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Introduction
Phenotype descriptions are important for our 
deeper understanding of genetics and evolutionary 
relationships. These facilitate the computation and 
analysis of evolutionary questions related to a varied 
range of issues, such as the genetic and developmen-
tal bases of correlated characters or the paleontologi-
cal correlates of particular types of change in genes, 
gene networks, and developmental pathways.1 The lit-
erature contains a wealth of such phenotype descrip-
tions, usually reported as free-text entries. A first and 
crucial step required to be able to take advantage of 
this knowledge is to model and capture them in a 
machine-processable format.

Ontology-based formalization of phenotype descrip-
tions has been a throughly researched topic over the 
course of the last few years. Consequently, a number 
of projects have emerged, some of the most represen-
tative being the Human Phenotype Ontology (HPO),2 
the Elements of Morphology Project,3 the Mamma-
lian Phenotype Ontology,4 or the Phenoscape Project.5 
Applications of formalized phenotypes include the 
study of cross-species phenotype networks,6,7 linking 
human diseases to animal models8 or predicting diag-
noses using semantic similarity measures.9,10

However, as noted also by Gkoutos et al,11 in order 
to fully capture the intrinsic value and knowledge 
expressed by these descriptions, we require a more 
precise and fine-grained representation for them. 
Most phenotype terms implicitly combine anatomi-
cal entities with qualities. For example, HP:0000260 
(“wide anterior fontanelle”) describes the anatomi-
cal entity “anterior fontanelle” that bears the qual-
ity “wide.” Other terms represent atomic phenotypes 
that do not externalize this association directly, for 
example, HP:0010884 (“acromelia”), although their 
semantics can still be encoded using the same format, 
that is, use of the explicit meaning of “acromelia” 
that denotes “shortness of the distal part of a limb.” 
This has led to the emergence of the Entity-Quality 
(EQ) formalism that enables the decomposition of 
phenotypic descriptions using ontologies, such as the 
Foundational Model of Anatomy (FMA),12 describ-
ing anatomical concepts, and the Phenotype and Trait 
Ontology (PATO),11 comprising quality definitions. 
Subsequently, tools for manually creating such associ-
ations have been proposed, for example, Phenoscape5 
and Phenex.13

In this paper, we advance the state of the art by 
proposing a holistic solution for the automatic 
decomposition and conceptualization of phenotype 
descriptions. This solution relies on two elements: 
(1) an ontology, the Phenotype Fragment Ontology 
(PFO), aimed at providing a scaffolding onto which 
concepts can be created by reusing entities from 
widely adopted ontologies; and (2) a processing pipe-
line that takes as input the textual representation of 
a phenotype description and provides as output its 
decomposed, ontological representation.

To our knowledge, this represents the first attempt 
to provide a completely automatic approach for bridg-
ing the gap between plain text and logical formaliza-
tions of phenotype descriptions. As we will discuss, 
previous work exists mostly on the manual decom-
position of phenotype concepts defined by HPO into 
logical expressions.14,15 However, to date, no solu-
tion has been proposed to automatically decompose 
any phenotype description into its elementary units. 
Furthermore, our processing pipeline can be easily 
adapted to work with existing formalization solu-
tions, and it is thus not strictly dependent on PFO.

The goal of PFO is to capture the inner structure 
of phenotype descriptions by enabling the construc-
tion of complex phenotypes via combinations of ana-
tomical entities (ie, “epiphysis,” part of “phalanx”) 
and qualities (ie, “wide”). Similar to earlier models, 
for example, Mungall et al,14,15 PFO provides a meta-
model for phenotypes where the actual concepts (ie, 
anatomical entities and qualities) are defined via well-
known and widely adopted ontologies in the biomedi-
cal domain, such as FMA and PATO.

The processing pipeline, on the other hand, com-
prises three steps: (1) segmentation, that is, phenotype 
descriptions are segmented into the correspond-
ing anatomical entities and qualities; (2) alignment, 
that is, segmented anatomical entities and qualities 
are aligned to corresponding concepts in FMA and 
PATO; and (3) representation, that is, concepts result-
ing from the alignment phase are used to create PFO 
entities via class axioms.

Each step of our processing pipeline, and hence of 
the decomposition process, has associated challenges. 
Segmentation is affected by ambiguity and lack of a 
uniform internal textual structure (ie, there is no clear 
pattern that could be used to denote the anatomical 
entities and qualities within a phenotype description). 
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Alignment is influenced by segmentation errors and 
lexical and terminological differences (eg, “spinal 
facet joint” vs. “vertebral arch joint”). However, as 
we will show, the solutions we propose are able to 
successfully deal with most of these challenges and 
achieve a high efficiency.

The context of our research is provided by the 
SKELETOME project,16 which aims to create a 
community-driven knowledge curation platform for 
the skeletal dysplasia domain.a To date, we have devel-
oped an ontology, the Bone Dysplasia Ontology,17 
capable of capturing associations between skeletal 
dysplasias, gene mutations, and phenotypic descrip-
tions, the latter grounded in HPO concepts. The 
decomposition of phenotype descriptions, in our case 
represented mostly by radiographic findings of the 
skeletal system, would enable a fine-grained explora-
tion of the phenotype space and, hence, the explora-
tion of commonalities between disorders based on the 
anatomical localization of phenotypes and the devel-
opment of anatomical localixation-oriented decision 
support methods. Consequently, our work focuses 
on elements associated only with the human skeletal 
phenome.

To showcase the applicability of the generic con-
cept of decomposing phenotype descriptions, we 
performed an experimental study on all skeletal 
 phenotypes defined in the Human Phenotype Ontol-
ogy (3538 terms). The study has enabled an analysis 
of all elements involved in the decomposition process, 
starting with our ontological scaffolding and process-
ing pipeline and ending with all ontologies used in the 
process, that is, HPO, FMA, and PATO. As we will 
discuss, this analysis has revealed interesting qualita-
tive (ie, terminological issues and missing terms) and 
quantitative (ie, coverage statistics) findings, in par-
ticular, in the context of the existing ontologies.

Methods
The decomposition and conceptualization of pheno-
type descriptions consists of two main elements: (1) the 
Phenotype Fragment Ontology, and (2) the processing 
pipeline. Both are detailed in the following sections.

The Phenotype Fragment Ontology
The Phenotype Fragment Ontology (PFO) aims to 
provide a standard representation for phenotype 
descriptions based on their intrinsic structure and 
to enable the creation of the corresponding enti-
ties via class axioms and reused concepts from 
FMA and PATO. As shown in Figure 1, PFO 
defines five concepts (depicted with continuous 
lines) and four relations (depicted with bold lines), 
all of which are discussed below. In addition, 
PFO imports one PATO concept (PATO:0000001, 
“quality”), three FMA concepts (Physical_anatomi-
cal_entity, Primary_anatomical_coordinate and 
Secondary_anatomical_coordinate) and two rela-
tions from the Relation Ontology,18 “has_part” and 
“part_of.”

The central concept of the ontology, 
Phenotypic_Composite, carries a bridging role 
between anatomical parts expressed within descrip-
tions and the qualities they bear. Starting from 
this central concept, the design of PFO intro-
duces elements to accommodate different inter-
nal structures that phenotype descriptions may 
have. The simplest structure associates an existing 
anatomical concept to an existing quality. This is 
realized via the “describes” relation, connecting 
the Phenotypic_Composite to FMA: Physical_ 
anatomical_entity, and the “has_quality” relation 
that connects the same Phenotypic_Composite to 
PATO:0000001 (“quality”). These two relations 
are, in fact, the most important relations intro-
duced by PFO, the others having the role of aug-
menting composite structures (as discussed below). 
 Considering as example HP:0000260 (“wide 
anterior  fontanelle”), the logical definition in the 
 Manchester syntax would be:

Class: Decomposed_HP_0000260
 SubClassOf:
  describes only 
FMA:Anterior_fontanelle

  and describes some 
FMA:Anterior_fontanelle

 SubClassOf:
 has_quality only PATO:0002359
and has_quality some PATO:0002359
 SameAs:
 HP:0000260

a Bone dysplasias are a group of heterogeneous genetic disorders that affect pre-
dominantly the skeletal development. Patients diagnosed with such disorders 
suffer from complex medical issues that can be described via clinical findings, 
for example, pains in limbs, radiographic findings, for example, bilateral arach-
nodactyly and genetic findings, for example, deletion mutation in FGFR3.

Biomedical Informatics Insights 2013:6 3

http://www.la-press.com


groza et al

 Annotations:
 rdfs:comment “PATO:0002359 
(broad): A quality inhering in a 
bearer by virtue of the bearer’s 
width being notably higher than its 
length.”

In order to cater to the more complex structures, 
the design of PFO introduces additional composite 
concepts, as listed below:

•	 Anatomical_Composite, which enables 
part-subpart relationships between anatomical 
entities and localization of anatomical coordinates 
(via the “has_anatomical_coordinate” relation-
ship), for example, epiphysis of proximal, phalanx 
of 4th toe

•	 Anatomical_Relation, which allows for anatomi-
cal entities to be combined in the context of a qual-
ity, that is, “fusion” of hamate and—capitate

•	 Quality_Composite, which enablis the mod-
elling of composite qualities, including asso-
ciated qualifiers (via the “has_qualifier” 
relationship), that is, “delayed” closure of the 
anterior fontanelle

Below we present the logical definition of the 
example used also to describe the processing 

 pipeline (see Fig. 2), that is, HP:0100200 (“stip-
pling of the epiphysis of the proximal phalanx of 
the 4th toe”).

Class: Decomposed_HP_0100200
 SubClassOf:
 describes only AC_00001
 and describes some AC_00001
 SubClassOf:
 has_quality only PATO:0001512
 and has_quality some PATO:0001512
 SameAs:
 HP:0100200
 Annotations:
 rdfs:label “Stippling of the epi-
physis of the proximal phalanx of 
4th toe”
 rdfs:comment “PATO:0001512 (punc-
tate): A pattern inhering in a 
surface by virtue of the bearer’s 
being marked by the presence of 
dots or punctures.”

Class: AC_00001
 SubClassOf:
 has_part only FMA:Epiphysis and
 has_part some FMA:Epiphysis

Anatomical
relation

Anatomical
composite

Atomic
abnormality

Phenotypic
composite

Quality
composite

has_qualifier

has_part

has_part

has_part

has_part

part_of
part_of

has_part

has_anatomical_coordinate

has_part

has_quality

Describes Describes

FMA:
physical

anatomical
entity

FMA:
secondary anatomical

coordinate

FMA:
Primary anatomical

coordinate

PATO:
PATO_0000001

(quality)

PATO:
PATO_0000001

(quality)

Describes

has_quality

Figure 1. The Phenotype Fragment Ontology. 
notes: concepts introduced by the ontology are depicted with continuous lines, while those imported from other ontologies, such as FMA and PATO, are 
depicted with dotted lines. Similarly, the relationships introduced by PFO are bolded in the figure, while those imported from the relation Ontology are not.
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 SubClassOf:
 part_of only AC_00002 and
 part_of only AC_00002

Class: AC_00002
 SubClassOf:
 has_anatomical_coordinate only 
FMA:Proximal
 and has_anatomical_coordinate 
some FMA:Proximal
 SubClassOf:
 has_part only FMA:Phalanx_of_toe and
 has_part some FMA:Phalanx_of_toe
 SubClassOf:
 part_of only FMA:Fourth_toe and
 part_of only FMA:Fourth_toe

As mentioned earlier, not all phenotypes exter-
nalize their intrinsic structure. An exception to the 
general rule is represented by atomic phenotypes. 
These represent widely adopted terms, usually 
from Latin, that hide this structure, for example, 
HP:0010884 (acromelia). PFO considers such terms 
(modelled via the Atomic_Abnormality concept) 
to be a subtype of Phenotypic_Composites and, 
thus, enables their decomposition as in the case of 
any other phenotype description. Enabling logical 

definitions for such atomic phenotypes repre-
sents one of the major innovations and advantages 
brought by PFO. To exemplify, below we show the 
logical definition of the above mentioned concept, 
“acromelia”.

Class: Decomposed_HP_0010884
 SubClassOf:
 describes only AC_00001
 and describes some AC_00001
 SubClassOf:
 has_quality only PATO:0000574
 and has_quality some PATO:0000574
 Annotations:
 rdfs:label “Acromelia”
 skos:altLabel “Short distal part 
of the limb”
 rdfs:comment “PATO:0000574 
(decreased length): A length qual-
ity which is relatively small.”
 SameAs:
 HP:0010884

Class: AC_00001
 SubClassOf:
 has_part only FMA:Limb and
 has_part some FMA:Limb

Stippling
of
the

epiphysis
of
the

proximal
phalanx

of
the
4th
toe

StipplingQ

A

(Q-B)

(A-B)

(A-I)

(A-I)

(A-I)

(A-I)

(A-I)

(A-I)

(A-I)

(A-I)

(A-I)

(A-I)

epiphysis

proximal
phalanx

4th
toe

Segmentation Alignment Representation

PATO: PATO_0001512

FMA: epiphysis

FMA: proximal
FMA: phalanx_of_toe

FMA: fourth_toe

(Q)

(AP)

(AP)

(P)

(A-B)

(A-I)

Class: Decomposed_HP0100200

Class: AC_00002

Class: AC_00001

SubClassOf:

SubClassOf:

SubClassOf:

SubClassOf:

SubClassOf:

SubClassOf:

describes only AC_00002
and describes some AC_00002

has_quality only PATO: PATO_0001512

has_part only FMA: epiphysis and

part_of only AC_00001 and

has_part only FMA: Phalanx_of_toe and

part_of only FMA: Fourth_toe and
part_of only FMA: Fourth_toe

has_part some FMA: Phalanx_of_toe

part_of only AC_00001

has_anatomical_coordinate only FMA: Proximal and
has_anatomical_coordinate some FMA: Proximal

has_part some FMA: epiphysis

and has_quality some PATO: PATO_0001512

SubClassOf:

Figure 2. Phenotype decomposition and conceptualization pipeline. 
notes: The pipeline has three phases: 1. Segmentation, that is, textual representations of the phenotype descriptions are segmented into their atomic 
elements, that is, anatomical (A) and quality (Q) entities, that is, resulting segments are reordered and further segmented into anatomical parts (AP, A) and 
coordinates (P), and qualities and qualifiers, respectively. Both segmentations use the BIO format; 2. Alignment, that is, resulted segments are aligned to 
FMA and PATO concepts; part-subpart relationships between anatomical entities are preserved; 3. Representation, that is, aligned concepts are used to 
create PFO entities.
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 SubClassOf:
 has_anatomical_coordinate only 
FMA:Distal
 and has_anatomical_coordinate 
only FMA:Distal

In addition to the conceptual definitions, in order 
to provide a proper ontological context for entities 
defined by PFO, all classes are rooted in enti-
ties defined by the Basic Formal Ontology (BFO, 
http://www.ifomis.org/bfo),19 and by the Ontology 
of General Medical Science (OGMS),20 a middle 
ontology rooted in BFO, which provides a specific 
framework for medicine. The concept mappings are 
listed in the following: (1) Phenotypic_Composite, 
Atomic_Anomaly and Quality_Composite repre-
sent OGMS:0000023 (“phenotype”), which is a 
snap:Quality, and (2) Anatomical_Composite and 
Anatomical_Relation are snap:MaterialEntity, 
because they define material anatomical entities.

As mentioned, previous work exists on creating 
logical expressions for phenotype descriptions (see 
Mungall et al14,15), and a direct mapping can be drawn 
between some aspects of PFO and formalizations 
previously proposed (eg, the “has_qualifier” relation 
is present in both, or the “towards” relation can be 
expressed in terms of part-subpart relationships with 
Anatomical_Composites). There are, however, two 
major differences: (1) in PFO, we’ve opted for named 
concepts, rather than anonymous instances, to enable 
an easier reuse and analysis of composite elements, 
and (2) we’ve provided a clear mechanism for iden-
tifying anatomical coordinates, as well as defining 
atomic phenotypes, which may have a vague anatomi-
cal localization. Nevertheless, the processing pipeline 
has been designed in a flexible manner, so that other 
formalization approaches could be adopted.

Automatic decomposition  
and conceptualization pipeline
Our decomposition and conceptualisation pipeline 
consists of three phases: (1) segmentation, in which 
textual representations of the phenotype descriptions 
are segmented into their atomic elements, anatomical 
and quality entities; (2) alignment, in which resulting 
segments are aligned to FMA and PATO concepts; 
and (3) representation, in which concepts resulting 
from alignment are used to create PFO entities.

Figure 2 depicts the pipeline by means of an exam-
ple, HP:0100200 (“stippling of the epiphysis of the 
proximal phalanx of the 4th toe”). The remainder of 
this section uses the same example to discuss each 
phase of the pipeline.

Segmentation
The segmentation of phenotype descriptions raises a 
series of structural and semantic challenges. From a 
structural perspective, there are four classes of seg-
ments that need to be considered: qualities, qualifiers, 
anatomical coordinates, and anatomical entities, the 
latter being decomposable into parts and sub-parts. 
Considering the example in Figure 2,  “stippling” 
denotes the quality, while “phalanx” denotes an ana-
tomical entity and has associated an anatomical coor-
dinate (“proximal”). Secondly, due to the composite 
nature of the anatomical concepts, there is no  uniform 
pattern that can be assumed for  segmentation. For 
example, “epiphyseal widening of the hand phalanges” 
is the same as “broadening of the epiphyses of the 
phalanges of the hand.” From a semantic perspec-
tive, one challenge is provided by ambiguity, for 
example,  “irregular ossification of the proximal radial 
 metaphisis” versus “radial club hand,” where “radial” 
refers to the anatomical entity, “radius,” in the first case 
and to an anatomical coordinate in the second case. 
Finally, the existing terminology contains metaphori-
cal expressions that may pose issues for an accurate 
detection/classification, for  example,  “bone-in-bone 
 appearance” or “angel-shaped epiphyses.”

Machine learning methods have proved to be 
successful at dealing with the above mentioned 
challenges,21 although rule-based methods could also 
be employed with a high precision, but most likely 
at a trade-off of a lower recall.22 Conditional Ran-
dom Fields (CRF),23 in particular, have been reported 
to achieve good results both for segmentation tasks 
as well as for classification tasks in the biomedical 
domain.24,25 Recent works, however, have concentrated 
on using ensembles of classifiers (hybrid approaches) 
to overcome the issues associated with using single 
classifiers. As an example, Zhou et al26 and Torii 
et al27 have used sets of classifiers (three by the former 
and six by the latter) aggregated via different voting 
schemes for gene/protein mention tagging.

Our solution also relies on training divergent mod-
els via an ensemble of classifiers. Additionally, in 
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Table 1. Features used for classification in the segmentation phase. Examples are provided using the token “epiphysis” 
from Figure 2.

Feature Description example
Token current token epiphysis
Token prefix 
(variable size)

Token prefixes 
(size in example is 5)

e ep epi epip epiph

Token postfix 
(variable size)

Token postfixes 
(size in example is 5)

s is sis ysis physis

Token shape Shape of token by replacing all capitalized letters  
with ‘A’, all non- capitalized letters with ‘a’ and  
all digits with ‘0’

aaaaaaaaa

Token brief shape compressed version of the token shape where all  
consecutive equal characters are compressed

a

Token lemma Token lemma (stem) epiphysi
Token POS tag Part of speech tag of token nnP
Morpho: punctuation Flag to indicate whether the token ends in a  

punctuation sign
no

Morpho: vowels Shape of token provided by replacing all  
consonants with ‘-’

e-i----i-

Morpho digits Shape of token by replacing all digits with ‘*’ no*
context: unigram Unigram-based surrounding context of token  

(variable window size). Window size in example is 3
Stippling of the epiphysis  
of the proximal

context: bigram Bigram-based surrounding context of token  
(variable window size). Window size in example is 3

Stippling-of of-the  
the-epiphysis epiphysis-of  
of-the the-proximal

context: trigram Trigram-based surrounding context of token  
(variable window size). Window size in example is 3

Stippling-of-the of-the-epiphysis 
the-epiphysis-of epiphysis-of-the
of-the-proximal

Dictionary: conjunctions Lexicon comprising conjuctions (and, or)
Dictionary: connectives Lexicon comprising connective tokens (at, of, the, etc)
Dictionary: ordinals Lexicon comprising ordinals (1st, 2nd, etc)
Dictionary: coordinates Lexicon comprising anatomical coordinates  

(central, left, etc)
Dictionary: anatomy gazzetteer compiled from unigrams of FMA concepts
Dictionary: quality gazzetteer compiled from unigrams of PATO concepts

order to improve the segmentation results, we have 
experimented with multiple aggregation schemes, 
such as set operations and simple majority voting. 
Each aggregation technique has been the subject of 
an individual experiment. Overall, we have adopted 
a two-phase process, as exemplified in Figure 2. 
Firstly, we segment the input into coarse qualities and 
anatomical entities using the BIO format. Then we 
reorder these coarse-grained segments according to 
their class and split them into atomic parts. These 
atomic elements correspond to quality-qualifier pairs 
(eg, “delayed—closure”), anatomical coordinate-
anatomical concept associations and part-sub part 
relationships between anatomical  concepts (eg, 
epiphysis—of— phalanxof—4th toe—see Fig. 2). 
In both phases, our ensemble of classifiers com-
prises two CRFs and two Support Vector Machines 

 (SVM)-based chunkers. The features used for clas-
sification are listed in Table 1.

Alignment
The result of the segmentation phase is a set of text 
chunks with associated labels (as  exemplified in Fig. 2), 
that is, Q = quality, QF = qualifier, AP =  anatomical 
part, P = anatomical coordinate, and A = main anatom-
ical entity. The goal of this phase is, for each segment, 
to find the best corresponding candidate in FMA and 
PATO, respectively (subject to its type). In practice, 
this reverts to a lexical similarity task where any of the 
existing similarity metrics could be employed.

In order to increase the efficiency of this alignment 
phase, instead of performing a direct similarity com-
parison between segments and labels/synonyms of 
ontological concepts, we created similarity matrices 
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and adapted the concept of matrix trace (which can 
be computed only for squared matrices and represents 
the sum of the diagonal elements) to fit our needs. 
Figure 3 depicts a concrete example using the seg-
ment “vertebral bodies” and two FMA concepts, Spi-
nal_reticular_process and Body_of_vertebra.

The exact alignment steps are the following:

•	 We pre-process both the input segment and the 
label/synonyms of the concept candidate by trans-
forming them into lower case, removing punctua-
tion, performing tokenization and removing tokens 
that represent stop words (see Part B of Fig. 3).

•	 For each pair segment-concept label/synonym, we 
create two similarity matrices, one using the tokens 
of the segment in the normal order and one by 
reversing their order. Part A of Figure 3 depicts the 
similarity matrix created using the normal order of 
vertebral bodies and FMA:Spinal_reticular_pro-
cess, while part B of the same figure depicts the 
similarity matrix created using the reverse order 
of “vertebral bodies” and FMA:Body_of_verte-
bra. Each cell of the similarity matrix is computed 
using equation 1, where NLCS is normalized lon-
gest common subsequence (LCS) and NMCLCS 
is the normalized maximal consecutive longest 
common subsequence starting at 1 (ie, with the 
first character) and respectively at n (ie, starting 
anywhere in the string).

•	 Within each similarity matrix we compute traces 
for all square submatrices by performing an arith-
metic mean over their diagonals. The final trace 
of the similarity matrix is the maximum subtrace 
computed for all submatrices with diagonal N, 

where N is the length of the given segment in 
tokens (N = 2 in our example).

•	 The final similarity is computed via Eq. 5, using 
the maximum between the trace of the similarity 
matrix of the normal order and the trace of the sim-
ilarity matrix of the reverse order (ie, MaxTrace). 
The first component of Eq. 5 represents a pen-
alty factor influenced by the difference in length 
between the given segment and the ontological con-
cept, with N = number of tokens in the segment and 
L = number of tokens in the lexical representation 
of the ontological concept. In our example, N = 2 
and L is 3 in part A and 2 in part B of Figure 3. The 
goal of this component is to penalize the ontologi-
cal concepts that use only some of its tokens in the 
computation of the similarity matrix.

 

sim s s w NLCS s s
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* ( ,
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Figure 3. Similarity matrix and traces computation. (A) Similarity matrix and traces computation between vertebral bodies using the normal order and the 
FMA concept Spinal_reticular_process; (B) Similarity matrix and traces computation between the inverse order of vertebral bodies and the FMA concept 
Body_of_vertebra; stop-words are discarded during the traces computation.
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Once the best concept candidate is selected for 
each segment of the phenotype description (ie, the 
candidate with the maximum similarity score), we 
perform one last step, preserving the part-subpart 
relationship between anatomical entities. As depicted 
in Figure 2, under the Alignment phase, our aim is 
to link those anatomical concepts that form a part-
 subpart relationship, for example, Epiphysis—
of—Phalanx_of_toe—of—Fourth_toe. This step is 
realized by using the FMA structure, and more con-
cretely, the “rdfs:subClassOf and fma:constitutional_
part” relations.

In practice, starting from the main anatomi-
cal entity of the phenotype description (labeled 
A as a result of the second phase of segmenta-
tion), we employ a modified version of Dijkstra’s 
algorithm for shortest paths in a graph (using simul-
taneously both types of edges, that is, subclass and 
constitutional_part) to find the paths between this 
and all the other segmented anatomical parts. The 
anatomical part with the shortest path is then marked 
as the new main anatomical entity and the process 
is repeated until all anatomical parts are linked. In 
our example, we start from Fourth_toe and find that 
the shortest path is to Phalanx_of_toe. Since there’s 
only one anatomical part left, that is, Epiphysis, 
the algorithm infers the part-subpart relationship 
listed above. However, if more than one anatomical 
parts would have been available, the process would 
have marked Phalanx_of_toe as the new main ana-
tomical entity and would have repeated the previ-
ous step.

Representation
This last phase of our processing pipeline reassembles 
the segmented and aligned phenotype description into 
a logical definition. We have defined a set of rules that 
enable us to create PFO entities using the results of the 
alignment phase, that is, FMA and PATO concepts, 
and the part-subpart relationships, where relevant. 
Considering the example depicted in Figure 2, we 
follow a bottom-up approach and start by creating the 
Anatomical_Composite (ie, AC_00001) and the class 
axioms that describes the relationship between Proxi-
mal, Phalanx_of_toe and Fourth_toe, then we create 
AC_00002 following the same rules, and finally cre-
ate the main Phenotypic_Composite that connects 
logically AC_00002 to the quality PATO:0001512. 

It is easy to observe that in order to adopt a differ-
ent formalization scheme (eg, Mungall et al14,15), it is 
enough to create a set of rules corresponding to that 
formalization with the rest of the pipeline remaining 
unchanged.

Results
In order to understand the capabilities of both the 
ontology as well as of the processing pipeline, 
we’ve performed an experiment on all skeletal phe-
notypes defined by the Human Phenotype Ontology 
(v17.07.2012). These are represented by 3538 con-
cepts, that is, the subtree of HP:0000924 (“abnor-
mality of the skeletal system”) and account for more 
than a third of the entire ontology. The experiment 
has followed the steps associated with the processing 
pipeline and was finalized with a qualitative analysis 
of the resulting concepts. In this section, we detail the 
results achieved by the processing pipeline, or more 
specifically, by the first two steps, while in the follow-
ing section, we discuss our findings. As a remark, the 
same experiment can also be performed on concepts 
defined by the Mammalian Phenotype Ontology or on 
phenotypes defined by RADLEX (http://www.radlex.
org/). Our focus on the HPO skeletal phenotypes has 
been strictly motivated by the needs emerging from 
the SKELETOME project, as already mentioned in 
Introduction.

segmentation Results
As discussed in the previous section, the segmen-
tation phase consists of two steps (see also Fig. 2): 
(1) the initial segmentation of the phenotype descrip-
tions into coarse anatomical and quality elements; 
and (2) the fine-grained segmentation of these coarse 
elements into quality–qualifier concepts and anatomi-
cal parts–anatomical coordinates entities. Both steps 
have been performed using an ensemble of classifi-
ers that comprises two CRFs and two Support Vector 
Machines (SVM)-based chunkers. The specific pack-
ages used to train the classifiers were: (1) CRF++ 
(http://crfpp.googlecode.com/), a freely available 
CRF package that we have used to train a forward 
parsing model; (2) MALLET,28 another freely avail-
able CRF package that we have used to train a for-
ward parsing model; and (3) YamCha,29 a chunking 
package that uses SVM classification and we have 
trained two models that differ in the method used for 
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the multiclass classification, that is, one versus one or 
one versus all.

The actual experiments have been carried out on 
all 3538 HPO concepts via a 5-fold cross-validation 
with stratification. The HPO concepts have been man-
ually segmented and tagged to form the corpus used 
for cross-validation. We used different aggregation 
strategies, ranging from simple set operations (that is, 
union and intersection of results), composite set oper-
ations (aggregated pairs of set operations, that is, the 
union of two classifiers intersected with the union of 
the other two classifiers) to a simple majority voting 
scheme with veto (since we had an even number of 
classifiers). In order to measure the classification effi-
ciency, we have used the standard precision, recall, 
and F-1 score. The results reported below represent 
the average scores achieved within the cross-valida-
tion process.

Table 2 summarizes the best results for step 1 of 
the segmentation of the best individual classifier, as 
well as each of the aggregation techniques. In addi-
tion to noting the high efficiency achieved by all 
strategies (97.04% F-1 with dictionaries and 96.77% 
without dictionaries), there are two particular aspects 
that are worth discussing. Firstly, the difference in 
efficiency between using or omitting the dictionar-
ies is minimal. This proves that our classifiers do 
not require any external sources in order to deliver 
accurate results. Secondly, within each class, we can 
observe a minimal difference also between the aggre-
gation strategies. For example, YamCha1vsAll, as an 
individual classifier, has performed on par with the 
best set operation scheme and only slightly worse 
(0.10% difference) than the voting mechanism (with 
YamCha1vs1 as veto holder).

Table 3 lists the best results for the second step of 
the segmentation phase. Each class has been evalu-
ated individually; however, the general compara-
tive remark across aggregation strategies remains 

valid. In the anatomy category, we can observe that 
an individual classifier (in this case CRF++ and Yam-
Cha1vsAll, 97.15% F-1) has again performed better 
than the best set operation strategy (96.74% F-1) and 
slightly worse than the voting mechanism, 97.26% 
F-1, with CRF++ as veto holder. Exactly the same 
trend is  visible also in the quality category. Cross-cat-
egory we can see that the classifiers have performed 
worse in the quality category, which was an expected 
behavior, in principle due to the atomic abnormalities. 
(See also the discussion in the following section.)

Overall, our experiments lead to the conclusion 
that using an ensemble of classifiers for segmentation 
tasks may not necessarily improve the overall accu-
racy because of its dependency on the goal and under-
lying data characteristics. Hence, in this particular 
case, opting for a single classifier without dictionar-
ies provides the best trade-off between accuracy and 
the amount of features used for classification plue the 
complexity of the classification architecture.

Alignment Results
The alignment phase was evaluated against all ana-
tomical and quality concepts that had a correspon-
dence in FMA and PATO. In total, the experiment 
has been carried out on 330 anatomical concepts 
and 183 quality concepts represented in phenotype 
segments by 538 anatomical tokens and 328 qual-
ity tokens, respectively (ie, some concepts had more 
than one lexical representation due to synonyms or 
terminological differences, while others had a single 
standard representation).

Table 4 lists the evaluation results. The align-
ment F-1 scores were 87.17% for anatomical con-
cepts and 91.56% for quality concepts–without 
using external sources (eg, dictionaries) or human 
feedback. A closer look at the alignment out-
put has revealed the following issues: (1) in most 
cases, the anatomical alignment has failed due to 

Table 2. Comparative results for the first step of the segmentation phase.

Method With dictionaries Without dictionaries
p (%) R (%) F-1 (%) p (%) R (%) F-1 (%)

Yamcha1vsAll 96.94 96.94 96.94 96.70 96.70 96.70
Set operations 96.63 97.21 96.92 96.27 97.03 96.65
Voting (Yamcha1vs1) 97.04 97.04 97.04 96.77 96.77 96.77

10 Biomedical Informatics Insights 2013:6

http://www.la-press.com


Decomposing human skeletal phenotypes

 terminological  differences. For example, HPO con-
cepts use terms, such as, iliac wings or vertebral 
facet, while FMA models them as “ala of ilia” and 
“verterbral arch.” Hence, without human interven-
tion or precomputed dictionaries, such alignments 
cannot be automatically performed.

There were, however, also cases where our align-
ment strategy has failed, for example, where HPO 
terms omit parts of the actual anatomical concept, 
unilamboid/bilambdoid (referring to a single or both 
lambdoid sutures, however, used without the explicit 
presence of the token “suture”) versus “lamb-
doid suture,” where the chosen candidate has been 
Lambda; (2) the vast majority of improper quality 
alignments have been on “metaphoric” concepts, 
that is, concepts consisting of shape comparisons 
and ending in “-shaped”, for example, “Y-shaped” 
or  “pear-shaped.” Table 7 shows that these are com-
monly used qualities. A second issue has been found 
in aligning terms that end in “-ing” (eg, “cupping”) 
to their corresponding concepts ending in “-ed” (eg, 
“cupped”). In practice, we’ve observed a general ten-
dency of HPO using terms that refer to “processes” 
(eg, cupping, ossification, maturation) rather than 
their associated qualitative results (eg, cupped, ossi-
fied, matured).

Discussion
The experimental study performed on the HPO skel-
etal phenotypes has provided us with insights that go 
beyond understanding the efficiency achieved by our 
method. Firstly, it reveals the distribution of FMA 

and PATO concepts, as well as the coverage of the 
missing FMA and PATO concepts in these skeletal 
phenotype descriptions. As it can be seen in Table 5, 
almost 14% of anatomical terms described by the 
phenotypes are not present in FMA, although in some 
instances these can be found in RADLEX. Exam-
ples include “acetabular roof,” “cerebellar dendate 
nucleus,” “mandibular rami” (RADLEX:RID28576), 
“sacroiliac notch,” “sacrosciatic notch,” “vertebral 
endplates” (RADLEX:RID6126), “Talar dome” 
(RADLEX:RID2954), and, in general, most ele-
ments related to “dermatoglyphs.” On the quality 
side, the same table shows that there is a fair balance 
between atomic phenotypes (ie, phenotypes that do 
not externalize their internal structure) and missing 
and existing qualities in PATO. The large majority 
of missing qualities are “metaphoric” descriptions, 
such as “swan neck-like” or “chevron-shaped.” From 
a coverage perspective (see Table 6), missing FMA 
concepts are present in around 8% of the HPO con-
cepts, while missing qualities and atomic phenotypes 
account for around 36% of the HPO concepts (19% 
atomic phenotypes and 17% missing qualities).

Secondly, it allows us to build a view over the com-
monly occurring concepts, as presented in Table 7. 
We can observe that 30% of the HPO skeletal phe-
notypes describe abnormalities of the “phalanges” 
(30%), followed by “epiphysis” (17%), “toe” (17%) 
and “finger” (15%). As a remark, these concepts 
are not mutually exclusive since there may be HPO 

Table 3. comparative results for the second step of the segmentation phase.

Method Anatomy Quality
p (%) R (%) F-1 (%) p (%) R (%) F-1 (%)

crF++/Yamcha1vsAll 97.15 97.15 97.15 92.21 92.21 92.21
Set operations 96.74 96.74 96.74 91.32 91.32 91.32
Voting (crF++/crF++) 97.26 97.26 97.26 92.44 92.44 92.44

Table 4. evaluation results of the alignment phase.

precision (%) Recall (%) F-1 (%)
Anatomy 88.81 85.59 87.17
Qualities 93.05 90.13 91.56

Table 5. Distribution of FMA and PATO concepts in the 
skeletal phenotypes in hPO.

Anatomy  
(FMA)

Quality 
(pATO)

existing concepts 330 (86.16%) 183 (33.27%)
non-existing concepts 53 (13.83%) 165 (30%)
Atomic phenotypes – 202 (36.72%)
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concepts describing composite anatomical entities 
(eg, “epiphysis of the phalanx of toe”). The table also 
shows the most often occurring anatomical coordi-
nates, that is, “proximal (11%) and “distal” (10%). 
On the qualities side, the concept “abnormality” is 
the most common (in 9% of the terms), followed by 
“hypoplasia,” “aplasia,” and metaphoric descriptions 
ending in “-shaped,” all with around 5%.

Finally, it enables an analysis of the qualitative dif-
ferences between terminologies and a deeper under-
standing of the shortfalls of our alignment strategy. 
The alignment of HPO terms to FMA concepts is 
not trivial due to several terminological and struc-
tural differences. FMA follows an uniform termino-
logical structure, usually subpart-part, for example, 
Body_of_vertebra, while HPO is closer to the termi-
nology used in clinical practice and the medical lit-
erature (eg, “vertebral bodies” and “calf muscles”). In 
practice, these issues could be addressed by enriching 
concepts with appropriate synonyms and/or adopt-
ing an uniform scientific terminology (ie, “superficial 
muscle of posterior compartment of “leg” instead of 
“calf muscles”). Here, we could also point out that 
HPO uses nonspecific (or context dependent) terms 
that do not necessarily have a direct anatomical corre-
spondence, which makes the alignment problematic. 
The most representative example is the term “pha-
lanx” (or “phalanges”) that require a proper context 
(ie, “finger” or “toe”) in order to be aligned to the 

corresponding FMA concept (ie, Phalanx_of_ finger 
or  Phalanx_of_toe). A final set of terminological dif-
ferences are related to the mixtures of languages. 
Both HPO and FMA comprise English and Latin 
terms; however, FMA uses the Latin representation 
usually as a synonym and provides an English coun-
terpart where this exists, while HPO sometimes omits 
this English counterpart, even if the literature pro-
vides one, for example, pectus carinatum or “pigeon 
breast.”

From our perspective, we see the following 
major open challenges: (1) defining and represent-
ing atomic phenotypes, a complex task that could 
be achieved by analyzing the textual description 
that accompanies them; (2) defining and represent-
ing abnormalities that involve relationships between 
anatomical elements, abnormalities of specific parts 
of anatomical elements (eg, fingertips or interdigital 
folds), and abnormalities of spatial, functional and 
nonfunctional properties of anatomical elements (eg, 
mineral density, movement, angles); and (3) improv-
ing the alignment of anatomical concepts by using 
external resources, such as the textual definition of 
the phenotype descriptions.

conclusion
In this paper, we have proposed a complete solution 
for decomposing phenotype descriptions in an auto-
matic manner. Our approach consists of the following 
two elements: (1) an ontology, the Phenotype Frag-
ment Ontology, that enables the definition of complex 
phenotypes, via class axioms, by reusing concepts 
from FMA and PATO; and (2) a processing pipeline 
that “segments” phenotype descriptions into their 
atomic entities (ie, anatomic and quality elements), 
“aligns” the resulted entities to FMA and PATO con-
cepts by preserving the existing part-subpart relation-
ships between the anatomical entities, and creates the 
corresponding ontological “representation” according 
to PFO.

The experimental results have showed that 
each step of the processing pipeline achieves a 
high accuracy. Furthermore, the analysis enabled 
by the decomposition of the HPO skeletal pheno-
types led to a series of interesting findings, ranging 
from missing concepts in FMA and PATO to termi-
nological difference between HPO and FMA and 
shortfalls of our Phenotype Fragment Ontology. 

Table 6. coverage of missing FMA and PATO concepts in 
the skeletal phenotypes in hPO.

concepts coverage
non-existing FMA concepts 275 (7.77%)
Atomic phenotypes 683 (19.30%)
non-existing PATO concepts 592 (16.73%)

Table 7. Often occurring concepts in the skeletal pheno-
types in hPO.

Anatomy Quality
Phalanx (1094—30.92%) Abnormality (337—9.52%)
epiphysis (612—17.29%) hypoplasia (187—5.28%)
Toe (598—16.9%) Aplasia (178—5.03%)
Finger (537—15.17%) -shaped (174—4.91%)
Proximal (384—10.85%) Sclerosis (136—3.84%)
Distal (367—10.37%) Duplication (133—3.75%)
Middle (278—7.85%) Absent (102—2.88%)
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Future work will focus on improving PFO and 
the processing pipeline and using our approach to 
align skeletal phenotypes in all existing phenotype  
ontologies.
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