDAc model
number of cases c-index  

value
number of cases c-index 

valueLearning Testing Learning Testing
1 0 4,894 528 0.720 11,554 1,376 0.702
2 1 4,891 531 0.697 11,690 1,240 0.696
3 2 4,889 533 0.687 11,639 1,291 0.732
4 3 4,886 536 0.716 11,595 1,335 0.723
5 4 4,868 554 0.689 11,647 1,283 0.715
6 5 4,868 554 0.692 11,625 1,305 0.713
7 6 4,896 526 0.700 11,636 1,294 0.701
8 7 4,846 576 0.707 11,672 1,258 0.708
9 8 4,884 538 0.697 11,672 1,258 0.704
10 9 4,876 546 0.694 11,640 1,290 0.714

and computing tools developed in our work and the 
Katz work, as presented below.

The models presented in the Katz work were strati-
fied by surgery status, while our LPDAC and EPDAC 
models are stratified by tumor extension. Our models 
use the following covariates (which were not used in 
the Katz work): marital status, time period, T-stage, 
M-stage, N-stage, and type of surgery. On the other 
hand, tumor subsite (which we found did not have 
significant influence on survival) and a stage covari-
ate (which we found did not satisfy the proportional 
hazards assumption), were utilized in the Katz mod-
els, but not in our models. Further, our models were 

tested using c-indexes and cross-validated with the 
use of internal and external datasets, while the accu-
racy, reproducibility and generalizability of the cor-
responding models were not disclosed in the Katz 
work. Finally, our models were trained using data 
collected in 2004–2009 and account for time period 
effects, while the models of that work were trained on 
data collected in 1988–2005 and ignore possible time 
period effects.

There are also differences in performances of the 
estimator, developed in our work, and the calcula-
tor, developed in the Katz work. In fact, the calcula-
tor assesses survival time without adjusting for time 
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The use of estimator developed in this work can help 
in clinical practice. In fact, clinicians mainly rely on 
personal experience, while the estimator is based upon 
the combined survival experience and clinical care of 
many patients and account for the effect of dozens of 
risk factors simultaneously. The estimator removes 
preconceived bias and offers assessments based on the 
personalized demographic and clinical data of a given 
patient. By toggling different treatment options, clini-
cians will be able to compare the predicted impacts of 
possible treatments on survival of the patient. A treat-
ment that will not provide any significant advantage 
in survival, but would instead be detrimental to the 
patient’s quality of life, should not be considered as 
an appropriate option. Using the computer-generated 
assessments and carefully considering the patient’s 
co-morbidities, clinicians will be able to assist patients 
diagnosed with PDAC in making a more educated 
decision regarding potential treatments.
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period effects and thus implicitly makes predictions 
anchored to the middle of the 1988–2005 time inter-
val, while our estimator predicts survival, projected 
to the later time period (2007–2009). In addition, the 
estimator provides standard errors for the predicted 
survival probabilities, while the calculator does not 
have this capability.

conclusion
We showed that the LPDAC and EPDAC models 
developed in this work fit the observed survival data 
well, are well-calibrated, and have good discrimina-
tion (c-indexes) between cases. These models were 
used in the development of a web-based tool (esti-
mator) to assess survival probability, conditional sur-
vival probability, and their standard errors. This tool 
uses the personalized demographic and clinical data 
on patients diagnosed with PDAC, as well as infor-
mation on (performed, ongoing, or planned) medical 
treatment as input data. The estimator performs all 
calculations anchored to the latest time period, 2007–
2009, which contains the latest SEER data available 
at the time of the preparation of this work.
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