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Introduction
In the last two decades, robust stabilization and noise 
filtering theories have been developed by control 
engineers in order to improve the reliability and per-
formance of control systems. In previous papers,1–3 
the network robustness and network sensitivity of 
gene regulatory networks and evolutionary networks 
have been discussed from a nonlinear, stochastic 
systems point of view. In these nonlinear biologi-
cal networks, many local stable equilibrium points 
(phenotypes) exist. It has been found that if a net-
work can confer enough intrinsic robustness to toler-
ate intrinsic parameter fluctuations, to buffer genetic 
mutations and resist environmental disturbances in 
gene regulatory networks or evolutionary networks, 
then the existing phenotype of these networks can be 
maintained despite intrinsic parameter fluctuations, 
genetic mutations and environmental disturbances. 
In most ecosystems, phenotype changes of ecological 
networks caused by losses of biodiversity may come 
from habitat destruction, alien species introduction, 
climate change, and pollution.4,5 Phenotype changes 
are likely to reduce not only the number of species 
but also the complexity of the ecological network 
and the function of the ecosystem. To maintain a pre-
 existing phenotype, the ecological networks, like food 
webs, should be more robust to bear random or selec-
tive removal of species in the trophic links. In this 
study, results will be extended from gene regulatory 
networks and evolutionary networks at the molecular 
level to ecological networks on a large scale, while 
considering the compartment effect of habitats.

Darwin used the metaphor of a ‘tangled bank’ to 
describe the complex interactions between species. 
All interactions between species can be visualized 
as ecological networks in which species are linked 
together, either directly or indirectly, through inter-
mediate species.6 Ecological networks, although 
complex, have well-defined patterns that both illu-
minate the ecological mechanisms underlying them 
and promise a better understanding of the relationship 
between complex and ecological stability.7,8  Ecological 
research has widely demonstrated that community 
fragility is far from being understood. It is commonly 
accepted that community fragility and persistence are 
related to the way in which ecological communities are 
structured, specifically to the distribution of trophic 
links throughout the community.8,9 Nevertheless, both 

the scarcity of high-quality data and lack of methods 
suitable for a detailed analysis of the complexity of 
ecological networks result in the lack of a unified 
picture of community fragility and persistence.10 In 
recent years, some topological features, the so-called 
“small world” behavior and “scale-free” distributions 
of links have been applied to ecological networks 
for examining ecosystem stability against different 
types of species loss.8 Although ecological networks 
are generally not small-world, scale-free networks, 
this topology is consistent with patterns found within 
those classes of networks.11 In general, increasing bio-
diversity increases the likelihood that an ecosystem 
will have, first, species that will respond differently 
under variable environmental conditions and per-
turbations, and second, functional redundancy; that 
is, species that are capable of functionally replacing 
extinct species. The higher levels of biodiversity pres-
ent in a non-fragmented food web might support sev-
eral ecosystem functions that a fragmented food web 
would not manage.12 High biodiversity also reduces 
the probability of secondary extinctions.13 An analy-
sis considering interaction strengths among species 
would be very useful in confirming whether highly 
connected species play a stabilizing role in ecosys-
tems, but early studies provide little or no information 
on the strength of trophic links because identifying 
strength of trophic links is difficult. Recently, some 
analyses based on predator-to-prey interactions pro-
pose that body size ratio can predict trophic strength. 
The larger the ratio, the stronger the interaction,14,15 
which can link the food web to the relationship 
between body size and numerical abundance for eco-
logical network analysis.16 As we know, ecological 
networks can be very robust against random remov-
als of species, but can be extremely fragile when 
selective attacks are used.5,17 These further models 
involving species removal according to criteria other 
than the most-connected species would help establish 
a more global view of the effects of human-driven 
disturbances.12 In this study, nonlinear stochastic par-
tial differential systems will be employed to describe 
ecological networks under intrinsic perturbations and 
environmental disturbances. The robust stabiliza-
tion problem of large-scale ecological networks will 
be discussed with consideration of the compartment 
effect of habitat. Robust stabilization (persistence) 
and environmental sensitivity (community fragility) 
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will be investigated from a systematic perspective. 
The finite difference scheme will be employed to treat 
the species diffusion operation for easy estimation of 
network sensitivity and network robustness of eco-
logical networks in a habitat.

To measure the network sensitivity of an ecologi-
cal network relies on solving a Hamilton Jacobin 
integral inequality (HJII)-constrained optimization 
problem. Based on the HJII, we could find that if 
the network robustness can confer intrinsic robust-
ness to tolerate intrinsic parameter fluctuations and 
environmental robustness to resist the environmental 
disturbances simultaneously, then the phenotype of 
ecological network could be maintained in spite of 
intrinsic parameter fluctuations and environmental 
disturbances. The framework of phenotype robust-
ness criterion in an ecological network is similar 
to that of the gene regulatory network and evolu-
tionary network at the molecular level. Moreover, 
the tradeoff between network robustness, intrinsic 
robustness and environmental robustness are also 
found to be the same at different biological levels 
from gene regulatory networks and evolutionary net-
works to ecological networks.

However, it is still very difficult to solve HJII for 
phenotype robustness criterion in order to discuss 
the tradeoff between network robustness, intrinsic 
robustness and environmental robustness in eco-
logical networks. In this study, the global lineariza-
tion technique,1 finite difference scheme and spatial 
state space method18–20 are employed to transform the 
HJII-constrained optimization problem for network 
sensitivity to an equivalent linear matrix inequali-
ties (LMIs)-constrained optimization problem, which 
can be easily solved with the help of LMI toolbox 
in Matlab.21 Then the phenotype robustness criterion 
of the ecological system can be discussed from the 
local linearized system point of view. If the eigen-
values of local linearized ecological systems are in 
the farther left hand complex domain (more stable), 
then the ecological network will have more network 
robustness. Finally, to verify the existence of pheno-
type robustness criterion and to estimate the network 
sensitivity of a nonlinear stochastic partial differential 
ecosystem, an in silico example is given to illustrate 
the tradeoff between the network robustness, intrinsic 
robustness and environmental robustness in an eco-
logical network.

Tradeoff between Intrinsic 
Robustness, environmental 
Robustness and network  
Robustness in ecological Biology
Examples of robust biological systems are found on 
many scales, from biological genetic networks to 
ecological networks. In previous papers,1–3,22 we have 
discussed the robust stabilization problem of gene 
regulatory networks and evolutionary networks at the 
molecular level. In this section, the robust stabiliza-
tion problem of a large-scale ecological network will 
be discussed with consideration of the compartment 
effect of habitat.

Consider the following ecological network in the 
spatial domain:8–10,23

dx y t N x y t v y t x y t x y t dt
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where the network state x(y,t) = [x1(y,t), x2(y,t), …
xn(y,t)] denotes the number of different species 
or population; y = [y1,y2]

T ∈ R2 denotes the loca-
tion of two-dimensional spatial domain in habitat 
U; N(x(y,t)) denotes the interactions among these 
 species; ∆

=
∑ N x y t dw y ti ii
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1
 denotes the intrin-

sic perturbations due to stochastic parameter fluc-
tuations from L random sources, for example, the 
species loss and the change of species richness from 
direct trophic links; v(y,t) denotes the environmental 
disturbance, for example, the invasion of new spe-
cies and the change of species richness from indirect 
trophic links due to pollution; the habitat U denotes 
the total multi-species interaction domain, ie, the 
living area of interacting species, and the diffusion 
operator is denoted as diffusive spatial dispersal in 
the two-dimensional spatial domain of habitat U as 
follows:

 
∇2

2

1
2

2

2
2

1

2

x y t
x y t

y

x y t

y
y

y

y
U( , )

( , ) ( , )
,= ∂

∂
+ ∂

∂
=









 ∈

Then we want to discuss the robust stabilization 
problem of the nonlinear stochastic partial differential 
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ecological system in (1). Suppose the origin is shifted 
to the equilibrium point (phenotype) of interest, then 
(1) is modified as follows:18,24
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In general, it is still very difficult to estimate the 
network sensitivity of nonlinear stochastic partial dif-
ferential ecological networks in (2) to environmen-
tal disturbances directly. We will estimate its upper 
bound, ie, its network sensitivity level, and then 
decrease this upper bound to approach the network 
sensitivity indirectly. In this situation, the environ-
mental disturbance sensitivity level for the nonlinear 
stochastic partial differential ecological network in 
(1) is to consider the total multi-species interaction 
domain U as follows:
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Remark 1: (a) Given the ecological network 
structure (or the trophic links of food webs), the sto-
chastic processes ∆

=
∑ N x y t dw y ti ii

L
( ( , )) ( , )

1
 and v(y,t) 

are used to represent the effects of the intrinsic per-
turbations and extrinsic invasions on species rich-
ness, respectively, ie, strength changes of trophic 
links in the food web and loss or gain of particular 
species in the ecological network. To represent the 
selective changes in species richness, we can take 
it as a special case by simply setting the unselected 
elements in the random vector variables dwi(y,t) and 
v(y,t) with different mean and zero variances to rep-
resent the random strong or weak perturbations of 
invasion on trophic links. (b) If the initial condition 
x y( , )0 0≠ , then the network sensitivity level in (3) 
should be modified as:
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for some Lyapunov positive function V(•) . 0.
According to the spatial-temporal environmental 

disturbance sensitivity in (3), we get the following 
phenotype robustness (community stability) criterion 
for the ecological system in (1).

Proposition 1: If the following HJII holds for 
some positive definite function V x y t( ( , )) > 0
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in the case x y( , )0 0= . The physical meaning in (3) 
is that the total effect of environmental disturbances 
on the phenotype in the spatial-temporal domain is 
smaller than the disturbance sensitivity level ρ. If the 
intrinsic parameter fluctuations and extrinsic distur-
bances are non-random, then the expectation E(•) in 
(3) could be neglected.

then the intrinsic parameter fluctuations 
∆ ( )

=
∑ N x y t dw y ti ii

L
( , ) ( , )

1
 in the nonlinear stochastic 

partial differential ecological network in (1) can be 
tolerated, which means the phenotype of the ecologi-
cal network will be still robustly stable under intrinsic 
parameter fluctuations, and the effect of environmental 
disturbance v(y,t) on the network state x(y,t) can also 

(5)
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be attenuated below a network sensitivity level ρ in (3). 
In other words, phenotype robustness (community sta-
bility) of the nonlinear stochastic partial differential 
ecological network is maintained under these intrin-
sic parameter fluctuations and environmental distur-
bances if HJII in (5) has a positive solution V x y t( , )( ) . 
The proof of Proposition 1 is included in Appendix A.

Remark 2: (i) If the following HJI holds for all 
points of y in habitat U
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then the phenotype robustness criterion in (5) also 
holds and the phenotype of the nonlinear stochastic eco-
logical network in (1) is robust. However, the HJI is 
more conservative than HJII in (5) because it needs to 
hold for every y ∈ U. (ii) If the diffusion operator ∇2

x y t( , ) 
is neglected in the nonlinear stochastic ecological system 
in (1), then the phenotype robustness criterion of HJII in 
(5) can be reduced to a simplified phenotype robustness 
criterion of a conventional biological network in sys-
tems biology without consideration of compartment.1

The network sensitivity ρ0 of nonlinear stochastic 
ecological networks can be obtained by solving the 
following constrained optimization:

 

ρ ρo = min
subject to HJII in (5)  (7)
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where the first term and the second term denote the 
effect of intrinsic parameter fluctuations and envi-
ronmental disturbances on the network stability of 
ecological networks in the total habitat U from the 
covariant point of view, respectively. It can be seen 
from the phenotype robustness criterion in (8) that if 
the network robustness of nonlinear stochastic eco-
logical networks can confer simultaneously intrinsic 
robustness for tolerating spatio-temporal intrinsic 

parameter fluctuations and environmental robust-
ness for resisting spatio-temporal environmental 
disturbances in habitat U, then the phenotype of the 
nonlinear stochastic ecological network (community 
stability) is maintained. In other words, the species 
of the ecological system still persists at the stable 
equilibrium point in the phenotypic landscape despite 
intrinsic parameter fluctuations and environmen-
tal disturbances in habitat U. If the diffusion opera-
tor ∇2

x y t( , ) of the nonlinear stochastic system is 
neglected in (1), then the integration around the spa-
tial domain of the habitat U can be neglected, and the 
phenotype robustness criterion in (8) is reduced to a 
simplifier form without integration over U.

To maintain proper functions of an ecosystem that 
can produce enough foods or services for species, 
enough network robustness should be ensured for the 
ecological network in face of intrinsic parameter fluc-
tuations, such as changes of species from trophic links, 
and environmental disturbances, such as the invasion 
of new species or pollution from human activities. 
In order to increase the network robustness on the 

(8)

(6)
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 right-hand side of (8) so as to ensure robust commu-
nity stability of the ecological system in habitat U, 
negative feedback and negative (inward) diffusion 
are appealing.12,17 Further, a power law distribution of 
interactions among species with small-world behav-
ior and fast responses to environmental changes is 
also a favored network structure for an ecological 
network to efficiently examine the robust ecosys-
tem stability against different types of species and 
the network sensitivity in response to environmen-
tal  disturbances.8 Species redundancy is useful for 
decreasing intrinsic parameter fluctuations to main-
tain the community stability of ecological networks.25 
In general, increasing biodiversity will increase net-
work robustness of an ecosystem against different 
types of species loss under variable environmental 
conditions and disturbances.8 Functional redundancy, 
meaning species being capable of functionally replac-
ing extinct species, is useful for buffering the intrinsic 
parameter fluctuations and can therefore increase the 
intrinsic robustness of ecological networks.

If the ecological network in (1) does not have 
enough network robustness to guarantee the phenotype 
robustness criterion in (8), the community stability of 
ecological system cannot be maintained. In this situ-
ation, in order to maintain the phenotype at xe, some 
regulation control is needed to improve the network 
robustness of the ecological network as follows:
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where u y t K x y t( , ) ( , )= ( )  denotes the state feedback 
control design for improving network robustness of 
the ecological network. We suppose that the perturba-
tion of K x y t( , )( ) can be neglected. After introducing 
state feedback control, the phenotype robustness cri-
terion in (8) should be modified as:
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That is, the robust ecological network design in 
(9) functions to specify the state feedback control 
u y t K x y t( , ) ( , )= ( )  in order to make network robust-
ness in the right-hand side of (10) as large a value 
as possible. This will help to override the intrinsic 
robustness and environmental robustness of the eco-
logical network.

In general, it is not easy to solve HJII in (5) or (8) 
for the phenotype robustness criterion of the nonlin-
ear stochastic ecological network in (1). The nonlinear 
stochastic ecological network in (1) can be represented 
by the interpolation of local linearized systems accord-
ing to the global linearization method as follows:
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where the interpolation bases α i x y t( ( , ))  satisfies 
0 1≤ ≤α i x t( ( ))  and α ii

M
x t( ( )) =

=
∑ 1

1
. However, even 

with the global linearization model in (11), it is still not 
easy to get a simple phenotype robustness criterion for 
the estimation of network sensitivity or network robust-
ness of the nonlinear stochastic ecological  system due 
to the differential diffusion operator ∇2

x y t( , ).  In this 

situation, the finite difference scheme is employed to 
approximate the partial differential diffusion opera-
tor ∇2

x y t( , ) in (11) for investigating the network 
robustness criterion of the nonlinear stochastic eco-
logical network. Consider a typical mesh of spatial 
domain of ecological system as shown in Figure 1. 

(10)

(9)
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Figure 1. Finite difference grids of a two-dimensional space y = [y1,y2] with the uniform grid space ∆ on the spatial domain of habitat U in an ecological 
system.
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where Tk,l denotes the difference operator at the grid 
point yk,l. If the grid points in the spatial domain of 
habitat U are dense enough, then the approximation 
error between the differential operator ∇2 and the 
difference operator Tk,l in the above will be small 
enough.

Remark 3: The local truncation errors 
O x y t T x tk l i k l i k l k l, , , ,( ) ( , ) ( )

= ∇ −κ κ2  that depend on 
the size of grid space ∆ can be omitted. If the grid node 
points in a spatial domain are dense enough, then the 
truncation error will be small enough.26 Because, in eco-
logical community, the finite difference approach may 

capture enough realistic aspects of the ecological system 
for investigation, we will neglect the local truncation 
errors in the following network robustness analysis.

Following this, according to the finite difference 
approximation in (12), the nonlinear stochastic partial 
differential ecological network in (11) can be repre-
sented by the following stochastic finite difference 
ecological system:
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To simplify the representation of stochastic finite dif-
ference ecological system in (13), we definite a spatial 
state vector x t( ) for collecting the state variable x tk l, ( )  
at all grid nodes in Figure 1. For the Dirichlet boundary 
condition,18 the values of x tk l, ( ) = 0 at the boundary are 
fixed; for example, x tk l, ( ) = 0 on ∂U, we have x tk l, ( ) = 0  
at k = 0,N1 + 1 or l = 0,N2 + 1. Therefore, the spatial state 
vector x t RnN( )∈  for state variables of an ecological 
system at all grid notes is defined as follows:18,19
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where N = N1 × N2. Note that n is the dimen-
sion of the vector xk,l(t) for each grid node and 
N = N1 × N2 is the total number of grid nodes. 
For example, if N1 = 2 and N2 = 2, then we have 
    x t x t x t x t x t RT T T T T n( ) ( ), ( ), ( ), ( ) .=   ∈11 12 21 22

4  In order to 
simplify the index of the node x t Rk l

n
, ( )∈  in the spatial 

state vector x t RnN( )∈ , we use the symbol x t Rj
n( )∈  to 

replace x t Rk l
n

, ( )∈ . Note that the index j is from 1 to N, 
ie,    


 

x t x t x t x t x t x tj k l1 1 1 2 2 1( ) ( ), ( ) ( ), , ( ) ( ), ,, , ,= = =
 x t x tN N N( ) ( ),,=

1 2
 where j l N k= − +( )1 1

 in the above 
spatial state vector. In other words, the above spatial 
state vector for all grid notes in habitat U is repre-
sented by the following form:18,20
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ie, x t( ) denotes the spatial state vector of all state 
variables of ecological systems at all grid nodes in 
habitat U. According to the above analysis, the sto-
chastic finite difference ecological system in (13) can 
be represented with only one index as follows:

dx y t x y t
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where v t v t dw t dw tj k l n j n k l( ) ( ), ( ) ( ), , , ,= = , with j = 
( )l N k− +1 1  and

T x t I I I I I x t

Position

j n n n n n n n n n n n n n



   
( ) [ ] ( )= −1

0 0 0 0 4 0 0 0 02

→→ − − + +1 1 11 1 1 2j N j j j j N N N

Let us denote α αi ix t diag x t( ( )) [ ( ( )), , 
=  

α i Nx t( ( ))] . Some properties of α i x t( ( ))  can then be 
obtained by the following lemma.
Lemma 1:20

Using the properties of Kronecker product, we have 
the following properties:

1.
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Proof: The properties (1) and (2) are the fundamen-
tal properties for Kronecker product, and property (3) 
can be proven via α ii

M
x t j N( ( )) , , , .



= =
=
∑ 1 1 2

1
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By using the Kronecker product in Lemma 1, the 
stochastic finite difference ecological systems in (14) 
at all grid points in habitat U can be integrated as the 
following stochastic spatial space system:
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(15)

where α αi i n j
T

jx t x t I dw t J dw t( ( )) ( ( )) , ( ) [ ( ) ,



⊗ 1  



 , ( )] [ ] ,J dw t J RT
jN

T n with 111 1 ∈ ie,all the
elements in J are equal to 1. The spatial state 
 vector x t( ) represents x y t( , )  at all grid points 
on the spatial domain of habitat U in  Figure 1. 
The corresponding matrices are defined as 
T T T R v t v t v t RT

N
T T nN nN

N

T nN
  1 1, , , ( ) ( ) ( ) .  ∈ =[ ] ∈×

The physical meaning of the stochastic spatial space 
system in (15) is that the globally linearized ecologi-
cal systems at all grid points of spatial domain U can 
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be represented by a spatial vector dynamic equation. 
According to the stochastic spatial space system in (15), 
the disturbance sensitivity in (3) can be modified as

 

E x t x t dt

E v t v t dt

T

T

 ( ) ( )

( ) ( )

0

0

2

∞

∞
∫
∫

≤ ρ  (16)

Then, based on the stochastic spatial space dynamic 
equation of ecological system in (15), we get the fol-
lowing phenotype robustness (community stability) 
criterion for ecological systems.

Proposition 2: If the following phenotype robust-
ness (community stability) criterion holds with a 
common positive solution P . 0,

P I N I T I N I T P I NN i N i N i N i

T

N ji
j

L

⊗[ ] + ⊗[ ]( ) + ⊗[ ] + ⊗[ ]( ) + ⊗





=
∑κ κ

1

TT

N ji
j

L

N

P I N

PP I i M

⊗







+ + ≤ =

=
∑

1

2

1
0 1

ρ
, …, 

It is seen that if each local linearized ecologi-
cal partial differential system has enough local net-
work robustness to confer local intrinsic robustness 
and local environmental robustness, then the phe-
notype of nonlinear stochastic partial differential 
ecological systems is robust under intrinsic param-
eter fluctuations and environmental disturbances. 
The tradeoff between local intrinsic robustness and 
local environmental robustness can be seen from 
(19). If the eigenvalues of each local system matrix 
I N I TN i N i⊗[ ]+ ⊗[ ]κ  are in the far left-hand plane 

of Figure 2, then the ecological network has more 
network robustness to tolerate intrinsic parameter 
fluctuations and to resist environmental disturbances, 
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κ κ ,

oork robustness

i M
  

= 1, ,

(17)

then the intrinsic parameter fluctuations of ecologi-
cal system can be tolerated and the effect of environ-
mental disturbances can be attenuated to a sensitivity 
level ρ. In other words, the phenotype of ecological 
system (community stability) could be maintained 
under these intrinsic parameter fluctuations and envi-
ronmental disturbances. For the proof for this propo-
sition, please see Appendix B.

Similarly, the network sensitivity ρ0 of the ecolog-
ical network can be obtained by solving the following 
constrained optimization:

 

ρ ρ0
0

17

=
>

min

( )
P

subject to
 (18)

Therefore, after replacing ρ in (17) with the above 
network sensitivity ρ0, the phenotype robustness 
(community stability) criterion of ecological network 
in (17) could be modified as the following form:

so as to maintain  community stability in an uncertain 
habitat and changing environment.

State feedback control to improve the network 
robustness of ecological networks in (9) can also be 
approximated by the global linearization and finite 
difference scheme as follows:
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 (20)

where Ki, i = 1, …, M denote the local control 
gains via the global linearization of K x y t( ( , ))

, ie, 
K x y t x y t K x y t

i

M

i  ( , ) ( , ) ( , )( ) = ( )
=
∑α

1
. In this situation, 

(19)
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Measure of
network robustness

Eigenvalue
most near image axis

Image axis

s-domain

Real axis
0

σ

jw

Figure 2. The smaller distance between the locations of eigenvalues of I N I T
N i N i
⊗ + ⊗[ ] [ ]κ  and the image axis can be taken as the measure of net-

work robustness for the local linear stochastic gene networks in (20). Therefore, the local linear stochastic gene networks become more robust while the 
eigenvalues are located in the far left-hand side of image axis.

the phenotype robustness criterion in (19) should be 
modified as follows:
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i M= 1, ,

Then, the robust ecological network design 
must specify an adequate Ki, i = 1, …, M, so that 
the local network robustness on the right-hand side 
of (21) should be large enough to provide enough 
local intrinsic robustness to tolerate local intrinsic 
parameter fluctuations, and enough local environ-
mental robustness for resisting local environmental 
 disturbances. Obviously, if the local feedback control 
gains Ki need to be specified so that the eigenvalues 
of I N I K I TN i N i N i⊗[ ]+ ⊗[ ]+ ⊗[ ]κ  are in the far-
ther left hand complex domain (more stable), then the 
ecological network will have more network robust-
ness to confer intrinsic environmental robustness, 

which makes sense from the modern system control 
design point of view.1,27–30

computer simulation
In the real world, most phenomena are governed by par-
tial differential equations such as population dynamics 
in ecology, chemical dispersion in chemistry and heat 
flow or wave propagation in physics.31,32 In this section, 
a simple ecological example for nonlinear stochastic 
partial differential system is given to illustrate and to 
confirm the phenotype robustness criterion of the eco-
logical network. This mono-species population system 
is used to describe the dynamical interaction between 
the native species and the environmental disturbances 
in a two-dimensional spatial domain.23 The  individual’s 
spatial dispersal in the field of ecological biology can 

(21)
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be seen as the heat transfer or fluid diffusion in  physics. 
Suppose the mono-species population system with sto-
chastic intrinsic fluctuation and environmental distur-
bance could be formulated as follows:20

dx y t x y t x y t x y t( , ) ( , ) ( , ) ( , ) .= − × + +( ) −−2 10 1092 447174 0 004212 4 3 2 xx y t v y t x y t dt

x y t x y t

( , ) . ( , ) ( , )

( , ) ( , )

( ) + + ∇( )
+ +−

0 1

10 1092

2

12 4 3

κ

++ +( ) +( )
∈ =

447174 81385668 0 002

0

2x y t x y t x y t dw y t

y U

( , ) ( , ) . ( , ) ( , )

,, , .1 0 0 5[ ] × [ ]

where x(y,t), which is a function of two-dimensional 
space y = [y1,y2] and time t, is the concentration of 
native species in the spatial domain. κ is the spe-
cies diffusion coefficient. The grid space ∆ of the 
finite difference scheme is chosen as 0.125 so that 
there are N = 7 × 3 = 21 grid points. Note that the 
origin of the ecological system in this example has 
been shifted to the desired steady state. The concen-
tration of initial distribution of the native  species 
is given as x y e y y( , ) .| . | . | . |0 100 10 0 5 0 6738 30 0 5 21 2= × − − − − × −

The Dirichlet boundary conditions are used to restrict 
the concentration to be zero at the boundary, ie, 
x t x t x t0 0 0 0 0 5 0 1 0 0, , , , . , , , ,[ ]( ) = [ ]( ) = [ ]( ) =  and 
x t1 0 5 0, . , .[ ]( ) =

The spatial-time profiles of the nonlinear partial 
differential system is approximated by global lin-
earization scheme with vertices M = 3. The param-
eters in the globally linearized PDE system (11) are 
obtained as N1 = −0.00412256, N2 = −0.0042616 and 
N3 = −0.0045441; ∆N1 = 0.00206, N2 = 0.00213 and 
N3 = 0.00227. Using the finite difference scheme, 
we can construct a spatial state-space model as (15). 
 Following the proposed procedure in earlier section, 
the network sensitivity ρ0 = 1.01 could be obtained 
easily by solving the constrained optimization problem 
in (18). For simulation, we assume the environmental 
disturbance is v y t t e t y( , ) sin . . .= ( ) − −10 0 2 0 001 0 1 1 . From 
the simulation results, the proposed phenotype robust-
ness (community stability) of the nonlinear stochastic 
partial differential ecological network is maintained 
by efficiently attenuating the intrinsic fluctuations and 
environmental disturbances. From the Monte Carlo 
simulation with 100 runs, the attenuation performance 
in (16) could be computed as follows:

 

E x t x dt

E v t v t dt

T

T

( ) ( )

( ) ( )
. .0

150

0

150
2 20 29 1 01

∫
∫

≈ <  (23)

existence of the proposed phenotype robustness 
criterion for the nonlinear partial differential sys-
tem from the practical verification. In a real eco-
system, the effects of environmental disturbances 
on the phenotype of an ecological network could 
be efficiently attenuated if the network robustness 
could satisfy its phenotype robustness criterion in 
(8) or (19).

Discussion
There are many examples of robust biological systems 
found at many scales, from biochemical networks to 
ecological networks. At each scale, robustness may 
reflect the properties of individual elements or, alter-
natively, the dynamic feedback between interacting 
elements. For example, the expression of some meta-
bolic functions may be robust in the face of tempera-
ture changes, because an enzyme maintains its shape 
and specificity across a range of temperatures or 
because an interconnected network of reactions sus-
tains the supply of product, even when some enzymes 
fail. A genome may be robust because it encodes 
proofreading and repair systems that reduce repli-
cation errors or because it gets organized such that 
many mutations have little effect on its  phenotype. 
An ecosystem might be robust if it resists the extinc-
tion of some keystone species or, if extinction 
does occur, because surviving species can compen-
sate over physiological, demographic, or evolution-
ary time scales.33,34

Ecological networks may pose a challenge when 
one considers severe changes such as the addition 
or removal of species.17 By topological approaches 
(without population dynamics), it is seen that the net-
work will appear ‘species deletion unstable’.35 ie, the 
network quickly breaks into many disconnected sub-
networks when the most connected species are 

with the variance 0.062. This conservative result is 
due to the conservative nature of the global linear-
ization in (11) and the solving inequalities in (17). 
Therefore, the simulation example has shown the 

(22)
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 successively removed from the network. Dynamical 
models of species removals also show that the more 
polyphagous the predators, the less the effect caused 
by removing one of its prey species.35 Thus, whether 
simple or highly connected model food webs are robust 
to the loss of species depends entirely on whether one 
looks at top predators or plant species.36 By contrast, 
when disasters ruin species randomly, these networks 
will be more robust, showing both little fragmenta-
tion and few secondary extinctions.5,7,12 But a lack of 
integrated concepts about how an ecological network 
can maintain its phenotype robustness under random 
or selective changes and how to evaluate the network 
sensitivity still exists. This study has developed a uni-
fying mathematical framework for investigating the 
principles of both robust stabilization and environ-
mental disturbance sensitivity in ecological networks 
from a systematic perspective.

From the gene regulatory network to the ecologi-
cal network, it can be seen that, for different scales 
of biological systems, their phenotype robustness 
criteria according to their global linearization models 
can be demonstrated within a unifying mathematical 
framework, even when the partial differential diffu-
sion operator is considered in the ecological network. 
From the systems theory perspective, the phenotype 
robustness of nonlinear stochastic gene networks 
in systems, evolutionary1 and ecological biology 
needs to obey a similar phenotype robustness crite-
rion, ie, “intrinsic robustness + genetic robustness + 
 environmental robustness # network robustness”. 
This means that network robustness needs to be 
strong enough to tolerate either heritable perturbations 
(genetic variations) or non-heritable perturbations 
(ie, random molecular fluctuations and environmen-
tal disturbances) so that the phenotype of biological 
networks can be maintained in systems, evolutionary 
and ecological biology using a similar mathematical 
framework.

In general, random genetic variations, phenotype 
perturbations and heterogeneity are neither desired 
nor deliberate outcomes of systems, evolutionary 
and ecological biology. However, heterogeneity and 
diversity form the very basis of evolutionary biol-
ogy, not only within genetically diverse populations 
but also within the same allele or genome. Thus, ran-
dom genetic variations, environmental disturbances 
and phenotypic perturbations are inherent features of 

biological systems and networks.  Random perturba-
tive biological networks may contain more connected 
and interconnected systems, which may provide 
multifunctionality of the biological  network. This 
multifunctionality may result in increased robust-
ness and a capacity to cope with diverse  challenges. 
However, multifunctionality also increases the com-
plexity and variations of the biological network, 
which may increase adaptive potential. Thus, behind 
the façade of perfection and optimality of systems, 
evolutionary and ecological biology lies the messy 
biology that originates from the genetic varia-
tions and environmental disturbances in  evolution. 
There exists the tradeoff among intrinsic robust-
ness, genetic robustness, environmental robustness 
and network robustness in the phenotype robustness 
of stochastic biological networks. That is, if intrin-
sic robustness + genetic robustness + environmental 
robustness #  network robustness, then the phenotype 
of the biological network is maintained. This sheds 
light on the mechanisms that govern the exploitation 
and toleration of the messiness of biological networks 
in systems, evolutionary and ecological biology, 
from a systematic perspective. Obviously, network 
robustness needs to be strong enough to tolerate 
either heritable perturbations (genetic variations) or 
non-heritable perturbations (random molecular fluc-
tuations and environmental disturbances) so that the 
phenotype can be maintained in biological networks 
at different levels.

For gene regulatory networks, evolutionary 
 networks1 and ecological networks, two favored 
strategies can improve phenotype robustness in the 
network evolutionary process. One is to improve net-
work robustness to provide enough intrinsic robust-
ness for tolerating intrinsic parameter fluctuations, 
genetic robustness for buffering genetic variations 
and environmental robustness for resisting environ-
mental disturbances, so that phenotype robustness of 
these biological networks at different scales can be 
maintained under these uncertain perturbations and 
environmental disturbances. Negative feedback is 
a mechanism that can improve network robustness 
(ie, it can make right-hand sides of (8), (19) larger) 
and is favored by natural selection in biological net-
works at different levels in the network evolution-
ary process. Another strategy is to reduce the effect 
of intrinsic parameter fluctuations, genetic variations 
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and environmental disturbances on different biologi-
cal networks (ie, it can make the left-side of (8), (19) 
smaller). Redundancies and repairs are the mecha-
nisms of this strategy and are favored by natural 
selection in evolution. This is the reason why there 
are so many different redundancies from duplicated 
genes in gene regulatory networks, redundant path-
ways in biochemical networks and species redundan-
cies in ecological systems.

From the phenotype criteria of the ecological net-
work in (8) and (19), if the network robustness in the 
right-hand side is fixed, it is seen that if the intrin-
sic robustness becomes large to tolerate more intrin-
sic parameter fluctuations in the first term, it will 
lead to the decrease of environmental robustness 
or the increase of the network sensitivity ρ0 in the 
second term. For example, large intrinsic robustness 
of ecological network could lead to large network 
sensitivity to environmental disturbances. On the 
contrary, an ecological network with more environ-
mental robustness or less network sensitivity ρ0 will 
lead to less intrinsic robustness, to tolerate less intrin-
sic parameter fluctuations for maintaining community 
stability. By comparing these phenotype robustness 
criteria and the tradeoff between network robustness, 
intrinsic robustness and environmental robustness in 
ecological networks with those in gene regulatory 
networks and evolutionary networks, we can find a 
unifying framework for genetic robustness, envi-
ronmental robustness, network robustness and their 
tradeoff on the phenotype robustness in different lev-
els of biological networks.

conclusion
This paper presents a unifying mathematical frame-
work to describe stochastic ecological networks 
under intrinsic parameter fluctuations and environ-
mental disturbances. Then, according to the unifying 
stochastic biological systems, the phenotype robust-
ness criteria of ecological networks are also inves-
tigated from the robust stabilization and network 
sensitivity perspective. It is found that if the pheno-
type criterion “intrinsic robustness +  environmental 
robustness # network robustness” is guaranteed, 
ie, network robustness can confer intrinsic robust-
ness for tolerating intrinsic parameter fluctuations 
and environmental robustness for resisting the 
environmental disturbances, then the phenotype will 

be robust in ecological networks. Using the global 
 linearization method and finite difference scheme to 
estimate network robustness, based on spatial state 
space system, we found that if the network robust-
ness of each local linearized ecological network is 
greater than the total sum of intrinsic robustness and 
environmental robustness of each local linear eco-
logical network, then the phenotype of the ecological 
network is also maintained, despite intrinsic param-
eter fluctuations and environmental disturbances. We 
also found that the phenotype robustness criterion 
and the tradeoff among network robustness, intrinsic 
robustness and environmental robustness are similar 
for different scales of biological networks, from gene 
regulatory networks and evolutionary networks to 
ecological networks. Finally, if the network structure 
is given, by taking into account different strengths 
of trophic links, or the removal of species in trophic 
links, the phenotype robustness criterion may also 
be employed in food webs to discuss the network 
robustness with random or selective removal of spe-
cies in the trophic links.
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Appendix
Before the proofs of these propositions, the following lemma is useful and should be given beforehand

Lemma A: For any vector a and b, then we get
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Appendix A: Proof of Proposition 1
For the nonlinear stochastic ecological network in (2), with the Lyapunov function V x y t( ( , )) > 0 and  
V x y t( ( , )) = 0, we have the following result by Ito formula,30,37
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By the fact x y( , )0 0=  and V x y( , )0 0( ) = , then we get
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By Lemma A, then we get
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Substituting (A3) into (A2), we get
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If the HJII in (5) holds, then (A4) is reduced to the following inequality
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U
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0 0

which is Equation (3) with the sensitivity level ρ. If V x y( ( , )) 0 0≠ , then the above inequality should be 
modified as (4). Q.E.D.

Appendix B: Proof of Proposition 2
For the stochastic spatial space system in (15) with x( )0 0=  and v t( ) ≠ 0, by the Ito formula,30,37 we get

 

E x t x t dt E x Px x t Px t x t x t
dT T T T

       

0
0 0

∞

∫ = − + +( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
ddt

x t Px t dt

Ex Px E

x t x t

T

T

T

 

 

 

( ) ( )

( ) ( )

( ) (













≤ +

∞

∫0

0 0

)) ( ) ( ) ( ) ( )

( )

dt dx t Px t x t Pdx t

x t I N

T T

T
N ji

j

L

+ +

+ ⊗





=
∑

   



1

2 1

TT T

N ji
i

Lx t Px t

x t
I N x t

d∂ ( )
∂

⊗






















=
∑

2

2
1

 





( ) ( )

( )
( )

tt
0

∞

∫
 

(B1)

By the fact that x( )0 0=  and (15), we get
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By Lemma A, we get
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From (B3) and (B2), we get
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By the (17), we get
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which is the inequality in (16) with the sensitivity level ρ.
Q.E.D.
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