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Abstract: Genes mostly interact with each other to form transcriptional modules for performing single or multiple functions. 
It is important to unravel such transcriptional modules and to determine how disturbances in them may lead to disease. Here, 
we propose a non-negative independent component analysis (nICA) approach for transcriptional module discovery. nICA 
method utilizes the non-negativity constraint to enforce the independence of biological processes within the participated 
genes. In such, nICA decomposes the observed gene expression into positive independent components, which fi ts better to 
the reality of corresponding putative biological processes. In conjunction with nICA modeling, visual statistical data analyzer 
(VISDA) is applied to group genes into modules in latent variable space. We demonstrate the usefulness of the approach 
through the identifi cation of composite modules from yeast data and the discovery of pathway modules in muscle 
regeneration.

Keywords: transcriptional module, gene module identifi cation, non-negative independent component analysis (nICA), 
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Introduction
Genes often interact with each other to carry out cellular activities (Segal et al. 2004). The set of genes 
tightly regulated in a specifi c cellular process can be considered as a process-specifi c transcriptional 
module (Hughes et al. 2000; Brunet et al. 2004; Segal et al. 2004). It is important to identify such mod-
ules for understanding biological events associated with different experimental conditions, which may 
further help identify gene expression signatures associated with diseases.

Various methods have been proposed to identify gene transcriptional modules from microarray data. 
Several clustering techniques, such as hierarchical clustering (Spellman et al. 1998), k-means (Saeed 
Tavazoie et al. 1999) and self-organizing maps (Tamayo et al. 1999), are in common use for identifying 
meaningful subgroup genes exhibiting similar expression patterns. These approaches played a key role in 
gaining insights into the biological mechanisms associated with different physiological states. However, 
the clustering approaches are not well tuned for regulatory module identifi cation due to that: (1) a set of 
co-regulated genes may only co-express in a subset of experimental conditions, and (2) clustering the genes 
into one and only one group may also mask the interrelationships between genes that are assigned to dif-
ferent clusters but show local similarities in their expression patterns. Thus, biologists are more interested 
in fi nding the hidden regulatory patterns behind gene expression patterns, which strengthens the biological 
relevance of the grouped genes, i.e. the genes are co-regulated to form transcriptional modules.

Recently, matrix decomposition methods have been introduced to uncover transcriptional modules 
from microarray data, including independent component analysis (ICA) (Liebermeister, 2002; Lee 
and Batzoglou, 2003; Frigyesi et al. 2006) and nonnegative matrix factorizations (NMF) (Carmona-
Saez et al. 2006; Lee and Seung, 1999; Kim and Tidor, 2003; Wang et al. 2006). These methods treat 
microarray data as a mixture of unknown factors (or components) that may correspond to specifi c 
biological processes. Specifi cally, the level of any given mRNA expression is modeled as the net sum 
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of a complex superposition of cooperating and/or 
counteracting biological processes. ICA is a sta-
tistical method for revealing independent hidden 
factors that underlie sets of random variables or 
observations. In the context of microarray data, 
these statistically independent hidden factors may 
correspond to putative biological processes or 
transcriptional modules. It has been shown that 
the clusters found by ICA are directly associated 
with biological processes with common regulatory 
mechanisms (Lee and Batzoglou, 2003; Frigyesi 
et al. 2006). However, it is problematic to directly 
apply ICA to gene expression data due to its strong 
assumption of the independence of hidden vari-
ables in whole gene population. Biologically, it is 
more plausible to assume that the independence 
holds only for those genes that actively participat-
ing in biological processes. Therefore, we need to 
make further assumptions to constrain the ICA 
model for gene module identifi cation.

In this paper, we propose to use non-negative 
ICA (nICA) for gene module identifi cation (Ting 
et al. 2006; Oja and Plumbley, 2004; Plumbley, 
2001). nICA exploits the non-negativity constraint 
to enforce the independence of biological processes 
within the participated genes. In principle, nICA 
can be thought as a projection method with which 
the expression levels (or ratios) are projected onto 
some new non-negative components with least 
statistical dependence. We believe that nICA pro-
vides a better model of gene expression data than 
ICA does, hence, more appealing for gene module 
identifi cation.

In the proposed approach, we fi rst perform 
input sample selection to improve the quality of 
separation of the components. We then develop a 
stability analysis procedure to determine the num-
ber of non-negative independent components. We 
further implement a learning algorithm of nICA 
with the non-negativity constraint for hidden 
component estimation. Finally, we use visual 
statistical data analyzer (VISDA), a data visualiza-
tion and clustering tool (Wang et al. 2007b; Wang 
et al. 2003), to group the genes into modules in 
latent variable space. We demonstrate the effec-
tiveness of the proposed approach for gene mod-
ule identification using yeast and muscle 
regeneration datasets. The biological relevance of 
the identifi ed gene modules is validated by func-
tional annotation analysis. Compared with con-
ventional ICA-based approach, the proposed 
approach appears to have improved performance 

in fi nding biologically meaningful transcriptional 
modules.

Methods
The fl owchart of the proposed approach is outlined 
in Figure 1. The algorithm consists of the following 
components - input sample selection, stability-
based dimension estimation, learning algorithm of 
nICA, and gene clustering by VISDA. We provide 
a detailed description of each component as 
follows.

Input sample selection
Input sample selection aims at selecting the most 
informative samples among the available samples 
for nICA decomposition. Without the proper selec-
tion of input samples, some computational prob-
lems such as increased computational complexity 
and degraded convergence may arise. Even worse, 
some samples may cause singularity problems 
for nICA decomposition. Principle components 
analysis (PCA), a variance based dimension reduc-
tion technique, is often used for input sample 
selection. But PCA is not always effective for nICA 
decomposition since the variance of a sample is 
not necessarily related to the importance of a 
sample.

Here, we propose to use mutual information 
(Vrins et al. 2003) to perform input sample 
selection. The objective is to select m’ informative 
samples (v1,...,vm,) from a set of m samples 
(x1,…, xm), where m � m’. At each step of the 
algorithm, we choose a sample that is as statistically 
independent as possible (Hyvärinen et al. 2001) 
from the already selected samples vj,  j = 1,…, k–1. 
In other words, xi is the k-th selected sample (i.e. 
vk) if the following cost function f (i, k–1) (defi ned 
as the sum of mutual information) is minimized 
when i = l:

f i k MI x v

x v j k

j

k

i j

i j

, ,

, , ..., ,

−( ) = ( )

= −{ }
=

−

∑1

1 1

1

1

for all ∉  (1)

where MI(.,.) denotes the mutual information that 
is defi ned as (Cover and Thomas, 1991):
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In Eq. (2), H(xi) (H(vi)) represents the entropy 
of a centered univariate random variable xi (vi) and 
H(xi,vj) represents the joint entropy of two centered 
univariate random variable xi and vj (Bach and 
Jordan, 2003). Therefore, the selected subset 
(v1,…,vm ,) will contain the samples that are mutu-
ally “quite different” as a result of the minimization 
of mutual information.

Stability-based dimension estimation
In practice, the number of independent components 
for nICA is often determined by the user’s prior 
knowledge or obtained by PCA with a criterion of 
containing 95% of energy mainly to eliminate the 
noise effect (Hyvärinen et al. 2001). However, 
from our experience, it is often a diffi cult task in 
microarray data analysis to obtain a meaningful 
number of components by either the prior knowl-
edge or PCA approach. When the number of com-
ponents is incorrectly estimated, nICA will produce 
many possible false components for gene module 
identification. Hence, we propose to conduct 
stability analysis on gene expression data to 
estimate the number of components. Figure 2 
shows the proposed stability-based schema, namely 

“splitting by samples”, for reliable dimension 
estimation of nICA (Wang et al. 2007a).

The basic idea of the stability-based approach 
is that the nICA results from two data subsets 
sampled from a common data set should be con-
sistent. The consistency (or similarity) of the nICA 
results from two non-overlapped subsets refl ects 
of the consistency between the assumed and under-
lying component numbers. More specifi cally, we 
split the samples into two non-overlapped subsets 
for nICA analysis and run the algorithm from i = 2 
to full dimension of the subset of samples. We 
believe that if the dimension estimation really 
captures the underlying biological component 
number, the similarity score measured by mutual 
information between the components estimated 
from the two data subsets should give the best 
similarity score among all of the dimensions. When 
the estimated component number is not equal to 
the true number, the nICA results will show a 
tendency of mismatched components being esti-
mated, hence, a decrease of similarity.

Due to the ambiguity of the scale in the nICA 
estimates, we need to normalize the estimated com-
ponents and register them before calculating the 
similarity score. In our approach, we fi rst normalize 

Figure 1. Flowchart of the proposed nICA approach for gene module identifi cation.
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the estimated components to be unit-variance 
variables. We then perform the registration (or align-
ment) of two permutated versions of components 
via an information theoretic approach. The exact 
way to align (or register) different pairs of compo-
nents is by examining their mutual information. We 
calculate the similarity score after the alignment 
using averaged pair-wise mutual information:

  Q
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where MI(.,.) denotes the mutual information esti-
mate as defi ned in Eq. (2), ⎣.⎦ is the fl oor function, 
and s si i

( ) ( ), ,1 2( )  is the i-th aligned pair of the compo-
nents estimated from two different subsets. In order 

to obtain a reliable estimation of the dimension 
number, stability tests are performed P times inde-
pendently (in our experimental design, we 
re-run the algorithm P = 100 times with random 
initialization), each time after a random shuffl ing to 
the order of samples. Finally, we choose the dimen-
sion with the largest similarity score averaged over 
P runs as the estimate of the component number.

Learning algorithm of nICA
We present a learning algorithm for nICA based 
on a latent model:

 X = AS, (4)

where X denotes the microarray data matrix with 
rows corresponding to samples and columns 

N

Y

Split X into two non-overlapped subsets X1 and X2; each with round(m’/2) samples

respectively.

Estimate the sources from X1 and X2 in every possible dimension number from 2 to

round(m’/2).

Calculate the similarity scores by the averaged pair-wised mutual information.

Re-run the experiment
100 times? 

Select the dimension with the largest similarity score as the estimated component

number.

Figure 2. General schema of “splitting by samples” for dimension estimation.
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corresponding to genes, S = (s1,…,sn)T represents 
the n independent biological processes, and A is 
the mixing matrix (matrix of contributions of each 
biological process). Suppose that si (i = 1,…,n) 
has non-zero probability density function (pdf) 
all the way down to zero, then it has been proven 
(Oja and Plumbley, 2004; Plumbley, 2003; 
Plumbley, 2002) that we can fi nd Y = US where 
U is a square orthonormal rotation and permuta-
tion matrix. It is equivalent to say that the ele-
ments yi of Y are a permutation of components if 
and only if all yi are all non-negative. The above 
result can be used to derive a simple solution to 
the nICA problem. Since Y = US can also be 
written as Y = WZ with Z the pre-whitened 
observation matrix and W an un-known orthogo-
nal (rotation) de-mixing matrix, it suffi ces to fi nd 
an orthogonal matrix W for which Y = WZ is 
non-negative. Therefore we can consider nICA 
as a procedure with the following two steps: 1) 
removing the second order statistics by whitening 
the data; 2) searching for a rotation matrix to make 
all the data fi t into the positive quadrant.

A learning algorithm to fi nd the de-mixing 
matrix W can be summarized as follows (Oja and 
Plumbley, 2004): 
1) Pre-whiten the observed data X by the whiten-
ing matrix V:

 Z = VX. (5)

2) Defi ne the cost function J as:
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and use a gradient descent algorithm to minimize 
the cost function J in Eq. (6):

 �W W
W

= −
∂
∂

γ J , (7)

where γ is the step size.
3) Project the unconstraint gradient descent set 
onto a set of orthonormal vectors:

 W WW W= ( )−
� � �T

1
2 .  (8)

VISDA clustering
After performing nICA, we obtain the indepen-
dent components representing some distinct 
biological processes. In these putative biological 
processes, the genes showing relatively high or 
low expression levels are most interesting. The 
analysis of gene patterns that are signifi cantly 
over- or under-expressed in the components may 
provide insights into the biological events associ-
ated with these latent processes. We fi rst use a 
pre-screening procedure to single out these genes 
and then apply VISDA to analyze the gene pat-
terns in the latent space. In the pre-screening 
procedure, we fi rst sort the genes by their contri-
butions (or loads) in each component, which 
creates a natural ordination in which genes are 
arranged based on their association with a given 
component. Then we select a subset of genes 
within each component, i.e. the over-expressed 
genes or under-expressed genes according to the 
value of each gene in the component (Lee and 
Batzoglou, 2003). By taking the union of the 
selected genes from each component, we form a 
pool of genes that we believe are closely related 
to the biological processes revealed by nICA.

We then employ VISDA, a statistical model 
based clustering tool, to perform gene clustering 
on those selected genes in the latent space. Based 
on a hierarchical standard fi nite normal mixture 
(SFNM) model, VISDA captures the coherent 
structures in the latent space and performs top-
down divisive clustering. The fi tting process of the 
SFNM model is achieved by the Expectation 
Maximization (EM) algorithm (Wang et al. 2007b), 
which maximizes the likelihood function. For each 
cluster at a level of the hierarchy, VISDA uses two 
different projection methods, principle component 
analysis (PCA) and PCA-projection pursuit 
(PCA-PPM) (Wang et al. 2007b), to visualize the 
sub-clusters within the clusters. The user chooses 
one of the projections that he/she thinks better 
revealing the data structures. On the chosen projec-
tion, user initializes models with different number 
of clusters by clicking on the computer screen at 
the centers of the clusters. These two-dimensional 
(2-D) models will be refi ned by the EM algorithm 
and compete according to Minimum Description 
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Length (MDL) criterion or human justifi cation. 
The winning model in 2-D space will be transferred 
back to original data space to initialize the data 
model in that space. Then the EM algorithm in 
original data space will refi ne the model and obtain 
the partition of data at that level. At the top level, 
the whole dataset is split into several coarse clus-
ters that may contain multiple functional modules; 
at lower levels, these coarse clusters are further 
decomposed into fi ner clusters, until no substruc-
tures can be found.

Results
We applied the proposed nICA approach to identify 
gene functional modules from the following three 
expression datasets: Dataset 1 - budding yeast during 
cell cycle CLB2/CLN3 overactive stain (Spellman et 
al. 1998), consisting of spotted array measurements 
of 6,178 genes in 77 time points; Dataset 2 - yeast 
in various stressful conditions consisting of spotted 
array measurements of 6,152 genes in 173 experi-
ments (Gasch et al. 2000); Dataset 3 - a 27-time 
points muscle regeneration series in vivo murine 
regeneration with Affymetrix oligonucleotide array 
measurements of 7,570 genes (Zhao et al. 2003). To 
determine whether the proposed approach can 
uncover the gene modules from gene expression data 
in the latent space, we mainly used the Biological 
Network Gene Ontology (BiNGO) tool (Maere et 
al. 2005) to evaluate the enrichment of functional 
annotations, and the Ingenuity Pathway Analysis 
(IPA) to assess the regulatory networks associated 
with the gene sets obtained by nICA.

Yeast cell cycle data
The yeast cell-cycle dataset was preprocessed to 
obtain log-ratios between red and green intensities, 
i.e. xi j = log2(rij /gij). Since the data set contains both 
positive and negative log-ratio values, we need to 
perform data pre-treatment for nICA. We assume 
that distinct regulatory interactions are responsible 
for up-regulation versus down-regulation of gene 
expression. With the spirit of “divide and conquer”, 
we split the data into two parts - positive and negative 
values corresponding to up- and down-regulated 
gene sets respectively - to fi t the nICA model.

Firstly, to prevent the over-learning problem the 
dimension of the data set was reduced using 
the input sample selection procedure described in 
the Methods section. We used the mutual informa-
tion quality index, f (i,k–1) as in Eq. (1), to evaluate 

the samples for the most suitable number of inputs. 
Figure 3 shows the sum of mutual information 
measured for all the input samples in the positive 
part of the data. As we can see, there is an apparent 
increase at the dimension of 66. Therefore, we 
selected 65 samples for the positive part and 62 for 
the negative part (the fi gure is not shown here) for 
further nICA analysis. Secondly, we used the stabil-
ity-based dimension estimation method to estimate 
the number of independent components. The results 
of stability analysis are shown in Figure 4, and an 
apparent peak is obtained from the averaged pair-
wise mutual information when the number of 
components is equal to 3. Thirdly, we applied the 
nICA learning algorithm to uncover the indepen-
dent components for gene module identifi cation. 
Finally, we obtained the gene modules by gene 
clustering using VISDA in the latent space. The 
four most signifi cant gene clusters are given in 
Table 1. We measured the biological signifi cance of 
each cluster using the BiNGO tool. The p-value of 
each cluster was calculated according to its overlap 
with the functional annotations in Gene Ontology 
(GO) (see (Maere et al. 2005) for the detail).

Yeast dataset
Yeast dataset, which exhibits highly coordinated 
metabolic fl uctuations, gene expression patterns 
and cell division cycles, was cultured under diverse 
experimental conditions, temperature shocks, amino 
acid starvation, and progression into stationary 
phase (Gasch et al. 2000). This dataset has been 
extensively studied because of its importance in a 
variety of biotechnological applications. As in (Lee 
and Batzoglou, 2003), we also used KNNimpute 
to fi ll in the missing values (Troyanskaya et al. 
2001). And due to the triviality of clustering envi-
ronmental stress response (ESR) genes defi ned by 
(Gasch et al. 2000), we eliminated them in our 
analysis. The fi nal data set contains 5,284 genes 
and 173 samples.

In this case study, we focus on comparing the 
result from the nICA approach,which is enforced 
by the non-negativity constraint, with that from 
conventional ICA approach (Lee and Batzoglou, 
2003) and NMF (another non-negative matrix 
decomposition approach) (Kim and Tidor, 2003; 
Lee and Seung, 1999). To objectively evaluate the 
clustering results from different methods, we used 
the z-score introduced in (Gibbons and Roth, 2002) 
to conduct a comparative study. As described in 
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Figure 4. Stability analysis of the positive part of the cell cycle data. The average similarity score with error bars over 100 runs. The estimated 
underlying component number is three.
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Figure 3. Input sample selection for the samples in the positive part of the cell cycle data set.
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Table 1. The four most signifi cant clusters from nICA for the cell cycle data set. Numbers in parentheses in the 
fi fth column show the percentage of genes within the cluster that are presented in one of the functional category. 
And the numbers in the sixth column are presented in the similar way which corresponds to the total number 
within the whole genome set that are annotated with one of the special categories in GO system.

Cluster GOID GO term p-value cluster total
ID     frequency frequency
1 6365 35S primary transcript processing 1.27E-27 26/102 76/5638
    (25.4%) (1.3%)
 42255 ribosome assembly 8.87E-18 18/102 62/5638
    (17.6%) (1.0%)
 42273 ribosomal large subunit biogenesis 1.00E-17 13/102 23/5638
  and assembly  (12.7%) (0.4%)
 30490 processing of 20S pre-rRNA 2.53E-16 15/102 43/5638
    (14.7%) (0.7%)
 30489 processing of 27S pre-rRNA 8.10E-10 7/102 13/5638
    (6.8%) (0.2%)
2 6511 ubiquitin-dependent protein catabolic process 7.43E-06 11/86 140/5638
    (12.7%) (2.4%)
 19941 modifi cation-dependent protein catabolic process 7.43E-06 11/86 140/5638
    (12.7%) (2.4%)
 51603 proteolysis involved in cellular protein 8.52E-06 11/86 142/5638
  catabolic process  (12.7%) (2.5%)
7 7017 microtubule-based process 1.38E-07 13/126 95/5638
    (10.3%) (1.6%)
 7067 mitosis 2.85E-06 13/126 123/5638
    (10.3%) (2.1%)
 16359 mitotic sister chromatid segregation 3.26E-06 9/126 56/5638
    (7.1%) (0.9%)
 7010 cytoskeleton organization and biogenesis 5.30E-06 17/126 217/5638
    (13.4%) (3.8%)
 7059 chromosome segregation 6.09E-06 12/126 112/5638
    (9.5%) (1.9%)
13 19941 modifi cation-dependent protein catabolic process 2.69E-06 10/63 140/5638
    (15.8%) (2.4%)
 51603 proteolysis involved in cellular protein 3.06E-06 10/63 142/5638
  catabolic process  (15.8%) (2.5%)
 43632 modifi cation-dependent macromolecule 4.18E-06 10/63 147/5638
  catabolic process  (15.8%) (2.6%)

(Gibbons and Roth, 2002), the z-core is based on 
the mutual information between clustering results 
and the gene annotation. The higher scores indicate 
clustering results more biologically signifi cant. We 
compared the clustering results of nICA, NMF and 
ICA from small to larger cluster numbers and the 
z-scores are shown in Figure 5. As we can see from 
Figure 5, nICA consistently outperformed ICA with 
an average increase of z-score of 10. It is interest-
ing to observe that the NMF performed slightly 
better that nICA when the number of cluster is 
small and nICA performed slightly better than 
NMF when the number of cluster becomes large. 
In our opinion, the overall performances of nICA 
and NMF are comparable. Figure 6 shows the 

scatter plots of the first three independent 
components from nICA and ICA, respectively. 
Since the process-specifi c genes are highly biased 
onto two orthogonal axes respectively shown in 
each sub-panel of Figure 6, we conclude that, 
comparing with ICA, nICA is quite effective in 
extracting non-negative independent biological 
processes. Finally, in Table 2, we list fi ve of the 
identifi ed co-regulated gene groups that show 
signifi cant enrichment in GO term categories.

Muscle regeneration data
We further applied the nICA approach to a time 
course microarray data set from a profi ling study 
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Figure 5. Comparison of clustering results obtained by nICA (asterisk), NMF (square)and ICA (circle), respectively. The data set used for 
comparison is Dataset 2 of yeast in various stressful conditions (Gasch et al. 2000).

of in vivo murine muscle regeneration. Staged 
skeletal muscle degeneration/regeneration was 
induced by injection of cardiotoxin (CTX) as 
described (Zhao et al. 2003). Mice were injected in 
gastrocnemius muscles of both sides, and then 
sacrifi ced at the following 27 time points: 0h(our), 
12h, 1d(ay), 2d, 3d, 3.5d, 4d, 4.5d, 5d, 5.5d, 6d, 
6.5d, 7d, 7.5d, 8d, 8.5d, 9d, 9.5d, 10d, 11d, 12d, 
13d, 14d, 16d, 20d, 30d, and 40d (Zhao et al. 2003). 
Expression profi les were obtained with Affymetrix’s 
U74Av2 and MAS 5.0 summarization algorithm. 
As a preprocessing step, we used the last time point 
as the reference point and the expression matrix 
consists of log-ratios of the expression measure-
ments with respect to the reference point.

We then applied the nICA approach to the 
positive and negative parts respectively for gene 
module identifi cation. As a result, we found 11 
clusters from the positive part of the data and 
9 clusters from the negative part; all with signifi -
cant biological coherence. Several clusters showed 
an expression pattern highly correlated with 
MyoD1 gene (Figure 7 shows an example of the 
heatmap of cluster 8 from the positive part of the 
data). MyoD1 has been widely studied for its 
important function in embryonic myogenesis and 

postnatal muscle regeneration. We also examined 
the biological relevance of these clusters. The 
results are shown in Table 3 and Table 4 (p-value 
less than 10−4 is considered as signifi cant).

With the identifi ed gene clusters, we further used 
the Ingenuity Pathway Analysis (IPA) [10] to assess 
their biological plausibility, with respect to known 
information about gene regulatory networks, path-
ways and module functions. Among them, we found 
two clusters whose network functions are tightly 
related to skeletal and muscular system development 
(Fig. 8). Moreover, the cluster 13 found in the nega-
tive part contains Rb1 and cluster 1 found in the 
negative part contains MyoD1, which are two novel 
downstream targets of MyoD (Bakay et al. 2006).

Conclusion
This paper presents a new gene clustering approach, 
namely nICA-based approach, for composite gene 
module discovery. A complete algorithm of the 
nICA approach has been developed with the fol-
lowing main components: (1) input sample selec-
tion, (2) stability-based dimension estimation, (3) 
nICA learning algorithm and (4) gene clustering 
by VISDA. By projecting the gene expression data 
onto nICA space, co -regulation structures of the 
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Figure 6. Scatter plots of the fi rst three independent components from nICA (upper) and ICA (lower), respectively. Each sub-panel shows 
two subsequent components plotted against each other. Evidently, the process-specifi c genes from nICA are highly biased onto two non-
negative axes (upper), whereas the results from ICA are not (lower).
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Table 2. The fi ve most signifi cant clusters from nICA for the yeast data set.

Cluster GOID GO term p-value cluster total
ID     frequency frequency
13 4386 helicase activity 1.10E-10 11/ 47 82/7288
    (23.4%) (1.1%)
15 19752 carboxylic acid metabolic process 4.83E-15 17/28 308/7288
    (60.7%) (4.2%)
 6519 amino acid and derivative metabolic process 7.39E-15 15/28 200/7288
    (53.6%) (2.7%)
 6807 nitrogen compound metabolic process 1.49E-13 15/28 244/7288
    (53.6%) (3.3%)
 6144 purine base metabolic process 7.41E-12 7/28 16/7288
    (25.0%) (0.2%)
 103 sulfate assimilation 4.56E-11 6/28 10/7288
    (21.4%) (0.1%)
 6555 methionine metabolic process 1.56E-10 7/28 23/7288
    (25.0%) (0.3%)
16 6807 nitrogen compound metabolic process 1.04E-17 24/62 244/7288
    (38.7%) (3.3%)
 6519 amino acid and derivative metabolic process 1.99E-14 20/62 200/7288
    (32.3%) (2.7%)
18 32197 transposition, RNA-mediated 7.19E-11 13/57 95/7288
    (22.8%) (1.3%)
 3964 RNA-directed DNA polymerase activity 5.25E-10 10/57 52/7288
    (17.5%) (0.7%)
22 6091 generation of precursor metabolites and energy 2.34E-20 25/44 336/7288
    (56.8%) (4.6%)
 6119 oxidative phosphorylation 4.02E-17 13/44 46/7288
    (29.5%) (0.6%)
 6732 coenzyme metabolic process 1.55E-13 15/44 135/7288
    (34.1%) (1.9%)
 42775 organelle ATP synthesis coupled electron transport 1.91E-12 9/44 25/7288
    (20.5%) (0.3%)
 51186 cofactor metabolic process 4.28E-12 15/44 168/7288
    (34.1%) (2.3%)
 15980 energy derivation by oxidation of organic 5.46E-12 18/44 298/7288
  compounds  (40.9%) (4.1%)
 6084 acetyl-CoA metabolic process 2.43E-11 8/44 20/7288
    (18.2%) (0.3%)
 9060 aerobic respiration 1.77E-10 11/44 80/7288
    (25.0%) (1.1%)

modules can be revealed and highlighted. Using a 
pre-screening and VISDA clustering procedure, 
we can identify biological process enriched clus-
ters with coherent functional annotations. The 
experimental results on the yeast data sets have 
demonstrated the advantages of the nICA approach 
over conventional ICA-based approach. The results 
also indicated that the performances of nICA and 
NMF are comparable. Further, the nICA approach 
has been applied to a muscle regeneration data set 
for novel gene module discovery. The results have 
shown that not only the identifi ed gene modules 

are biologically signifi cant and plausible, but novel 
downstream target genes can also be discovered 
by the nICA approach.
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Table 3. The fi ve signifi cant clusters from nICA for the muscle regeneration data set (Positive Part).

Cluster GOID GO term p-value cluster total
ID     frequency frequency
2 7156 homophilic cell adhesion 1.56E-16 22/235 142/15873
    (9.3%) (0.8%)
 16337 cell-cell adhesion 7.87E-12 22/235 238/15873
    (9.3%) (1.4%)
6 7399 nervous system development 1.34E-04 7/29 651/15873
    (24.1%) (4.1%)
 30900 forebrain development 2.12E-04 3/29 64/15873
    (10.3%) (0.4%)
 48731 system development 2.23E-04 7/29 707/15873
    (24.1%) (4.4%)
 48856 anatomical structure development 4.11E-04 11/29 1962/15873
    (37.9%) (12.3%)
8 6886 intracellular protein transport 1.19E-04 10/81 463/15873
    (12.3%) (2.9%)
 6091 generation of precursor metabolites and energy 1.82E-04 12/81 688/15873
    (14.8%) (4.3%)
11 6334 nucleosome assembly 7.26E-14 11/49 121/15873
    (22.4%) (0.7%)
 31497 chromatin assembly 2.68E-13 11/49 136/15873
    (22.4%) (0.8%)
 6325 establishment and/or maintenance of chromatin 2.06E-09 11/49 311/15873
  architecture  (22.4%) (1.9%)
 6461 protein complex assembly 2.43E-09 11/49 316/15873
    (22.4%) (1.9%)
 6323 DNA packaging 2.77E-09 11/49 320/15873
    (22.4%) (2.0%)
 7001 chromosome organization and biogenesis 3.10E-08 11/49 404/15873
  (sensu Eukaryota)  (22.4%) (2.5%)
15 6092 main pathway of carbohydrate metabolism 4.99E-10 13/170 120/15873
    (7.6%) (0.7%)
 6096 glycolysis 2.59E-09 10/170 68/15873
    (5.8%) (0.4%)
 15980 energy derivation by oxidation of organic 4.66E-09 14/170 172/15873
  compounds  (8.2%) (1.0%)
 44265 cellular macromolecule catabolic process 1.42E-08 18/170 327/15873
    (10.5%) (2.0%)

Figure 7. The heatmap of the cluster 8 from the positive part of muscle regeneration data, showing a highly correlated expression pattern 
with MyoD1 gene.
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Table 4. The nine signifi cant clusters from nICA for the muscle regeneration data set (negative part).

Cluster GOID GO term p-value cluster total
ID     frequency frequency
1 44238 primary metabolic process 3.29E-05 82/128 7330/15873
    (64.0%) (46.1%)
 19538 protein metabolic process 5.11E-05 48/128 3504/15873
    (37.5%) (22.0%)
2 6096 glycolysis 3.99E-06 7/153 68/15873
    (4.5%) (0.4%)
 6007 glucose catabolic process 8.44E-06 7/153 76/15873
    (4.5%) (0.4%)
3 51641 cellular localization 3.69E-07 23/141 780/15873
    (16.3%) (4.9%)
 46907 intracellular transport 2.93E-06 21/141 751/15873
    (14.8%) (4.7%)
4 7156 homophilic cell adhesion 1.71E-20 22/155 142/15873
    (14.1%) (0.8%)
 16337 cell-cell adhesion 1.38E-15 22/155 238/15873
    (14.1%) (1.4%)
6 15992 proton transport 4.78E-05 5/83 76/15873
    (6.0%) (0.4%)
 6818 hydrogen transport 6.89E-05 5/83 82/15873
    (6.0%) (0.5%)
8 16043 cellular component organization and biogenesis 2.67E-11 63/199 2146/15873
    (31.6%) (13.5%)
 46907 intracellular transport 2.72E-10 33/199 751/15873
    (16.5%) (4.7%)
 51649 establishment of cellular localization 4.37E-10 33/199 765/15873
    (16.5%) (4.8%)
 6996 organelle organization and biogenesis 7.31E-07 36/199 1197/15873
    (18.0%) (7.5%)
 6886 intracellular protein transport 1.55E-06 20/199 463/15873
    (10.0%) (2.9%)
9 6457 protein folding 6.63E-07 19/331 239/15873
    (5.7%) (1.5%)
12 44260 cellular macromolecule metabolic process 2.48E-06 62/174 3256/15873
    (35.6%) (20.5%)
 44267 cellular protein metabolic process 7.48E-06 60/174 3212/15873
    (34.4%) (20.2%)
13 31497 chromatin assembly 2.43E-13 16/153 136/15873
    (10.4%) (0.8%)
 6334 nucleosome assembly 1.02E-11 14/153 121/15873
    (9.1%) (0.7%)
 6333 chromatin assembly or disassembly 1.23E-11 16/153 175/15873
    (10.4%) (1.1%)

Table 3. (Continued)

Cluster GOID GO term p-value cluster total
ID     frequency frequency
 46365 monosaccharide catabolic process 1.49E-08 10/170 81/15873
    (5.8%) (0.5%)
 19320 hexose catabolic process 1.49E-08 10/170 81/15873
    (5.8%) (0.5%)
 46164  alcohol catabolic process 1.89E-08 10/170 83/15873
    (5.8%) (0.5%)
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Figure 8. The top panel shows the cluster 6 found in the positive part of the muscle regeneration data with the following functions: post-
translational modifi cation, cellular growth and proliferation, and skeletal and muscular system development; The bottom panel shows the 
cluster 6 found in the negative part of the data with the main function of skeletal and muscular system development.
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