
Evolutionary Bioinformatics 2013:9 127–136

doi: 10.4137/EBO.S11250

This article is available from http://www.la-press.com.

© the author(s), publisher and licensee Libertas Academica Ltd.

This is an open access article. Unrestricted non-commercial use is permitted provided the original work is properly cited.

Open Access
Full open access to this and 
thousands of other papers at 

http://www.la-press.com.

Evolutionary Bioinformatics

T E c h n i c A L  A d v A n c E

Evolutionary Bioinformatics 2013:9 127

eDGe-pro: estimated Degree of Gene expression 
in prokaryotic Genomes

Tanja Magoc1, derrick Wood2 and Steven L. Salzberg1,3

1center for computational Biology, McKusick-nathans institute of Genetic Medicine, Johns hopkins University School of 
Medicine, Baltimore, Md, USA. 2center for Bioinformatics and computational Biology, University of Maryland, college 
Park, Md, USA. 3department of Biostatistics, Bloomberg School of Public health, Johns hopkins University, Baltimore, 
Md, USA. corresponding author email: edge.comments@gmail.com

Abstract
Background: The expression levels of bacterial genes can be measured directly using next-generation sequencing (NGS) methods, 
offering much greater sensitivity and accuracy than earlier, microarray-based methods. Most bioinformatics software for estimating 
levels of gene expression from NGS data has been designed for eukaryotic genomes, with algorithms focusing particularly on detection 
of splicing patterns. These methods do not perform well on bacterial genomes.
Results: Here we describe the first software system designed explicitly for quantifying the degree of gene expression in bacteria and 
other prokaryotes. EDGE-pro (Estimated Degree of Gene Expression in PROkaryotes) processes the raw data from an RNA-seq experi-
ment on a bacterial or archaeal species and produces estimates of the expression levels for each gene in these gene-dense genomes.
Software: The EDGE-pro tool is implemented as a pipeline of C++ and Perl programs and is freely available as open-source code at 
http://www.genomics.jhu.edu/software/EDGE/index.shtml.
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Introduction
Measuring the expression of genes in bacterial 
genomes has a very broad range of applications, from 
developing treatments for infections to creating syn-
thetic genomes. Gene expression studies in bacteria 
have been used to study metabolic pathways, identify 
properties of mutants, and otherwise better understand 
the molecular processes in their genomes.1,2 The first 
step in this process is to quantify gene expression for 
all the genes expressed in a particular experiment.

For more than a decade, microarrays have been the 
main means for studying gene expression. However, 
microarray technology can only capture transcripts 
for which probes are designed, therefore limiting its 
applicability to known genes in well-studied strains of 
a species. Alternatively, the use of quantitative PCR 
(qPCR) allows one to quantify specific genes rather 
than all genes in the genome, although this technique 
is far more costly on the scale of the whole genome. 
Recent improvements in the quality, efficiency, and 
cost of second-generation sequencing have led to an 
explosion in experiments (known as RNA-seq) that 
directly capture and sequence RNA, which has been 
replacing microarray analysis in recent years. In a 
microarray experiment, differences between the ref-
erence and a novel strain might prevent hybridiza-
tion to some probes on the microarray. In contrast, 
in an RNA-seq experiment, transcribed genes are 
sequenced and aligned to the genome. Alignment 
algorithms can tolerate many mismatches, thereby 
allowing sensitive measurement of gene expression 
even when the target genome has diverged from the 
reference. In addition, because the entire transcript 
is sequenced, RNA-seq data also reveals the operon 
structure of a genome.3,4

Since the introduction of RNA-seq technology,5,6 
software methods have been developed to quantify 
gene expression7 in a sample and to find differences 
in gene expression between multiple samples.7–9 
 However, the current family of tools for estimating 
gene expression has been developed with the goal of 
identifying the structure of eukaryotic genes. These 
tools focus much of their effort on finding intronic 
regions within a gene and on finding alternative splice 
variants, which are common in higher eukaryotes. On 
the contrary, bacterial genes do not have introns and are 
not alternatively spliced; thus, there is no need to look 
for splice variants when analyzing their transcripts.

Bacterial genomes are also very densely packed 
with genes, many of them overlapping one another. 
Previous RNA-seq software methods generally do 
not provide a means of dealing with genes that over-
lap because these are extremely rare in humans and 
other mammals (the main targets of most RNA-seq 
 experiments). In contrast, approximately 90% of a 
typical bacterial genome codes for proteins.10 A study 
of 220 prokaryotic genomes spanning a wide evolu-
tionary range10 revealed that 29% of all genes in these 
species overlap another gene on either the 5′ or the 3′ 
end. These overlaps range from just a few base pairs 
(bp) to well over 100 bp. Overlapping genes can occur 
on the same strand or on opposite strands; thus, strand-
specific RNA-seq offers at best a partial solution. For 
RNA reads that map within the overlapping region, it 
may be impossible to determine which of the 2 genes 
yielded the read, thus producing a challenge in deter-
mining gene expression of each prokaryotic gene.

Further complicating the requirements for analy-
sis, bacterial RNA-seq technology has at least one 
major difference from eukaryotic RNA sequencing 
protocols, due to the absence of polyadenylation. 
The long poly-A tail on eukaryotic transcripts can 
be used as a capture probe, but bacterial RNA-seq 
method must instead rely on random priming to cap-
ture transcripts.11 Another challenge is that more than 
80% of captured bacterial transcripts are ribosomal 
RNA (rRNA). Although methods have been devel-
oped for removing rRNA, a large amount of rRNA 
still appears in some RNA-seq experiments.

Due to differences between eukaryotic and bacterial 
genomes and between RNA-seq protocols, the exist-
ing programs for expression analysis often perform 
poorly or break down entirely when applied to RNA-
seq data from bacterial genomes. Therefore, new bio-
informatics methods are required to estimate levels of 
gene expression in bacterial RNA-seq data. Currently, 
no stand-alone tool exists for this  purpose. Multiple 
bacterial RNA-seq projects have been published,12–20 
but these have used ad hoc methods to quantify gene 
expression. All of these ad hoc methods first align 
input sequences (“reads”) to a reference genome using 
a next-generation sequence aligner such as Bowtie, 
MAQ, SOAP, BWA, ELAND, Novoalign, or other 
custom-built aligners.21–26 From these alignments, 
they count the number of reads mapped to each gene, 
usually normalizing counts by each gene’s length. 
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Reviews of some of these ad hoc approaches can be 
found in Guell et al27 and Van Vliet.28

One of the challenges faced by the standard align-
ment approach is that in every data set, some reads 
align to multiple places in the genome. It can be diffi-
cult and sometimes impossible to determine which of 
these multiple locations is the true source of the read, 
particularly if the source is repeated identically else-
where in the genome. To avoid this problem, some 
previous methods simply discard multi-aligned reads. 
This strategy may significantly (and incorrectly) 
reduce the apparent expression levels of genes that 
contain repetitive sequences. A more serious problem 
arises for gene families, in which reads from any gene 
in the family may map equally well to all copies of 
the gene. Other methods of counting multi-aligned 
reads assign a fractional count to each location where 
a read maps or randomly assign a read to one of its 
multi-mapped locations. None of these provide a per-
fect solution, although, as we will show, the use of 
fractional read counts works well in practice.

While currently used ad hoc methods for estimat-
ing gene expression level in bacteria perform reason-
ably well, they are often not easy to use. Some require 
the user to run several software tools in succession, 
and the output of one program is sometimes not the 
correct input for the next tool, requiring ancillary pro-
grams to reformat the data. In this paper, we present a 
new program called EDGE-pro (Estimated Degree of 
Gene Expression in PROkaryots), the first stand-alone 
method specifically designed for estimating gene 
expression level in prokaryotic genomes. EDGE-pro 
is an efficient software system that provides solutions 
to the challenges mentioned above.

Methods
The EDGE-pro pipeline operates on four main inputs: 
the reference genome, a protein translation table (ptt) 
containing coordinates of protein coding genes in that 
genome, another table (rnt) containing coordinates 
of tRNA and rRNA genes, and the RNA-seq reads 
themselves. If the ptt and rnt tables are not available, 
they can be generated from the genome sequence 
separately, for example, by running Glimmer29 to find 
protein-coding genes and running tRNAscan-SE30 
and RNAmmer31 to find RNA genes.

The EDGE-pro pipeline consists of four man-
datory steps: (1) the main mapping step, in which 

all reads are aligned to the reference genome; 
(2) a filtering step dedicated to multi-aligned reads; 
(3) computation of the depth of coverage of each base 
in the reference genome; and (4) conversion of raw 
coverage depth statistics into the RPKM value (reads 
per kilobase of gene per million reads mapped) for 
each gene.

Reads mapping
EDGE-pro maps reads to the reference genome using 
Bowtie232 with its default parameters, allowing up 
to 10 alignments for each read. Bowtie2 allows mis-
matches and small indels in the aligned reads, which 
gives it improved sensitivity over the mapping capa-
bility of its predecessors and especially over the 
ungapped aligners that have been used in some of 
the previous, ad hoc analysis methods for bacterial 
RNA-seq. The ability to allow indels is especially 
important when the reference genome is a different 
strain of bacterium from the source of the RNA, since 
even closely related strains often differ in many small 
insertions and deletions.

Filtering multi-mapped reads
In many cases, with up to 10 alignments per read avail-
able, some alignments are clearly better than others. 
For example, if 1 alignment contains 2 mismatches 
and a second alignment reports 10 mismatches, the 
first alignment is much more likely to be the correct 
one. On the other hand, if 1 alignment contains 1 mis-
match and a second alignment contains 2 mismatches, 
the better match is not clear; for example, the sec-
ond mismatch might be due to a sequencing error, in 
which case the 2 alignments are equally good.

The EDGE-pro pipeline filters reads that map 
to multiple locations based on the alignment score 
assigned by Bowtie2. Bowtie2 assigns a score of 0 to 
a perfect match and a negative score to each mismatch 
and indel. A mismatch gets a negative value between 
−6 and −1, with more negative values given to bases 
with higher quality values. The default penalty for an 
indel is −5 for opening a gap and −3 for each base 
in the gap. EDGE-pro considers multiple alignments 
using a threshold that is set based on the best-scoring 
read. If we let S be the highest score of all alignments 
for a read, then all alignments whose score is greater 
than minimum (1.15 ⋅ S, S-3) are considered to be 
good alignments and all other alignments of the read 
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are discarded. By allowing mappings with the score 
S-3 to be considered as good alignments, EDGE-pro 
in practice allows for mismatches of 3 very low qual-
ity bases or 1 medium quality base (in addition to all 
penalties due to mismatches and indels of the highest-
scoring alignment). Also, S-3 allows for an extra base 
in an already opened gap (ie, an indel that exists in the 
best scoring alignment). The penalty of −3 does not 
allow for an additional gap to be open in an alignment. 
Thus all alignments with scores higher than 1.15 ⋅ S 
are also considered good alignments. This amount of 
deviation from the best-scoring alignment allows for 
additional gaps to be opened and extended if the best 
scoring alignment is not too high.

For example, if the best scoring alignment has only 
1 mismatch, then no alignments with any gap will be 
considered. However, if the highest scoring alignment 
has 5 mismatches with low quality values, its score 
will be −10 (assuming that each base gets penalized 
by score of −2). EDGE-pro will keep all alignments 
with a score of at least 1.15 ⋅ (−12) = −13.8, which 
allows for a 2-base indels (−5 for opening the gap 
and −3 for each of 2 bases in the gap). It is not clear 
which of these 2 alignments is better (5 mismatches at 
low quality bases or 1 2-bases indel); thus, EDGE-pro 
considers both alignments as good alignments. The 
value of 1.15 was determined empirically by look-
ing at hundreds of situations manually to determine 
which alignments are “reasonable competition” to the 
highest scoring alignment.

Per-base coverage
After filtering multi-mapped reads, the EDGE-
pro pipeline determines the read coverage for each 
position in the genome. Uniquely mapped reads are 
simple: for these, EDGE-pro increments its coverage 
counts by 1 for each position in the genome covered 
by the read. Multi-mapped reads in bacterial genomes 
often map to duplicate genes, which contain identical 
or near-identical sequences, and it is not possible to 
determine which of 2 duplicate genes is expressed. 
EDGE-pro offers 2 options to handle these reads. The 
default option is to divide these multi-mapped reads, 
giving partial credit to each location where they might 
map, as follows. For each multi-mapped read remain-
ing after filtering, the coverage of each position that 
the read spans is incremented by 1/N, where N is the 
number of “good” alignments for that read.

This heuristic will give the correct answer if all cop-
ies of a duplicated gene are expressed equally. Suppose 
instead that we have 2 identical copies of the gene, 
1 of which is expressed at an RPKM level of 10 and 
the other silent. EDGE-pro will undercount the expres-
sion level and will assign half the reads to the unex-
pressed copy, reporting both copies with an RPKM 
of 5. If the 2 genes are identical, then this represents 
the same quantity of transcripts as if only 1 copy were 
expressed, and, in this respect, EDGE-pro’s behavior is 
still correct; however, it might have different implica-
tions depending on the physical location and nearby 
regulatory sequences for each of the 2 copies.

The second option that EDGE-pro provides to deal 
with multi-mapped reads is to randomly choose 1 of 
all the positions where the read mapped and assign 
a full count to this position and ignore all the other 
positions.

The pipeline up to this point computes the per-base 
coverage for all genes across the genome. Calculating 
coverage per base overcomes the problem of trying to 
determine the source of a read that maps in the over-
lapping portion of 2 genes. Moreover, per-base cover-
age leaves open possibilities for further analysis such 
as visualization of uneven coverage across a gene and 
improvements to gene annotation, particularly at the 
start and stop coordinates of annotated genes.

Average gene coverage and RPKM 
calculation
In the last step, EDGE-pro converts coverage per 
base to the RPKM value for each gene. Note that 
the current version of EDGE-pro provides RPKM 
rather than FPKM values, even if paired-end reads 
are used. This provides a count for each read rather 
than each fragment that maps to a gene, therefore 
giving 2 counts for a pair of reads that map to the 
same gene rather than giving just 1 as FPKM does. 
This may provide a small disadvantage if an experi-
ment uses paired-end sequencing and if a significant 
fraction of the fragments only yield 1 rather than 
2 reads.  However, because bacterial RNA-seq analy-
sis does not need to link together exons across splice 
junctions, paired-end sequencing does not provide as 
much of an advantage. For single-end sequencing, 
RPKM and FPKM are equivalent.

Because many bacterial genes overlap, even to 
the point that a gene may completely contain another 
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gene on the opposite strand, the coverage in the over-
lapping regions should not be counted toward both 
genes. The easiest method to distribute the coverage 
in the overlapping region is to distribute it proportion-
ally to the coverage in the nonoverlapping segments. 
This scheme should work on average, but it might be 
distorted due to nonuniform coverage of genes. To 
illustrate, Figure 1 shows a gene for which coverage is 
much higher at its 5′ end, skewing its average  coverage. 
The relative coverage levels of genes 1 and 2 in the 
overlapping region, as shown in Figure 1, are better 
approximated by the coverage in the smaller win-
dows (red boxes) adjacent to the overlapping region. 
The window size used here is a parameter that can be 
changed by a user. By default, EDGE-pro takes the 
window of length 100 bp, which is approximately the 
length of current Illumina reads.

Figure 2 shows the regions used to determine 
coverage of the overlapping portion of a gene. After 
identifying the region of overlap, EDGE-pro adjusts 
the coordinates of the nonoverlapping parts by a pre-
defined length in order to exclude the untranslated 
region (UTR) on each side of the overlap. Because 
the RefSeq annotation provides only the coordinates 

of the protein coding regions and because the precise 
coordinates of UTRs are generally unknown, this 
heuristic adjustment reduces the bias in determining 
the coverage of each gene in its UTR regions. The 
UTR length is a parameter that could be adjusted by a 
user and is set to 40 bp by default since most bacterial 
UTRs are approximately 30 to 40 bp long. The cover-
age of a gene is calculated as follows:

1. The average coverage of the nonoverlapping por-
tion of a gene is computed as the number of reads 
per base covering that region.

2. The average coverages of window1 (W1), 
window2 (W2), and the overlapping segment (O1) 
are calculated.

3. The ratio of these coverage values (W1/W2) is 
used to distribute the total coverage of the over-
lap regions, with each gene getting a proportional 
share of the coverage in the overlapping segment.

4. The ratio W1/W2 is also used to determine which 
portion of coverage in UTR1 and UTR2 comes 
from gene 1 and gene 2, respectively.

In Figure 2, the nonoverlapping part of each gene 
is longer than the window used to estimate coverage 
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Figure 1. nonuniform coverage of genes using data from an experiment on E. coli.
notes: The horizontal axis represents the position in the genome, and the y-axis shows the number of reads mapped to the corresponding position. 
The positions of overlapping genes are represented by rectangles under the graph, and the average coverage in the nonoverlapping parts (171,99) and 
the overlapping region (225) are denoted under the genes. Under perfectly uniform coverage, the coverage in the overlapping region would be equal 
to the sum of the nonoverlapping parts. however, 171 + 99 . 225. Gene 1 has much higher coverage at its 5′ end, distal from the overlapping region. 
Samples taken near the overlap (red boxes) provide a better approximation of each gene’s coverage in the overlapping region.
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Gene 1
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Window1 Window2utr1 utr2

Figure 2. Overlapping genes.
notes: After identifying the region of overlap, EDGE adjusts the coordinates of the nonoverlapping parts by a predefined length in order to exclude the 
untranslated region (UTR) on each side of the overlap. Because the RefSeq annotation provides only the coordinates of the protein coding regions and 
because the precise coordinates of UTRs are generally unknown, this heuristic adjustment reduces the bias in determining the coverage of each gene in 
its UTR regions. The ratio of coverage in windows of predefined sizes on both sides of the overlapping region is used to distribute the total coverage of 
the overlap region, with each gene getting a proportional share of the coverage in the overlapping segment.

Gene 1
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Window1 Window2utr1 utr2

Figure 3. contained genes.
notes: When a gene is completely contained within the coordinates of a gene on the other strand, the average coverage in sampled regions on either 
side of the contained gene (window1 and window2 in Fig. 3) is used as the estimated coverage of the longer gene. if the total coverage in the overlapping 
part is similar to or lower than the overall coverage of the larger gene, then EdGE-pro assumes that gene 2 is not expressed. Otherwise, the difference 
between the overlapping segment’s coverage and the coverage of the larger gene is assigned to the smaller, contained gene.

(100 bp by default). If the nonoverlapping part of 
only 1 gene is long enough, only this gene is used to 
determine distribution of overlap coverage between 
the 2 genes.

Figure 3 illustrates the algorithm for comput-
ing coverage when a gene is completely contained 
within the coordinates of a gene on the other strand. 
The average coverage in sampled regions on either 
side of the contained gene (window1 and window2 in 
Fig. 3) is used as the estimated coverage of the longer 
gene. If the total coverage in the overlapping part is 
similar to or lower than the overall coverage of the 
larger gene, then EDGE-pro assumes that gene 2 is 
not expressed. By default, the coverages are con-
sidered to be similar if the coverage of overlapping 
region is within 15% of the overall coverage of the 
larger gene. This parameter is adjustable by a user. If 
the overlap coverage is not lower than or similar to 
the overall coverage of the larger gene, the difference 
between the overlapping segment’s coverage and the 
coverage of the larger gene is assigned to the smaller, 
contained gene.

Once the average coverage of each gene is deter-
mined, we use the average coverage to estimate the 

number of reads that mapped to the gene: R C L r= ⋅ / ,  
where R is the number of reads mapped to the gene, 
C is the average coverage of the gene, L is the length 
of the gene, and r is the read length.

Next, we compute the RPKM for each gene, which 
normalizes the expression level with respect to gene 
length and the total number of reads mapped. To 
avoid counting low-level background noise as tran-
scription, we set the RPKM value to 0 if the average 
coverage of a gene is less than 3 (a parameter that 
can be adjusted by the user). Otherwise, we calcu-
late RPKM as RPKM R T L= ⋅/( / ) ( / ),10 106 3  where L 
is gene length, R is the calculated read count defined 
above, and T is the total number of reads mapped to 
the genome minus the number of reads mapped to 
rRNAs. The total number of reads T is divided by 106 
and gene length is divided by 103 following the stan-
dard definition of RPKM, which normalize the read 
count per million bases mapped and per thousand 
bases in the gene. RNA sequencing protocols con-
tain steps to remove ribosomal RNA molecules from 
the sample; however, these steps are not completely 
effective, and many rRNA reads remain in the sample 
that is sequenced. Because the number of remaining 
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rRNA reads depends critically on the rRNA subtrac-
tion step rather than the inherent expression level of 
rRNA, subtracting these reads from T normalizes 
RPKM levels in a manner that should permit com-
parisons between multiple samples.

The EDGE-pro pipeline outputs for each chromo-
some and plasmid a report that contains the identity 
and coordinates of each gene, its average coverage C, 
the number of reads R mapped to the gene, and the 
gene’s RPKM value. Additional outputs include the 
coverage per base by uniquely mapped reads, cover-
age per base by multi-aligned reads, and total cover-
age per base. EDGE-pro does not provide differential 
expression analysis between multiple samples, but the 
package provides a script to convert EDGE-pro out-
put to format used by DESeq tool,6 a stand-alone tool 
for differential expression analysis. Because EDGE-
pro is open source software, it should be a simple 
task to convert its output for use by other differential 
expression packages.

Results
We tested the performance of EDGE-pro on RNA-
seq data generated from the bacterial pathogen 
 Campylobacter jejuni, strain NCTC11168, and a 
mutant strain with a defect in the gene rpoN (identified 
as rpoN::cat). The rpoN gene is involved in the tran-
scription of flagellar genes,33,34 but its precise func-
tion is not known. Inactivating rpoN was expected to 
downregulate the expression of some flagellar genes 
and possibly have other consequences in the mutant.

We downloaded RNA-seq data collected 
from 2 samples of C. jejuni NCNC11168 and 2 sam-
ples of the rpoN mutants (NCBI accession num-
bers ERR036497-ERR036500), all of which were 
sequenced in an earlier study by Chaudhuri et al.15 Each 
sample contained over 7 million 37-bp  single-end reads 
(Table 1), and the normal and mutant samples were 
technical  replicates of each other. We ran EDGE-pro 

on each of the 4 samples and used the output values 
of EDGE-pro to find differentially expressed genes 
between wild type and mutant. We compared our 
results with those presented in Chaudhuri et al.15

For each pair of replicate samples, we simply 
averaged the RPKM values of the 2 samples and 
used the averages for comparison between the wild 
type and mutant strains, similarly to the method of 
Chaudhuri et al.15 We defined upregulated and down-
regulated genes as those whose expression level 
increased or decreased at least 4-fold. Note that no 
conclusions about significance can be drawn from 
this comparison; our goal was simply to compare the 
computational analysis produced by EDGE-pro to 
previously published results on the same data. The dif-
ferential expression in the Chaudhuri study was com-
puted with DeSeq,6 which computed a P value despite 
the very small sample size. We compared these results 
with those produced by our simple heuristic method.

We identified 20 genes that were downregulated in 
the mutant strain, rpoN::cat. These genes are listed 
in Table 2 along with the fold decrease. As expected, 

Table 1. Reads used in the differential expression study.

number  
of reads

number of  
reads mapped

number and % 
of rRnA reads 

Wild type 1 7169195 5523244 1427655 (26%)
Wild type 2 7064429 5377250 1382597 (26%)
Mutant 1 7255306 6180817 2594288 (42%)
Mutant 2 7007005 6046930 3091831 (51%)

Table 2. downregulated genes in the mutant.

Gene product Fold 
decrease

Cj0040 hypothetical protein cj0040 384.6
flgE2 Flagellar hook subunit protein 142.9
flgD Putative flagellar hook  

assembly protein
85.5

fliK Putative flagellar hook-length  
control protein

46.5

flgE Flagellar hook protein 43.5
flgI Flagellar P-ring protein 41.3
flgJ hypothetical protein cj1463 36.8
Cj1242 hypothetical protein cj1242 36.2
flgH Putative flagellar L-ring protein  

precursor
28.2

flgG2 Flagellar basal-body rod protein 18.3
flgK Putative flagellar hook- 

associated protein
15.3

Cj0243c hypothetical protein cj0243c 12.4
Cj1465 hypothetical protein cj1465 9.6
flgD2 Putative flagelline 7.2
flgG Flagellar basal-body rod protein 6.7
flgB Flagellar basal-body rod protein 6.4
Cj1650 hypothetical protein cj1650 6.1
Cj0716 Putative phosphor-2-dehydro- 

3-deoxyheptonate aldolase
4.7

Cj0044c hypothetical protein cj0044c 4.4
Cj1004 Putative periplasmic protein 4.3
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11 of these were flagellar genes (flgE2, flgD, flgE, 
flgI, flgJ, flgH, flgG2, flgK, flgD2, flgG, flgB). We 
compared our conclusions with the results presented 
in Chaudhuri et al,15 which found 17 downregulated 
genes. Our 20 genes include these 17 genes as well 
as 3 additional genes (Cj0716, Cj0044c, Cj1004). 
The 3 additional genes had the smallest change in 
expression; if we used a threshold of 5-fold rather 
than 4-fold, we would identify precisely the same 
17 genes as in the previous study (Table 2).

Supporting this hypothesis, the fold-change for 2 of 
these genes, Cj1004 and Cj0044c, were just below the 
threshold for reporting a change in the Chaudhuri et al 
study.15 Only Cj0716, which had a 2-fold change 
in Chaudhuri et al, was well below their threshold. 
Sixteen of the 17 downregulated genes were also 
reported as significantly downregulated in a separate 
microarray experiment described in Chaudhuri et al.

Thus, the differences between results presented 
in Chaudhuri et al and our results are mostly due to 
different thresholds used: the P value threshold used 
by Chaudhuri et al and 4-fold threshold used in our 
computation.

Another possible explanation for the small differ-
ence between these results is that the mutant samples 
contained a much higher proportion of rRNA reads 
(see Table 1), which EDGE-pro discards before 
computing RPKM values. Chaudhuri et al’s analy-
sis included these reads, which would have altered 
both the absolute and relative RPKM values for some 
genes. We also note that Chaudhuri et al used a dif-
ferent (commercial) alignment program, Novoalign, 
which may have changed some of the statistics.

We found that 11 genes were upregulated in the 
rpoN mutants, as shown in Table 3. Chaudhuri et al 
reported 10 upregulated genes, including all those 
in Table 3 except hupB. HupB was upregulated by a 
factor of 4 in Chaudhuri et al’s data, just under their 
threshold for reporting. Thus the 2 methods also agree 
very closely on upregulated genes. Note that these 
comparisons do not speak to the significance of any 
of the upregulated or downregulated genes, which 
would require a larger number of samples. They do, 
however, show that EDGE-pro provides a reliable, 
streamlined computational solution to measuring 
expression levels in bacterial RNA-seq data.

The EDGE-pro pipeline only provides the expres-
sion level of each gene and does not compute 

Table 3. Upregulated genes in the mutant.

Gene product Fold 
increase

Cj0425 Putative periplasmic protein 16.23
Cj0423 Putative integral membrane protein 12.14
Cj0424 Putative acidic periplasmic protein 11.87
cysM cysteine synthase 6.10
cstA Putative integral membrane protein 5.72
Cj0454c Putative membrane protein 5.67
Cj0667 Putative S4 domain protein 5.45
Cj0898 Putative histidine triad (hiT)  

family protein
5.12

metB Putative O-acetylhomoserine  
(thiol)-lyase

4.82

metA homoserine O-succinyltransferase 4.57
hupB dnA-binding protein hU homolog 4.05

 differential expression statistics. The simple heuristic 
that we used here to compare our results with those 
presented in Chaudhuri et al15 shows that even a sim-
ple heuristic applied to the EDGE-pro output matches 
the results produced by previously published, less 
automated ad hoc methods for bacterial RNA-seq 
analysis. Researchers who want to compute differen-
tial expression can easily feed the output of EDGE-
pro into a separate program (eg, DeSeq)6 designed for 
that task.

computational Requirements
We measured time and memory requirements for 
EDGE-pro on a four-core 2.1 GHz AMD Opteron 
server with 512GB of RAM. To provide requirements 
relevant to current RNA-seq technologies, we used 
101-bp reads for the timing experiments. We ran EDGE-
pro on 2 samples containing 30 million RNA-seq reads 
from Escherichia coli strain E44, which were mapped 
to a very closely related strain, UTI89 (unpublished 
data). The first sample contained 12,587,318 multi-
mapped reads (primarily rRNA reads), while the sec-
ond sample contained only 410,024 multi-mapped 
reads. The runtime performance and memory require-
ments are shown in Table 4. EDGE-pro runs in both 
single- and multi-threaded mode, and the Table shows 
how the performance changes as additional threads 
(processors) are used. These experiments required a 
maximum of 4.2 GB of memory. The running time 
of EDGE-pro is dominated by the running time of 
Bowtie2, which in turn is linearly proportional to the 
read length and the number of reads.
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