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Abstract: Bacterial, small RNAs were once regarded as potent regulators of gene expression and are now being considered as essential 
for their diversified roles. Many small RNAs are now reported to have a wide array of regulatory functions, ranging from environmental 
sensing to pathogenesis. Traditionally, noncoding transcripts were rarely detected by means of genetic screens. However, the avail-
ability of approximately 2200 prokaryotic genome sequences in public databases facilitates the efficient computational search of those 
molecules, followed by experimental validation. In principle, the following four major computational methods were applied for the 
prediction of sRNA locations from bacterial genome sequences: (1) comparative genomics, (2) secondary structure and thermodynamic 
stability, (3) ‘Orphan’ transcriptional signals and (4) ab initio methods regardless of sequence or structure similarity; most of these 
tools were applied to locate the putative genomic sRNA locations followed by experimental validation of those transcripts. Therefore, 
computational screening has simplified the sRNA identification process in bacteria. In this review, a plethora of small RNA prediction 
methods and tools that have been reported in the past decade are discussed comprehensively and assessed based on their attributes, 
compatibility, and their prediction accuracy.
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Background
Noncoding RNA molecules (ncRNAs) are transcripts 
that, rather than coding for amino acids, fulfill their 
functions directly in the cell. These molecules are 
found in all life forms and regulate diverse cellular 
functions. ncRNAs employ a variety of mechanisms 
to regulate methylation of rRNA, inhibition of trans-
lation, and transcription and sequestration of regu-
latory proteins.1–3 Bacterial noncoding RNAs are 
generally denoted as small RNAs (sRNAs). Recent 
advancements in bacterial sRNA research has shown 
that they play important regulatory roles in the 
expression of virulence-related factors in pathogenic 
bacteria,4,5 as well as in controlling pathogenicity,6 
mediating Iron-Response associated virulence,7 and 
host-induced expression in virulence of Salmonella 
typhimurium.8 Prokaryotic sRNAs were also found 
to be involved in regulating the Cell to Cell Com-
munication in quorum sensing of Vibrio harveyi9 
and photo oxidative stress response in Rhodobacter 
sphaeroides.10 Available literature articulates the 
numerous genomic screens for ‘novel’ sRNAs and 
functional characterization studies in enterobacte-
rial model organisms such as Escherichia coli and 
Salmonella typhimurium,11 with varying level of 
success. One third of the known sRNAs in Salmonella 
typhimurium have been functionally characterized to 
regulate the outer membrane protein and membrane 
transporters which emerge as a functional network.11 
Recent studies have also established the indispens-
able nature of sRNAs in cell adaptation, survival, 
and pathogenesis.4 The number of noncoding sRNAs 
are growing and are being assigned with many unex-
pected functional roles in bacteria; this has resulted 
in an urgent need for efficient computational plat-
forms for their annotations in genome projects. There 
is therefore considerably anxiety in the search for 
sRNAs in bacteria. The advent of genome sequenc-
ing data has supported many computational investi-
gations for sRNAs followed by in vivo validations in 
bacteria,12–20 Most of the known sRNAs reported in 
literature and Rfam databases21 were tracked through 
bio-computational genomic screens in model organ-
isms such as Escherichia coli and Salmonella 
typhimurium. Traditionally coding genes (tRNAs, 
rRNAs) were mainly annotated using automated pipe-
lines22 and noncoding sRNA regions were overlooked 
for the past fifty years.23 The number of completely 

sequenced bacterial genomes is increasing and the 
corresponding functional annotation is becoming 
increasingly more difficult for biologists. Generally, 
the genes coding for proteins are identified through 
diverse algorithms designed to identify a set of tran-
scription factor binding sites and signals in the DNA 
sequences. However, the use of computational utili-
ties to discover bacterial sRNAs is not as easy a task 
as originally expected, primarily because (A) sRNA 
regions are diverse in length, ranging from 50–500 nts;  
(B) there are no common secondary structure, such 
as the clover leaf model of tRNA; (C) sRNAs do not 
exhibit any statistically distinguishable nucleotide 
biases; and (D) a lack of sRNA conservation among 
distantly related genomes. Many powerful attempts 
were made to crack the code for predicting the 
genomic locations of the sRNAs in bacteria; these 
attempts involved implementing and searching the 
sRNA specific properties collected from literature. 
The RNA sequence homology, thermodynamically 
favorable secondary structure (using free energy 
models), structure similarity searches, consensus 
secondary structures, and comparative genomics, are 
all frequently implemented, either alone or in combi-
nation with the above methods, in many sRNA find-
ing tools designed to locate the appropriate sRNA 
regions. Additionally, ‘Orphan’ promoters, termina-
tors, di/tetra-nucleotide frequencies, and a high level 
of secondary structure conservation were regarded as 
unique features of sRNAs and implemented in the 
design of computational sRNA identification tools.

Comparative genomics-based sRNA identifi-
cation involves the comparison of sRNA specific 
inputs against the entire genome sequence data, 
using definitive protocols for similar sequence or 
structures.24 The secondary structure of sRNA, vir-
tually represented in the form of a RNA descriptor, 
can be scanned against the entire genome sequence 
using RNAMotif,25 inclusive of RNAMOT and 
RNABOB,26 or specific scripts written in palingol. 
The RNA structure similarity and comparative 
genomics are routinely employed to identify sRNAs 
in most sequenced bacterial genomes. The compara-
tive analysis of RNA secondary structures can also be 
performed using co-variance based methods encom-
passed in tools such as QRNA.14 Furthermore, these 
secondary structure comparison methods can be com-
piled into two categories, namely thermodynamic 
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stability involving RNALfoldz,27 and structure con-
sensus involving tools such as RNAZ.16. Among this 
group, RNAZ employs both thermodynamic stabil-
ity and structure consensus to predict probable sRNA 
regions. Transcriptional signal-based sRNA predic-
tion tools include sRNApredict,18 sRNAscanner,19 
and sRNAfinder,29 which uses either genomic DNA 
sequence for signal prediction, or pre-computed sig-
nal coordinates from other databases. Generic meth-
ods such as nocoRNAc and smyRNA make use of 
antisense RNA transcript expression-profiling and 
ab initio structural sequence motif-based discovery, 
respectively.20,30 Such collective efforts have lead 
to an explosion in the number of predicted sRNAs 
in diverse bacterial genomes; while these are doc-
umented in specialized databases such as Rfam,21 
most still require experimental validation. The 
experimental protocols used in biochemical sRNA 
validations31 and functional characterizations32 have 
been extensively discussed by earlier reviews. The 
main objective of this review is to update the avail-
able computational approaches for prokaryotic sRNA 
predictions with regard to their functionality, devel-
opmental background, sensitivity, specificity, success 
rate, and their ease of use. Glimpses of the software 
tools developed for the identification of sRNAs are 
also analyzed for their advantages and disadvantages, 
their current status, and their future prospects.

Computational Small RNA Prediction
Generally, the primary structure or sequence of 
RNA can be represented in the form of a series of 
nucleotides (A, U, G and C). The RNA secondary 
structures are composed of stems, loops, hairpins, 
and bulges; these are virtually described through 
distinct RNA descriptors. Both the primary RNA 
sequence and virtual RNA descriptors are used as 
inputs in efforts to identify similar sRNA regions in 
partial or complete genome sequences. Alternatively, 
the unique properties and features of sRNAs can be 
used in the computational screening of sRNA regions 
by evaluating the sequences at large scale. Most of 
the recently reported computational sRNA predic-
tion methods employ (1) the principles of compara-
tive genomics, (2) thermodynamically favorable 
secondary structures, (3) transcriptional signals, 
and (4) ab initio methods using the sRNA specific 
features. Computational protocols employed in the 

four major sRNA prediction approaches are shown 
in Figure 1.

Comparative Genomics Based Tools
In the past decade, comparative genomics has been 
extensively used for the identification of sRNAs in 
several bacterial genomes such as Streptomyces,33 
Cyanobacteria,34 Sinorhizobium meliloti,35 Francisella 
tularensis,36 Xanthomonas oryzae pathovar oryzae,37 
and Clostridium sp.38 Many computational tools 
were developed with the comparative genomic 
principle in order to screen sRNAs from genomic 
sequences. Among them, QRNA14 is one of the sig-
nificant attempts at employing consensus structure 
analysis in combination with comparative genomics 
to identify sRNA regions in bacterial genomes. In 
principle QRNA works with three probabilistic mod-
els to detect CODING regions, RNA regions, and 
the NULL hypothesis model. Furthermore, QRNA 
applies covariance-based mutation analysis for pre-
dicting noncoding RNA regions. It acts as a prototype 
for most of the presently available ncRNA prediction 
tools. The methodology has adopted the detection of 
conserved structural RNAs and cis regulatory RNAs. 
The SCFG (Stochastic Context Free Grammar) algo-
rithm is composed of three pair-HMMs (Hidden 
Markov Models)—namely RNA, COD, and OTH—
for determining mutations in aligned sequences. 
OTH depicts NULL hypothesis of RNA as being 
either coding or noncoding. The COD model corre-
sponds to substitution mutations for confirmation of 
coding regions and the RNA model pertains to RNA 
secondary structure conserved by a mutation pattern. 
The sRNA or RNA probabilistic model was designed 
to identify covariances in stem-loop structures by 
implementing with the above SCFG model. Scoring 
is calculated based on Bayesian posterior probability, 
which leads to the identification of candidate ncRNA 
genes.14 The QRNA approach gives more weight to 
the intergenic conservation among related genomes 
as an indicator of a probable sRNA region. It has led 
to the development of tools that detect consensus 
RNA structures and motifs from multiple sequence 
alignments. ERPIN (Easy RNA Profile IdentificatioN) 
is an algorithm used to define RNA motifs by using 
multiple sequence alignments and secondary struc-
ture consensus. A log-odds score profile of each helix 
and single strand in the multiple sequence alignment 
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defines the purpose of prediction. A dynamic pro-
gramming square matrix detects the presence of 
hairpin structures among the consensus secondary 
structure. The ERPIN server computes E-values 
for every log odd score profiles as that of BLAST. 
ERPIN is freely available online (http://tagc.univ-
mrs.fr/erpin).39 MSARI is a program developed for 
the identification of noncoding RNA by detecting the 
RNA specific consensus secondary structure among 
the multiple sequence alignments. MSARI utilizes 
RNAFOLD40 to generate RNA secondary structure 
in multiple sequence alignments and CLUSTALW41 
to make sequence alignments. A reverse comple-
mentary approach based on a Bonferroni-style test is 
involved in elucidating null hypothesis distributions. 
MSARI can be used in comparative search of ncRNA 
orthologs, among the related organisms with con-
served RNA secondary structure, and statistical 
estimation of mutations in multiple alignments.42 
Both the ERPIN and MSARI utilities accept mul-
tiple sequence alignments as inputs to detect prob-
able consensus structures of RNA from the sequence 

alignment files. To facilitate the global search of 
reliable RNA consensus structures from genome 
sequence databases, a computational tool known as 
INFERNAL (INFERence of RNA Alignment) was 
developed which scores combination of both sequence 
and structure consensus.43,44 INFERNAL works on 
an HMM based covariance model for building sec-
ondary structure consensus from a RNA family and 
searching sequence databases for RNA structure and 
similarities. INFERNAL was implemented with spe-
cial SCFGs in the form of Covariance Models (CMs). 
CMs are used to search against the genome sequences 
for consensus structure/sequences of particular RNA 
groups and to assign scores. Generally, INFERNAL 
performs a homology search for putative ones, fol-
lowed by secondary structure based multiple sequence 
alignments. The latest release of INFERNAL 1.0.2 
is inclusive of four programs, namely cmbuild, 
cmcalibrate, cmsearch and cmalign. INFERNAL is 
more capable of detecting conserved secondary struc-
tures, though they do not have any sequence similar-
ity with the training CMs. An E-value is assigned for 
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Figure 1 (A) Comparative genomics based protocols utilized in the computational sRNA prediction tools: QRNA, ERPIN, ISI and RNAZ; (B) methodology 
adapted in the transcriptional signal-based sRNA finders: sRNAscanner and sRNAPredict; (C) sequence based ab initio sRNA detection methods: Atypical 
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Orthology; TFBS, Transcription Factor Binding Site.
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RNA alignments and thus predicting the locations of 
the noncoding RNA.44 INFERNAL is used mainly in 
the development of Rfam, a database of RNA align-
ments and CMs.21,43 The CMs generated by the Rfam 
database are searched against the genome databases, 
primarily in conjunction with the INFERNAL tool, 
for homologs of known structural RNA families. 
The detection of numerous sRNAs (almost ∼90%) 
in the intergenic regions created awareness among 
the researchers of design tools that look for sRNAs, 
in particular in the intergenic regions. Subsequently, 
a tool known as Intergenic Sequence Inspector (ISI) 
was developed to predict regulatory sRNAs by ana-
lyzing the intergenic conservation of the sequences 
among the phylogenetically related species, display-
ing RNA structural features flanked with putative 
promoters and terminators.17 ISI is a PERL package 
which requires ‘Bioperl 0.9.3’ modules and ‘NCBI 
Blast’ utilities to perform the searches. The IGR 
extractor utility of ISI was used to extract the ‘empty’ 
intergenic regions from the reference genome based 
on their annotations and blasted against the avail-
able bacterial genomes. The blast results can be ana-
lyzed and sorted by ‘Blast analyzer’ according to 
their ‘Expected value’. Furthermore, the high scor-
ing individual alignments of the bacterial IGRs can 
be converted into multiple alignments to look for 
their conservation level. Multiple sequence align-
ments showing high level of sequence conservation 
and flanked by upstream promoters and downstream 
terminators are predicted as putative sRNAs. Finally, 
ISI selects and visualizes candidate IGRs bearing con-
servations and RNA signatures, along with transcrip-
tional signals located in the analyzed genome. ISI 
has retained most of the known sRNAs and predicted 
new sRNAs in the E. coli K12-MG1655 genome. ISI 
is available for download online from http://www.
biochpharma.univ-rennes1.fr/.

Secondary Structure Based Methods
A comparatively efficient and fast way to get 
information on a RNA molecule is its secondary 
structure. Reliable secondary structure prediction is 
a prerequisite for most types of computational RNA 
analysis. Consensus structure prediction among a set of 
RNA molecules is a routinely used process to infer their 
RNA families and is performed for tRNA and tmRNA. 
Likewise, consensus structure prediction is also an 

ideal starting point for sRNA prediction; however, 
it has to be validated by a suitable measure of signifi-
cance like thermodynamic stability. RNAMotif is a tool 
developed to search a database for a motif which per-
tains to a particular secondary structure interface. The 
RNA motif of interest is provided in the form of a RNA 
descriptor file; the RNAMotif algorithm will scan the 
entire genome database and precisely locate the speci-
fied motif with their coordinates. RNAMotif uses the 
‘novel’ RNA descriptor as an input to define the second-
ary structures of RNA which are inclusive of hairpins, 
properly nested hairpins, pseudoknots, and other struc-
tural elements which yield a score based on the coding 
nature of the nucleotide. RNAMotif algorithm consists 
of two stages namely, (1) construction of RNA structure 
descriptors and (2) searching/scoring.25 Execution of 
the search in databases for pattern matches and scoring 
of the predicted RNA regions are based on the nearest-
neighbor energy system proposed by Mathews et al.45 
These computational approaches were either applicable 
or limited only by the known secondary structure of a 
specific sRNA family.

Consensus RNA Structures  
and Thermodynamic Stability  
Based Approaches
Most of the existing methods based on RNA structure 
analysis have shown minimum reliability when the 
evolutionary distance between the two sequences lies 
outside of the optimal range. The secondary structure 
of sRNAs predicted through computational methods 
does not depict the actual functionally active struc-
tures and such secondary structure prediction alone 
is not sufficient for sRNA screens.14 To get function-
ally active sRNA structures, the sRNA should be of a 
thermodynamically favorable minimum free energy 
(MFE) secondary structure which has lower free 
energy than random sRNA sequences. To achieve 
maximum enhanced accuracy, large numbers of 
multiple sequence alignments are essential to detect 
reliable RNA hits. However, constraints in getting 
a large number of datasets limits the use of RNA-
structure-based methods in the genomic screening of 
sRNAs. To overcome these limitations, an additional 
measure MFE was added to the structure conserva-
tion in sRNA screens and implemented in a series of 
computational tools.16,27 The main objective of evalu-
ating the thermodynamic stability of RNA structures 

http://www.la-press.com
http://www.biochpharma.univ-rennes1.fr/.
http://www.biochpharma.univ-rennes1.fr/.


Sridhar and Gunasekaran

88	 Bioinformatics and Biology Insights 2013:7

is to efficiently detect functional sRNAs in multiple 
sequence alignments.

One of the more prominent tools, RNAZ is 
designed specifically for the efficient detection of 
sRNAs in alignments generated from only a few input 
sequences of genomes with few related sequences. It 
is a PERL based software which utilizes both second-
ary structure consensus and thermodynamic stabil-
ity as measures of predicting noncoding RNAs with 
high specificity and sensitivity. Initial fold of the 
single sequence is computed using RNAFOLD and 
consensus folding of the aligned structures is per-
formed with RNAalifold46 using the same parameters. 
Washietl et  al16 have applied a novel SVM-based 
regression analysis with synthetic sequences of dif-
ferent length and composition in order to optimize the 
z-score calculation. The method initially employed 
MFE of RNA folding and z-scores of regression fol-
lowed by SVM-based classification to differentiate 
whether the RNA belongs to the sRNA or not. The 
approach is also a part of the comparative genomics-
based analysis of annotation reported in RNA data-
bases such as Rfam. Presently, RNAZ is available 
(http://www.tbi.univie.ac.at/wash/RNA) for pre-
diction of ncRNAs and cis regulatory RNAs. The 
method is applicable for large scale genomic screens 
and aligned sequences as well.16

Another similar tool developed was RNALfoldz, 
an expanded version of the RNALfold algorithm 
which can predict sRNAs based on local secondary 
structure, along with their thermodynamic stability. 
Detection of functional sRNA structures is carried out 
by the RNALFOLD algorithm. The MFE of the func-
tional sRNA structures is compared to the MFE of 
the shuffled sequences having equal length and %GC 
composition. RNALfoldz can evaluate the thermody-
namic stability of the predicted secondary structures 
by estimating the z-score and using the Support Vec-
tor Regression (SVR) introduced by Washietl et al;16 
the RNALfoldz algorithm also has local RNA second-
ary structure prediction and the ability to efficiently 
search for thermodynamically stable sRNA structures. 
The z-score computed by this approach is depending 
on the threshold for test sequence and the random true 
positive and false negative sequences.27 RNALfoldz 
has demonstrated its applicability in detection of the 
thermodynamically stable functional of sRNAs in its 
application in the genome sequences of E. coli.

Yet another similar tool is CARNAC, which can be 
used for predicting families of homologous noncod-
ing RNAs based on secondary structure information. 
It uses three distinct parameters, namely energy mini-
mization, phylogenetic comparison, and sequence 
conservation. The CARNAC algorithm is composed 
of three stages: (1) identification of potential stems; 
(2) analysis of all sequences to build a pair-wise fold-
ing; and (3) preparation of a stem graph. The set of 
single stranded RNA sequences that need not to be 
aligned is accepted as input; the folding relies on the 
thermodynamic model with energy minimization. The 
CARNAC web server is written in ANSI C and freely 
accessible at online (http://bioinfo.lifl.fr/carnac).47

Transcriptional Signal-Based Methods
Most of the transcripts are expected to be encoded 
by the free standing genes in intergenic regions and 
encompassed by transcription factor binding sites 
and/or promoters and terminator signals. However, 
tracing the occurrence of transcriptional signals in 
intergenic regions is a difficult task. Moreover the 
transcriptional signals are rated as weak compared to 
the signals of the coding genes. It is presumed that 
most of the sRNAs expressed under stress condi-
tions might be controlled by the rare transcriptional 
promoters. However, few sRNA identification tools 
have been developed by utilizing the ‘Orphan’ tran-
scriptional signals in the intergenic regions, in order 
to predict sRNAs. The available promoters and rho-
independent terminators of the coding genes were 
first used by Chen et  al15 to detect the probable 
sRNA regions in the intergenic regions of E. coli. 
This study looked for the σ70 promoter within a 
short distance of a rho-independent terminator in the 
intergenic regions; it predicted 144 non-translatable 
sRNAs in E. coli, with few of them experimentally 
validated through northern analysis. Unfortunately, 
the computational scripts used in this study were 
not provided to users. Since original development of 
these tools, a few tools have been developed using 
different statistical models. The sRNAPredict is a 
first co-ordinate based algorithm designed to predict 
the putative sRNA regions in bacteria18 by using the 
locations of transcriptional signals. sRNAPredict 
depends on the promoter signals, transcription factor 
binding sites, rho-independent terminator signals pre-
dicted by TRANSTERMHP,48 and BLAST49 outputs 
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as predictive features of sRNAs. It uses coordinate 
based algorithms to integrate the respective posi-
tions of individual predictive features and to locate 
the sRNAs in the intergenic regions. The entire pro-
gram was built in C++ and aimed to locate intergenic 
and 5′ or 3′ sRNAs. The program uses the predictive 
features obtained from other databases (eg, TRANS-
TERMHP) or output files of RNAMotif for the pre-
diction of rho-independent terminators, TRANSFAC 
data for transcription factors, and BLASTN 2.0 out-
puts for the selection of conserved IGR coordinates 
used to predict probable sRNA regions; sRNApre-
dict2 and sRNApredict3/SIPHT are recent versions 
of the sRNApredict suite that are used in the efficient 
prediction of sRNAs, with a high level of specificity. 
SIPHT is a compatible web version of sRNAPredict3 
that searches approximately 1900 bacterial replicons 
from the NCBI database and predicts putative sRNA 
locations. sRNApredict3 is inclusive of sequence 
comparable options to look for conserved sRNAs, 
along with an earlier coordinate based approach.50 
Transcripts of the six out of the nine selected sRNA 
candidates were detected through northern analysis 
and confirmed their expression. Instead of simply 
looking for the intergenic signals, Tjaden’s group 
has developed a tool known as sRNAFinder to detect 
sRNAs by combining the high-throughput experi-
mental data with their relative transcriptional sig-
nals as predictive features of sRNA identification. 
sRNAFinder uses the multi-probabilistic method 
to identify the noncoding sRNAs in prokaryotic 
genomes. It has been implemented with nine state 
(four on the positive strand, four on negative strand 
and an intergenic state) transitions in the Genaralized 
Markov Model (GMM) system to predict the sRNAs. 
The GMM incorporates heterogeneous data, includ-
ing primary sequence, transcript expression data 
from microarrays, conserved RNA secondary struc-
tures identified from comparative studies along with 
promoter, and terminator information. sRNAFinder 
also makes use of the SCFG (Stochastic Context 
Free Grammar) model used by QRNA and transcript 
expression profile from microarray data; it predicts 
the probability in confidence of interval based on 
existing sequence annotations. Like sRNApredict, 
sRNAFinder uses comparative genomics informa-
tion for the purpose of predicting noncoding RNA 
genes.29 The above transcriptional signal-based tools 

depend on the promoters, transcription factor bind-
ing sites, and the terminators predicted or available 
from other databases. Unfortunately, predictive fea-
tures were not available for all the available genome 
sequences in these databases, which therefore restricts 
sRNA predictions using these tools. To avoid those 
limitations, a generic platform sRNAscanner19 was 
developed to predict sRNAs and which computes the 
locations of the intergenic signals using the given 
family specific training data sets. sRNAscanner is a 
generic transcriptional signal-based computational 
method using a Positional Weight Matrix (PWM)-
based strategy for the discovery of intergenic sRNA 
transcriptional units (TUs) in completely sequenced 
bacterial genomes. The main advantage with sRNA-
scanner is that it computes the predictive features on 
its own; it uses its own algorithm and the training 
PWM dataset to calculate the genomic locations of 
the promoter, transcription factor, and terminator 
signals. Unlike the sRNApredict2  series of suites 
which depend on the predictive features retrieved 
from other databases, sRNAscanner opens the pos-
sibility of user specific training PWM construction 
and sRNA identification. The sRNAscanner con-
sists of algorithms to perform the following func-
tions: (a) construct PWMs from sRNA-specific 
transcriptional signals; (b) search complete genome 
sequences using constructed PWMs that identify 
intergenic promoter/transcription factor binding sites 
and terminator locations; (c) perform coordinate 
based integration of promoter/terminator signals to 
define putative intergenic transcriptional units (TU); 
and (d) select predicted TUs based on cumulative 
sum of scores (CSS) values above a user defined 
threshold.19 Moreover, the sensitivity and specificity 
profile of sRNAscanner was first evaluated through 
the Receiver Operator Characteristic (ROC) curves 
and confirmed its satisfactory performance. Six out 
of the sixteen sRNA candidates have yielded distinct 
northern-detectable transcripts of similar sizes, as 
per sRNAscanner predictions. Furthermore, the 5′ 
ends of the above six transcripts were also marked 
through 5′RACE experiments. Thus, sRNAscanner 
was proved as an efficient platform for the prediction 
of sRNAs in any bacterial genome, provided it was 
provided with family specific training sets.19

To advance the functional characterization of the 
identified sRNAs, specific tools were developed to 
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find the interactions between sRNAs and mRNAs. 
Recently, an attempt was made with the nocoR-
NAc tool to study the sRNA-mRNA interactions 
together with with the sRNA predictions from the 
genomes. The nocoRNAc is a Java based program 
for the genome wide prediction and characteriza-
tion of ncRNA transcripts. nocoRNAc incorporates 
a set of protocols for the detection of transcriptional 
features which are then integrated to determine the 
sRNA transcript coordinates. The nocoRNAc pro-
gram uses the transcription termination signals from 
TRANSTERMHP; promoters are identified using the 
SIDD model (Stress Induced Duplex Destabilization). 
Subsequently the program searches for the known 
RNA motifs from the Rfam database. IntaRNA tool 
was also implemented in the nocoRNAc package 
to predict sRNA-mRNA interactions so as to eluci-
date the regulatory role of the sRNAs predicted by 
nocoRNAc.20

Ab initio sRNA finders
Existing biochemical and computational studies 
have reported many predictive sRNA features. They 
are applied for the identification of sRNAs based on 
preferential occurrence of RNA specific structural 
elements, di/tri nucleotide preferences, and atypical 
GC properties of the genome sequence information. 
In the early 2000s sRNA specific features were iden-
tified by Carter et al51 and applied in the search for 
similar sRNAs in E. coli. This method was imple-
mented in the RNAGENiE tool,51 which locates new 
RNA regions based on the finding that most of the 
functional RNAs (fRNAs) share common second-
ary structural elements like double helices, uridine 
turns, UNCG tetraloops, GNRA tetra loops, tetral-
oop receptors, adenosine platforms, and non-Watson 
Crick mis-pairs in a symmetric internal loops. Known 
RNA-specific structural elements were trained with 
neural networks to recognize RNA genes in E. coli. 
RNAGENiE looks for the preferential occurrence of 
the above secondary structural elements in the query 
genome sequences and differentiate them into RNA 
and non-RNA genes. Additionally, sequence based 
descriptors were also used to differentiate RNA genes 
from non-RNA genes. RNAGENiE achieved a greater 
accuracy by using a second set of parameters consist-
ing of known RNA sequence motifs and the calcu-
lated free energy of folding.51 Thus, the combination 

of RNA secondary structure prediction with base 
composition statistics trained with neural networks 
has been proposed to predict functional RNAs; 
however, their reliability is questionable due to lack 
of experimental validations. The RNAGENiE inter-
face is available for users and opens the possibility 
of checking the query sequence as RNA or non-RNA 
genes (http://rnagenie.lbl.gov/).

After the initial studies, the RNA regions and 
non-RNA regions were surveyed for their sequences 
motifs and applied for sRNA screens. SmyRNA is an 
ab initio ncRNA gene finder that utilizes differential 
distributions of sequence motifs between ncRNAs 
and background genome sequences. Based on the 
trained log-likelihood ratio ‘r’, smyRNA can locate 
other ncRNAs on an input genome sequence ‘G’ by 
determining the maximally scoring substrings of the 
input sequence ‘G’. Those substrings whose score 
is over a user defined threshold ‘t’ are then declared 
as ncRNA candidates. Using a k-mer motif, log-
likelihood scores for a specific sequence to be in a 
potential ncRNA sequence is computed. Finally, the 
maximum scoring subsequences of a genome, which 
can then be considered as a candidate ncRNA gene, is 
identified.30 In general, the RNA regions are shown to 
have high %GC compared to the background genomic 
%GC. It is established and applicable in the search 
of sRNAs in the thermophiles. The highly structured 
RNA regions are expected to have high GC% varia-
tions with CDS or ‘empty’ intergenic regions.

The AtypicalGC tool identifies the regions show-
ing atypical GC aberrations out of the 40% to 60% 
interval. It considers the entire genome as multiple 
fragments dependant on the user given window 
length and computes GC% on a specified length of 
genetic fragment, from the center of the sliding win-
dow pointing position. The regions showing more 
deviation, measured from two standard deviations 
of the mean, are considered atypical regions.52 Most 
of the sRNAs identified through sequence homol-
ogy and structure consensus methods are located 
in the specific intergenic regions showing phyloge-
netic conservation. Even the non-homologous sRNA 
regions identified in earlier studies were also found 
in those phylogenetically conserved regions.53 Based 
on these intergenic conservation profiles, a computa-
tional protocol was developed to compute sRNA ele-
ments in bacteria. Both NAPP and PsRNA methods 
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efficiently predict the intergenic regions of sRNAs 
without any precise start and ends. Due to this unique 
nature, we have categorized them under the ab initio 
group, though they apply adjacent flanking gene or 
gene cluster information of known sRNAs. NAPP 
(Nucleic Acids Phylogenetic Profiling) is a clustering 
method that efficiently predicts the noncoding sRNA 
elements in bacterial genomes. NAPP works on two 
computational aspects: (1) information retrieval from 
reference genome; and (2) identification of putative 
sRNA regions in query genomes. It converts the inter-
genic regions of the reference genome into 50 nt ‘tile’ 
segments and then compares the prevalence and exis-
tence of the particular intergenic region in the avail-
able genome sequences. If the particular intergenic 
‘tile’ segment is found it will be classified according 
to their evolutionary distance. Traditionally a group 
of sRNA ‘tiles’ always clusters together with certain 
types of CDSs, which yields important clues on the 
functions associated with these sRNAs. NAPP is 
preferable for the users to retrieve RNA rich gene 
clusters from the genome of interest. NAPP is avail-
able online (http://rna.igmors.u-psud.fr/NAPP/index.
php).54 The earlier phylogenetic profiles have con-
firmed the precise positioning of sRNAs with their 
specific flanking genes.53 The available controlled 
vocabulary to define the functional ortholog groups 
of genes, eg, the KEGG Orthology (KO) numbers, 
support the search of particular phylogenetic inter-
genic profiles using their conserved flanking gene 
pairs. The availability of specific flanking gene pairs 
is utilized by PsRNA to identify the putative sRNA 
regions of the known groups. PsRNA is a comput-
ing engine used to identify putative sRNA locations 
within the intergenic regions of the bacterial genome 
of interest. PsRNA is an automation of the earlier 
sRNA identification strategy which uses conserved 
flanking gene synteny and genomic backbone reten-
tion information.53 It uses the functional assignment 
of the sRNA specific conserved flanking genes in 
order to identify similar RNA regions in the query 
genomes, even in the absence of sequence homology. 
PsRNA has used the KO numbers as controlled 
vocabularies to identify the putative sRNA locations 
in the query genomes. PsRNA scripting consists of 
two parts: (1) information retrieval from the reference 
genome; and (2) the search for sRNA locations in the 
query genomes. The user given sRNA information 

(Id, coordinate, or flanking gene pair ids) will be ana-
lyzed by the PsRNA server and their corresponding 
flanking gene pairs will be converted into their corre-
sponding KO id pairs (if found). Furthermore, the KO 
pair will be loo at the query genomes for their coex-
istence and synteny retention. If any of the particular 
flanking gene pairs is identified with similar KO pairs 
and satisfies the synteny criteria, it will be proposed 
as putative sRNA region. PsRNA server was tested 
with the 22 enterobacterial genomes and is currently 
available online (http://bioserver1.physics.iisc.ernet.
in/psrna/).55 The PsRNA method is applicable solely 
for the comparative analysis of a known sRNA group 
among related genomes. It cannot be used for the 
identification of ‘novel’ sRNA groups. A summary of 
the various computational tools used for sRNA pre-
diction in bacteria is available in Table 1.

Future Perspectives
In the last few years, many computational approaches 
have been developed to detect ubiquitous bacte-
rial noncoding sRNAs; a few approaches such as 
base composition statistics, sequence, and struc-
ture conservations, have already been reviewed.56 
Among them, comparative genomics has predicted 
and marked the existence of a plethora of sRNAs, 
and many of their expressions have been con-
firmed in vivo. A few of the conserved backbone 
or intergenic ‘tile’-based comparative approaches 
have predicted the non-homologous sRNA regions, 
even without any sequence homology; this clearly 
shows the significance of these approaches in trac-
ing the sRNA regions. Though many sRNAs have 
been identified through comparative approach-
based tools, transcriptional signal-based tools are 
very much promising in detecting ‘novel’ intergenic 
sRNAs. Transcriptional signal-based methods have 
shown their prowess in predicting sRNAs, even 
in gram-positive bacteria. In most of the cases the 
sigma70 promoter signals are routinely used to iden-
tify the ‘Orphan’ promoter signals in the intergenic 
regions; the inclusion of other stress responsive rare 
promoters, ie, sigma,54 sigma27 and sigma,38 in the 
positive training set could predict additional stress 
responsive sRNAs in the future. Such transcrip-
tional signal-based methods work perfectly only 
with the detection of intergenic sRNAs and they 
are difficult to apply in the detection of untranslated 
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Table 1. Summary of the various computational methods applied for sRNA prediction in bacteria.

S. No. Method Tool Properties Advantages Disadvantages Availability/website Reference
1 Comparative genomics QRNA It applies SCFG to test and differentiate the alignments in 

to: COD, RNA and OTH models
First systematic method for ncRNA  
detection among closely related  
organisms. Intergenic conservation is  
considered as indicator of sRNA regions

Restricted to pairwise alignments  
alone

http://selab.janelia.org/ 
software.html

14

ERPIN Reads multiple sequence alignments and secondary 
structures to infer Secondary structure profile (SSP)

Complex RNA descriptors are not  
required. Dynamic programming  
was applied to search helix and hairpin  
structures (SSP) with log-odd score  
and E-value

Multiple sequence alignment  
and consensus structures are  
mandatory

http://tagc.univ-mrs.fr/ 
erpin/

39

ISI Search sRNAs based on intergenic conservation (IGR), 
RNA structural features and terminators

ISI has retained many sRNAs in E. Coli.  
Usage with perl and Bioperl modules

Conserved IGRs without flanking  
promoters and terminators are  
missed

http://www.biochpharma. 
univ-rennes1.fr/

17

INFERNAL HMM based covariance model (CM) was used to build 
RNA secondary structure and search

CM based search of particular RNA against  
genomes are computationally efficient

False positives are reported.  
Novel predictions are not possible

http://infernal.janelia.org/ 44

MSARI Detects RNA specific common stems from multiple 
sequence alignments using distribution-mixture method

It applies RNAFOLD to generate secondary  
structure from sequence alignments

It can handle alignments with  
minimum of 10 sequences.

http://groups.csail.mit. 
edu/cb/MSARi/

42

RNA structure and  
thermodynamic  
stability based methods

RNAZ RNAZ applies SVM based structural regression analysis 
to compute z-score and differentiate the minimal free 
energy structures

It is part of sRNA annotation pipeline used  
in Rfam database. RNAZ can be applied  
for large scale genomic screens

It requires a fixed sequence  
alignment as input. Poor  
sensitivity with low pairwise  
sequence identity

http://www.tbi.univie. 
ac.at/∼wash/RNAz/

16

2 Transcriptional signal  
based sRNA finders

sRNAscanner Generic sRNA finder applied for any genome with specific 
training data

sRNA specific promoters, terminator  
signals were applied to identify IGR  
sRNAs. It predicts maximum number  
of known sRNAs in enterobacteriaceae

Current dataset has sensitivity  
with medium and low %GC  
genomes

http://cluster.physics.iisc. 
ernet.in/sRNAscanner/

19

sRNAPredict3/ 
SIPHT

Coordinate based algorithms to integrate the locations 
of promoters/TFBS, terminators along with sequence 
conservation

Simple method to predict the sRNA  
locations with existing information  
from other databases

Fully depend on the information  
from other databases. Not possible 
to work with strains not  
indexed in other databases.

http://newbio.cs.wisc. 
edu/sRNA/

18, 50

3 Sequence dependent Ab-initio  
sRNA detection methods

Atypical GC Compute G and C content of a particular position using 
sliding window and predicts RNA regions

Continuous atypical positions only  
considered as possible RNA regions

Not applied for particular RNA  
family

http://www.rnaspace.org/ 52

RNAGENiE Known RNA structural elements were trained with neural 
networks and applied to differentiate RNA and non-RNA 
genes

Functional RNA elements double helices,  
uridine turns, UNCG loops, tetraloop  
receptors and mis-pairs are trained. It has  
high accuracy if motifs added with free  
energy of folding

Reliability is questionable due to  
lack of experimental validation

http://rnagene.lbl.gov/ 51

smyRNA Utilizes differential distributions of sequence motifs 
between ncRNAs and background genome sequences

Maximally scoring substrings of the input  
genome above the threshold are  
identified as RNA regions

Family specific RNA identification  
is not possible

http://compbio.cs.sfu.ca/ 
nwp-content/software/ 
taverna/

30

4 Sequence independent  
Ab-initio sRNA detection  
methods

PsRNA It uses KEGG orthology numbers of the flanking genes to 
locate the sRNA specific intergenic regions

First Orthology based method  
successfully applied to predict  
sRNA specific gene clusters

Identification of ‘novel’ sRNAs  
and flanking genes not having KO  
numbers are not possible

http://bioserver1. 
physics.iisc.ernet.in/ 
psrna/

53

NAPP IGR’s of reference genome are tiled into 50 nt segments 
and classified based on their occurrence profile in 
1000 genomes

Search of ‘RNA-rich’ cluster in query  
genomes will identify sRNAs

Search is only restricted with the 
sRNAs reported in the reference  
and tracking of ‘novel’ sRNA is  
not possible

http://rna.igmors.u-psud. 
fr/NAPP/

54

region (UTR) encoded sRNAs or riboswitches. 
Most of the structure consensus-based methods uti-
lize thermodynamic stability and conservation of 
the predicted transcripts to identify the locations of 
putative sRNAs. Though the preferential occurrence 
of specific sequence motifs and %GC of ncRNA 
regions are used for the prediction of sRNAs, it is 

nevertheless difficult to identify a commonality or 
particular statistical bias among the prokaryotic 
sRNA groups.

Most of the sRNA prediction algorithms/tools 
were evaluated for their capacity in retaining the 
known sRNAs in a given reference organism.19,50 
The prediction accuracy of these computational 
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Table 1. Summary of the various computational methods applied for sRNA prediction in bacteria.

S. No. Method Tool Properties Advantages Disadvantages Availability/website Reference
1 Comparative genomics QRNA It applies SCFG to test and differentiate the alignments in 

to: COD, RNA and OTH models
First systematic method for ncRNA  
detection among closely related  
organisms. Intergenic conservation is  
considered as indicator of sRNA regions

Restricted to pairwise alignments  
alone

http://selab.janelia.org/ 
software.html

14

ERPIN Reads multiple sequence alignments and secondary 
structures to infer Secondary structure profile (SSP)

Complex RNA descriptors are not  
required. Dynamic programming  
was applied to search helix and hairpin  
structures (SSP) with log-odd score  
and E-value

Multiple sequence alignment  
and consensus structures are  
mandatory

http://tagc.univ-mrs.fr/ 
erpin/

39

ISI Search sRNAs based on intergenic conservation (IGR), 
RNA structural features and terminators

ISI has retained many sRNAs in E. Coli.  
Usage with perl and Bioperl modules

Conserved IGRs without flanking  
promoters and terminators are  
missed

http://www.biochpharma. 
univ-rennes1.fr/

17

INFERNAL HMM based covariance model (CM) was used to build 
RNA secondary structure and search

CM based search of particular RNA against  
genomes are computationally efficient

False positives are reported.  
Novel predictions are not possible

http://infernal.janelia.org/ 44

MSARI Detects RNA specific common stems from multiple 
sequence alignments using distribution-mixture method

It applies RNAFOLD to generate secondary  
structure from sequence alignments

It can handle alignments with  
minimum of 10 sequences.

http://groups.csail.mit. 
edu/cb/MSARi/

42

RNA structure and  
thermodynamic  
stability based methods

RNAZ RNAZ applies SVM based structural regression analysis 
to compute z-score and differentiate the minimal free 
energy structures

It is part of sRNA annotation pipeline used  
in Rfam database. RNAZ can be applied  
for large scale genomic screens

It requires a fixed sequence  
alignment as input. Poor  
sensitivity with low pairwise  
sequence identity

http://www.tbi.univie. 
ac.at/∼wash/RNAz/

16

2 Transcriptional signal  
based sRNA finders

sRNAscanner Generic sRNA finder applied for any genome with specific 
training data

sRNA specific promoters, terminator  
signals were applied to identify IGR  
sRNAs. It predicts maximum number  
of known sRNAs in enterobacteriaceae

Current dataset has sensitivity  
with medium and low %GC  
genomes

http://cluster.physics.iisc. 
ernet.in/sRNAscanner/

19

sRNAPredict3/ 
SIPHT

Coordinate based algorithms to integrate the locations 
of promoters/TFBS, terminators along with sequence 
conservation

Simple method to predict the sRNA  
locations with existing information  
from other databases

Fully depend on the information  
from other databases. Not possible 
to work with strains not  
indexed in other databases.

http://newbio.cs.wisc. 
edu/sRNA/

18, 50

3 Sequence dependent Ab-initio  
sRNA detection methods

Atypical GC Compute G and C content of a particular position using 
sliding window and predicts RNA regions

Continuous atypical positions only  
considered as possible RNA regions

Not applied for particular RNA  
family

http://www.rnaspace.org/ 52

RNAGENiE Known RNA structural elements were trained with neural 
networks and applied to differentiate RNA and non-RNA 
genes

Functional RNA elements double helices,  
uridine turns, UNCG loops, tetraloop  
receptors and mis-pairs are trained. It has  
high accuracy if motifs added with free  
energy of folding

Reliability is questionable due to  
lack of experimental validation

http://rnagene.lbl.gov/ 51

smyRNA Utilizes differential distributions of sequence motifs 
between ncRNAs and background genome sequences

Maximally scoring substrings of the input  
genome above the threshold are  
identified as RNA regions

Family specific RNA identification  
is not possible

http://compbio.cs.sfu.ca/ 
nwp-content/software/ 
taverna/

30

4 Sequence independent  
Ab-initio sRNA detection  
methods

PsRNA It uses KEGG orthology numbers of the flanking genes to 
locate the sRNA specific intergenic regions

First Orthology based method  
successfully applied to predict  
sRNA specific gene clusters

Identification of ‘novel’ sRNAs  
and flanking genes not having KO  
numbers are not possible

http://bioserver1. 
physics.iisc.ernet.in/ 
psrna/

53

NAPP IGR’s of reference genome are tiled into 50 nt segments 
and classified based on their occurrence profile in 
1000 genomes

Search of ‘RNA-rich’ cluster in query  
genomes will identify sRNAs

Search is only restricted with the 
sRNAs reported in the reference  
and tracking of ‘novel’ sRNA is  
not possible

http://rna.igmors.u-psud. 
fr/NAPP/

54

tools is highly variable and cannot be compared in 
the absence of perfect benchmarking data. Each and 
every approach has its own sensitivity and specific-
ity rates and standard statistical evaluations such as 
ROC curves19,57 were not computed for most of these 
approaches. The ab initio methods applying RNA-
specific features have retained most of the known 

sRNAs based on their preferential occurrence of 
those features; however, they have also resulted in 
a large number of ‘false positives’. The controlled 
vocabularies used in the detection of putative sRNA 
regions might be applicable only with flanking genes 
assigned with those numbers. Few of the above dis-
cussed sRNA finders like ISI were not updated in 
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recent times. Hence, the users are suggested to select 
the most recently published or updated tools to iden-
tify sRNAs.

In the near future, the complexity of software tools 
might become condensed and easy usage may be 
expected. To make further progress in this field a con-
sensus based ‘Hybrid’ approach which includes the 
positive aspects of transcriptional signals and con-
sensus secondary structures, together with thermody-
namic stability analysis and ncRNA specific features, 
could give more precise sRNA annotations. Recently, 
many studies have reported the global transcriptional 
map of pathogens using RNA-Seq technology;58–60 
these studies have all demonstrated the difficulties 
involved in the mapping of sRNA reads against the 
genome of interest. To make valid sRNA annota-
tions, any proposed sRNA identification tool should 
be equipped to analyze the recent High-throughput 
data generated from the cDNA microarrays, Next 
Generation Sequencing (RNA-Seq) experiments, 
and genomic data. The proposed consensus method 
should also be available as a graphical user interfaces 
(GUI) and web server, with a goal of having a greater 
impact on community annotation.

Conclusions
This review discusses the computational approaches 
applied in available sRNA prediction tools. 
Comparative genomics, structure consensus, tran-
scriptional signal-based tools and ab initio proto-
cols were interpreted and their working mechanisms 
comprehensively analyzed. In the last decade, com-
putational screening has revolutionized the sRNA 
detection process and become enormously significant. 
However, experimental validation proves the authen-
ticity and presence of computational predictions of 
novel regulatory sRNAs. Nevertheless, sRNA pre-
diction employing a less complex and user friendly 
approach is necessary in the current genomic era and 
in the near future.
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