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Abstract: Bacterial RNA polymerase is composed of a core of subunits (β, β′, α1, α2, ω), which have RNA synthesizing 
activity, and a specifi city factor (σ), which identifi es the start of transcription by recognizing and binding to sequence elements 
within promoter DNA. Four core promoter consensus sequences, the –10 element, the extended –10 (TGn) element, the 
–35 element, and the UP elements, have been known for many years; the importance of a nontemplate G at position –5 has 
been recognized more recently. However, the functions of these elements are not the same. The AT-rich UP elements, the −35 
elements (−35TTGACA−30), and the extended −10 (−15TGn−13) are recognized as double-stranded binding elements, whereas 
the −5 nontemplate G is recognized in the context of single-stranded DNA at the transcription bubble. Furthermore, 
the −10 element (−12TATAAT−7) is recognized as both double-stranded DNA for the T:A bp at position –12 and as nontemplate, 
single-stranded DNA from positions –11 to −7. The single-stranded sequences at positions −11 to –7 as well as the –5 con-
tribute to later steps in transcription initiation that involve isomerization of polymerase and separation of the promoter DNA 
around the transcription start site. Recent work has demonstrated that the double-stranded elements may be used in various 
combinations to yield an effective promoter. Thus, while some minimal number of contacts is required for promoter function, 
polymerase allows the elements to be mixed and matched. Interestingly, which particular elements are used does not appear 
to fundamentally alter the transcription bubble generated in the stable complex. In this review, we discuss the multiple steps 
involved in forming a transcriptionally competent polymerase/promoter complex, and we examine what is known about 
polymerase recognition of core promoter elements. We suggest that considering promoter elements according to their involve-
ment in early (polymerase binding) or later (polymerase isomerization) steps in transcription initiation rather than simply 
from their match to conventional promoter consensus sequences is a more instructive form of promoter classifi cation.

Abbreviations: ss: single-stranded; ds: double-stranded; EMSA: electrophoretic mobility shift assay; bp: base pair; n: any 
nucleotide; r: purine; y: pyrimidine; w: A or T; NTP: ribonucleoside triphosphate.

Keywords: polymerase, sigma70, promoter, transcription

The Multi-Step Process of Transcription Initiation
The process of transcription begins when RNA polymerase recognizes and binds to DNA elements 
within a promoter sequence (reviewed in (Browning and Busby, 2004; Murakami and Darst, 2003; 
Young et al. 2002)). In bacteria, RNA polymerase is composed of a core of multiple subunits (β, β′, α1, 
α2, and ω) that is tightly associated with a σ specifi city factor. While core contains the active site for 
polymerase and thus is capable of synthesizing RNA, the sigma factor controls when and where tran-
scription is initiated. Prokaryotes have multiple sigma factors; a primary σ that is needed for the expres-
sion of housekeeping genes during exponential growth and alternate σ factors that are used under 
certain conditions of growth or stress (Gruber and Gross, 2003; Paget and Helmann, 2003). The primary 
σ factor in E. coli is σ70. Like other primary σ factors, σ70 can be divided into four major domains 
(regions 1, 2, 3, and 4) and subdomains (2.1, 2.2, 2.3, etc), based on function, structure, and sequence 
conservation (Gruber and Gross, 2003; Lonetto et al. 1992) (Fig. 1A and B).

Detailed studies of transcription initiation at a few well-characterized promoters have demonstrated 
that initiation by E. coli RNA polymerase is a multi-step process (Fig. 2) that requires multiple contacts 
between the polymerase and the DNA (Buc and McClure, 1985; Craig et al. 1998; Davis et al. 2007a; 
Kontur et al. 2006; Schickor et al. 1990; Sclavi et al. 2005; Spassky et al. 1985). Each step on the path 
from free RNA polymerase and promoter to the fi nal transcriptionally competent complex is an 
opportunity to regulate the initiation process. In addition to biochemical and kinetic studies, structural 
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Figure 1. (A) Schematic of E. coli σ70. Subregions (1.1, 1.2, etc) and non-conserved region (NCR) are based on function, structure, and 
sequence conservation (Gruber and Gross, 2003). Canonical promoter sequence elements are shown below sigma. Specifi c σ70 residues, 
which are thought to interact with base determinants, are indicated (see text for details). (B) Amino acid sequence of E. coli σ70. Subregions of 
σ70 are indicated above the sequence and are colored as in A. Below the sequence, secondary structure is represented as gray boxes (a-helices), 
black lines (coils) and dashed lines (disordered structure). (See (Gruber and Gross, 2003; Vassylyev et al. 2002) and text for details.)
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analyses using polymerase, core, and the primary 
σ of thermophilic bacteria with and without DNA 
have provided a detailed model upon which to 
conceptualize these steps (Campbell et al. 2002; 
Murakami et al. 2002a; Murakami et al. 2002b; 
Murakami and Darst, 2003; Vassylyev et al. 
2002; Young et al. 2002). The structure of a portion 
of E. coli σ70 has also been obtained (Malhotra 
et al. 1996). Thus, we can now generally chart the 
changes in DNA and polymerase that occur during 
initiation. In this review, we summarize data that 
addresses the contribution of individual promoter 
elements to the process of transcription initiation. 
However, to understand these interactions, we must 
fi rst discuss the identifi ed steps in transcription 
initiation that lead to the start of transcription.

The closed (RPc) polymerase/
promoter complex
Initial recognition and binding of promoter DNA 
(P) by RNA polymerase (R) is referred to as closed 
complex, RPc (Fig. 2), because the DNA is 

fully double-stranded (ds) or closed. In RPc the 
polymerase specifi cally recognizes ds binding ele-
ments and is able to form a complex with the DNA 
detectable by electrophoretic mobility shift assay 
(EMSA). As we detail in sections below, specifi c 
promoter elements that may be used for recognition 
include: UP elements (positioned between –60 and 
–40) that are bound by the C-terminal domains of 
the α subunits of core (α-CTDs), a –35 element 
that is recognized by residues in σ70 region 4, a 
TGn motif that is recognized by residues in σ70 
region 3, and sequences within a –10 element, 
primarily the base pair at −12, that is recognized 
by residues in σ70 region 2 (Fig. 1 and 2). Although 
the RPc complex is specifi c, it is also readily 
reversible and therefore, easily challenged by the 
presence of competitor such as nonspecifi c DNA 
or the polyanion heparin. Footprinting data dem-
onstrate that the polymerase initially protects the 
DNA from cleavage from at least −55 to +5. How-
ever, this short footprint is only seen for the earliest 
closed complex when footprints are carried out at 
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Figure 2. (A) Steps in transcription initiation. R (polymerase) and P (promoter) fi rst interact to form a closed complex (RPc). This complex 
then proceeds through intermediates (I1 and I2) to form the open complex (RPo). (B) Cartoon depicting polymerase promoter contacts in 
RPc and RPo. Core polymerase (subunits β, β1, α2, and ω) is shown in teal, σ70 is shown in yellow, and the DNA is shown in magenta. 
Interactions between the C-terminal domains of the α subunits (α CTDs) and the UP element, σ70 region 4 and the –35 element, σ70 region 
3 and the –15TGn-13 element, and σ70 region 2 and the –10 element are indicated. RPc is a closed complex in which the DNA has not yet 
entered the primary channel. Full entry of DNA into the channel is blocked by the presence of σ70 region 1.1. In RPo, σ70 region 1.1 has 
moved, the DNA from around −11 to +3 is unwound, the template strand has descended into the active site of polymerase, and a portion of 
β′, called the clamp, has secured the downstream DNA (Kontur et al. 2006). See text for details and additional references.
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lower temperatures (e.g. 8 oC) (Schickor et al. 
1990) or with polymerase mutants (Cook and 
deHaseth, 2007) that trap the complex at this stage 
of the process. This protection pattern is consistent 
with the idea that in RPc the promoter DNA lies 
outside of the polymerase primary channel and is 
mostly undistorted (Kontur et al. 2006; Mekler 
et al. 2002; Murakami and Darst, 2003).

Kinetic intermediates on the path 
from RPc to RPo
For transcription initiation to occur, RPc must tran-
sition into a species, RPo, in which the DNA is both 
bent and unwound (open), and polymerase has 
undergone major conformational changes, called 
isomerization. Kinetic analyses (Buc and McClure, 
1985; Craig et al. 1998; Davis et al. 2007a; Kontur 
et al. 2006; McKane et al. 2001; Saecker et al. 2002; 
Schickor et al. 1990; Sclavi et al. 2005; Spassky et al. 
1985; Straney and Crothers, 1985; Straney and 
Crothers, 1987a; Straney and Crothers, 1987b) have 
revealed two signifi cant intermediates in the pathway 
from RPc to RPo. For the lambda promoter PR, the 
fi rst intermediate I1 is characterized by a bending of 
the DNA and the extension of the footprint to +20. 
Recent work suggests that this early step may be 
facilitated by the presence of far upstream DNA via 
interaction with other components of core (Davis 
et al. 2005; Davis et al. 2007a; Ross and Gourse, 
2005). Wrapping of upstream DNA has been pro-
posed to reposition portions of the β and β′ subunits 
called the jaws, widening the primary channel, and 
allowing the DNA to move into the downstream end 
of this channel (Saecker et al. 2002) (Davis et al. 
2007b). Alternatively, (or in addition) contacts 
between the far upstream DNA and the α-CTD of 
RNAP may aid in this transition (Ross and Gourse, 
2005). However, despite these changes, in I1 the 
polymerase has not yet fully undergone its isomeri-
zation process, and, thus, I1 is competitor sensitive.

A later intermediate for lambda PR, I2, requires 
a large conformational change in polymerase. 
Because σ70 region 1.1 (the N-terminal 100 residues 
of σ70) is thought to reside within the primary chan-
nel in the absence of DNA (Kontur et al. 2006; 
Mekler et al. 2002; Murakami and Darst, 2003), 
region 1.1 must relocate to make the channel fully 
accessible for the DNA (Fig. 2B). The movement 
of region 1.1 out of the channel is proposed to be 
coupled to the late folding of portions of the β′ 
subunit, designated the ‘clamp’. Movement of 

region 1.1 can affect the rate of the transition from 
RPc to RPo, but this modulation varies with the 
promoter context (Hook-Barnard and Hinton, 
unpublished) (Vuthoori et al. 2001; Wilson and 
Dombroski, 1997). Also, in I2, DNA downstream of 
–12 begins to unwind and the template strand begins 
its decent in the active site (Kontur et al. 2006). 
Evidence indicates that the –11A in the –10 element 
is crucial for instigating the melting process, which 
then propagates downstream through the start site 
(Fenton and Gralla, 2001; Lim et al. 2001; Tsujikawa 
et al. 2002). It is currently unclear which begins fi rst, 
movement of region 1.1 out of the channel or DNA 
melting. However, the movement of region 1.1, 
together with DNA melting appears to be the rate-
limiting step, and the order may be determined by 
the promoter context.

The open (RPo) polymerase/
promoter complex
The stable RPo species is achieved when the DNA 
around the transcriptional start site is fully separated, 
creating a transcription bubble from around –11 to 
+3, the template strand is located in the active site 
with the +1 nucleotide ready for base paring with 
incoming NTPs, and the polymerase ‘clamp’ fully 
closes onto the DNA that is lying in the DNA chan-
nel (Fig. 2B) (Brodolin et al. 2005; Davis et al. 
2007a; Kainz and Roberts, 1992; Lim et al. 2001; 
Nguyen and Burgess, 1997; Sasse-Dwight and 
Gralla, 1989; Sasse-Dwight and Gralla, 1991). In 
RPo, the nontemplate strand nucleotides of the −10 
element interact with σ region 2.3, stabilizing the 
polymerase-promoter complex. Additionally, the 
nucleotide at −5 may be recognized by σ70 region 
1.2 (Feklistov et al. 2006; Haugen et al. 2006; Zenkin 
et al. 2007). RPo is the primary species at 37 oC and 
the DNase footprint at RPo typically extends from 
–55 to +25 (Davis et al. 2007a; Schickor et al. 1990). 
RPo is usually resistant to competition, although the 
stability of this complex varies with the promoter 
context (Haugen et al. 2006; Vuthoori et al. 2001).

Double-Stranded Promoter 
Elements Involved in Transcription 
Initiation
For more than 25 years, it has been known that 
σ70-dependent promoters require specifi c sequences 
for effi cient transcription. Early work revealed 
consensus sequences at the –35 (–35TTGACA–30) 
and –10 (–12TATAAT–7) regions of σ70-dependent 
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promoters as well as a weaker consensus of 
–17trTGn–13 (Fig. 3) ((Harley and Reynolds, 1987; 
Hawley and McClure, 1983; Lisser and Margalit, 
1993; Lisser and Margalit, 1994; Siebenlist and 
Gilbert, 1980; Siebenlist et al. 1980); reviewed in 
(Campbell et al. 2002; Gruber and Gross, 2003; 
Murakami et al. 2002a)). Subsequent genetic, 
biochemical, and structural studies have demon-
strated that specifi c residues within σ70 interact 
both directly and indirectly with bases within these 
consensus elements (Fig. 1).

Recognition of the −35 element
For the –35 element, specifi c substitutions within 
σ70 region 4.2 have been shown to relax the 
specifi city of polymerase for bps at positions –33 

(E585Q, R588H) (Gardella et al. 1989; Keener 
and Nomura, 1993) and –31 (R584C) (Gregory 
et al. 2005; Siegele et al. 1989) (Fig. 1A). In addi-
tion, in vitro, polymerase containing the σ70 
R584C or R588H mutation shows the same 
relaxed specifi city (Makela and Hinton, unpub-
lished), and polymerase with an σ70 R584A sub-
stitution prefers a –31 A:T bp rather than the wild 
type C:G (Gregory et al. 2005). These results have 
suggested that σ70 residues R584, E585, R588 
interact directly with base determinants at these 
positions. The structure of Thermus aquaticus 
σ region 4 in a complex with –35 DNA element 
DNA has revealed an extensive interaction 
between 11 residues in σ70 region 4 and 9 bp of 
the −35 element DNA, either via specifi c contact 
of base determinants, water mediated contact, 

                                                  
                      
          NNAWWWWWTTTTTAAAAAARNR   TTGACA                trTGnT  ATAAT G     A

Plac       GCTCACTCATTAGGCACCCCAGGC  TTTACA CTTTATGCTTCCG  GCTCGT  ATGTTGT GTGGAATTGTGAG
lacUV5                               TTTACA CTTTATGCTTCCG  GCTCGT  ATAATGT GTGGAATTGTGAG
tac                                  TTGACA  ATTAATCATCCG  GCTCGT  ATAATGT GTGGAATTGTGAG
 PR        GATAAATATCTAACACCGTGCGTG  TTGACT  ATTTTACCTCTG  GCGGTG  ATAATGG TTGCATGTACTAA
T7A1       ATTTAAAATTTATCAAAAAGAGTA  TTGACT  TAAAGTCTAACC  TATAGG  ATACTTA CAGCCATCGAGAG
rrbB P1    CAGAAAATTATTTTAAAATTCCTC  TTGTCA   GGCCGGAATAA  CTCCCT  ATAATGC GCCACCACTGACA

 Pre       TCTCGATTCGTAGAGCCTCGTTGC  GTTTGT  TTGCACGAACCA  TATGTA  AGTATTT CCTTAGATAACAA
galP1      ATTCCACTAATTTATTCCATGTCA  CACTTT  TCGCATCTTTGT  TATGCT  ATGGTTA TTTCATACCATAA
PcysG      TGGGTAATACTTTATCAGGTGCCG  TATTCA  TGGGATTGGGTT  ATTGGT  ATGCTAC GCCGAAAGCGAAT
PompF      TTTATCTTTGTAGCACTTTCACGG  TAGCGA  AACGTTAGTTTG  AATGGA  AAGATGC CTGCAGACACATA
PproU      TCATGCCACATTTGCCATCAGGGG  TTGCCT   CAGATTCTCAG  TATGTT  AGGGTAG AAAAAAGTGACTA
PtyrT      AGTTCATTTTTCTCAACGTAACAC  TTTACA   GCGGCGCGTCA  TTTGAT  ATGATGC GCCCCGCTTCCCG
PuvrA      CGGGTAATGCATTCCAATACTGTA  TATTCA  TTCAGGTCAATT  TGTGTC  ATAATTA ACCGTTTGTGATC

Pminor     GTGACCCAATAATGTGGGATAACA  TTGAAA  AGATTAAAGAAA  TATGGG  AAAACTC TGGAAAATCCGGG
gapAP1     TCGCAATGATTGACACGATTCCGC  TTGACG  CTGCGTAAGGTT  TTTGTA  ATTTTAC AGGCAACCTTTTA
PcspA      TCATAAATATGAAAAATAATTGTG  TTGCAT  CACCCGCCAATG  CGTGGC  TTAATGC ACATCAACGGTTT
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Figure 3. Sequences of various σ70-dependent promoters. Consensus sequences of DNA elements are shown at the top in red. (Sequences 
are given 5′ 3′ of the nontemplate (top) strand; W = A or T; R = A or G; Y= C or T; N = any nucleotide) E. coli promoters are from the E. coli 
genome (accession number NC000913): Plac, 365627-365559; rrnBP1, 4164330-4164396; galP1, 791363-791296; PcysG, 3495716-
3495783; PompF, 986374-986307; PproU, 2802718-2802784; PtyrT, 1286947-1286881; PuvrA, 4272014-4271947; gapAP1, 1860700-
1860767; PcspA, 3717854-3717919. The bp changes present in the Plac derivatives lacUV5 (Stefano et al. 1980) and Ptac (Mulligan et al. 
1985) are indicated. λ promoters are from the λ genome (accession number J02459.1): PR, 37964-38031; Pre, 38402-38335. Pminor is 
from the T4 genome (accession number AF158101.6; positions 23736-23670). T7A1 is from the T7 genome (accession number AY264774.1; 
positions 438-505). (It should be noted that among various references, promoter sequences with the same name can differ at the farthest 
upstream and downstream portions of the sequences because of differences in the length of DNA cloned for the particular study.) Matches 
to consensus sequences within the various promoter sequences are given in red. For the –5 contact, the preferred base is a G (shown in 
red) and the highly nonpreferred base is a C (shown in blue). The involvement of portions of promoter DNA with earlier steps of transcription 
initiation (polymerase binding) or later steps (polymerase isomerization) is indicated at the bottom.
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or contact with the DNA backbone (Campbell 
et al. 2002). Consistent with the previous work, 
the specifi c contacts with template base determi-
nants are seen at positions −31 and −33 with 
residues R584 and E585, respectively. These 
residues lie within the second helix of a classic 
DNA binding helix-turn-helix motif. The structure 
does not show a specifi c contact between R588 
and a –35 bp element, but suggests that the posi-
tion of R588 could affect E585, (Campbell et al. 
2002) or perhaps it makes direct contact in the 
context of the entire polymerase.

Recognition of the −10 element
Although the −10 element (−12TATAAT−7) is widely 
accepted as being crucial for promoter recognition, 
the –12 T: A position is the only base pair for which 
suppressor amino acids have been found. Both 
Q437H (Waldburger et al. 1990) and T440I 
(Siegele et al. 1989) within σ70 region 2.4 suppress 
a T:A to C:G mutation at position –12 (Fig. 1A). 
The 6.5 Å resolution structure of T. aquaticus 
polymerase with DNA (Murakami et al. 2002a) is 
consistent with this work. It shows residues that 
correspond to Q437 and T440 in E. coli σ70 posi-
tioned on the same side of an α helix facing the 
major groove at position –12. Another study has 
shown that mutations at σ70 residues W434, R436, 
R441, or R451 can impair binding of polymerase 
to a duplex promoter sequence from –41 to –12 
(Fenton et al. 2000), suggesting that residues both 
in σ70 region 2.4 and in region 2.3 can infl uence 
binding to position –12. Recent work using poly-
merase with quadruple mutations in region 2.3 also 
argues that this region of σ70 may contact portions 
of the –10 element while it is in ds form (Cook and 
deHaseth, 2007).

Further information about σ70 recognition of 
ds DNA within the −10 element has been obtained 
using a portion of free σ70. Although full length 
σ70 does not bind DNA, a weak interaction of σ70 
lacking region 1.1 with ds DNA can be detected 
using a nitrocellulose filter binding assay 
(Dombroski et al. 1992). With this assay, 
Dombroski (Dombroski, 1997) demonstrated that 
within the –10 element, only bp mutations at 
positions –12, −11, or –10 were deleterious for 
binding by a σ70 peptide containing regions 2 
through 4, suggesting again that it is the upstream 
portion of this element that is specifically 
recognized as ds DNA.

Recognition of the −15TGn−13 element
A third consensus element recognized by σ70 is the 
−15TGn−13 motif, also called the extended −10 
sequence (Keilty and Rosenberg, 1987). Optimal 
activity requires the presence of both the –15 T:A 
and −14 G:C; although depending on the promoter, 
the presence of just one of these bp can be advanta-
geous for promoter activity even when the other is 
mutated (Burr et al. 2000; Grana et al. 1985; Keilty 
and Rosenberg, 1987; Mitchell et al. 2003). Bio-
chemistry and suppressor genetics, including com-
prehensive alanine mutagenesis throughout region 
3 and in vitro transcription assays using mutant σ70 
proteins, have indicated that residues E458 and 
H455 within σ70 region 3.0 interact with the −14G:
C base pair (Barne et al. 1997; Bown et al. 1999; 
Sanderson et al. 2003) (Fig. 1A). Glutamic acid 
residues are known to interact with a cytosine deter-
minant, such as the interaction of σ70 region 4 E585 
with the C of the G:C bp at position –33, suggesting 
that E458 may contact the C base determinant of 
the G:C bp at position –14 (Barne et al. 1997). Fur-
thermore, the T. aquaticus polymerase/promoter 
structure (Murakami et al. 2002a) shows the resi-
dues analogous to H455 and E458 lying along the 
surface of the region 3 α-helix and toward the major 
groove of the extended –10 element. Mutation 
analyses have also revealed that residues 455 and 
458 in region 2.4 infl uence interaction of polymerase 
with the TGn motif. Thus, it has been suggested that 
the two α-helices, σ70 regions 2.4 and 3, comprise 
a pincer for the ds binding element of the TGn motif 
(Sanderson et al. 2003). As such, regions 2.4 and 3 
together would constitute a recognition domain for 
a ds binding promoter element −15TgnT−12 that 
includes both the TGn and the T at position −12.

In gram-positive bacterial promoters, the extended 
–10 motif extends to –17, with a consensus sequence 
of –17TRTG−14 (Helmann, 1995; Moran et al. 1982; 
Voskuil and Chambliss, 2002). For E. coli poly-
merase, the specifi c sequence at –17 and –16 can 
affect the level of transcription (Burr et al. 2000; 
Mitchell et al. 2003), but there is no evidence that 
these positions are contacted directly.

Recognition of the UP elements 
by the C-terminal domains 
of the α subunits
An early list of σ70-dependent promoter sequences 
revealed an A/T rich sequence upstream of the –35



281

Binding of E. coli RNA polymerase to promoter DNA

Gene Regulation and Systems Biology 2007: 1 

element that was present enough to seem signifi cant 
(Hawley and McClure, 1983). In addition, sequences 
within this region were found to significantly 
enhance transcription from some promoters (Chan 
and Busby, 1989) (also (Ross et al. 1993) and refer-
ences therein). Using the ribosomal promoter rrnB 
P1, Ross and co-workers demonstrated that the 
region from –40 to –60, termed an UP element, was 
specifi cally bound by the C-terminal domain of the 
α-subunits of polymerase (Gaal et al. 1996; Ross 
et al. 1993) Subsequent work has shown that 2 
subsites of A/T rich sequences, a proximal UP ele-
ment (−45 to −37) and a distal UP element (−58 to 
−45) (Estrem et al. 1998) are contacted through 
minor groove interactions with the DNA (Naryshkin 
et al. 2000; Ross et al. 2001) (Fig. 3, numbering is 
relative to the –35 element of –35TTGACA−30). Each 
element can be contacted by one of the two α sub-
units present in polymerase, and whether the 
proximal, distal or both elements are contacted can 
affect promoter recognition and activity (Cellai et al. 
2007; Typas and Hengge, 2005). Although a specifi c 
sequence is preferred for binding, the α subunits 
will also interact nonspecifi cally with this region of 
DNA (Burns et al. 1999; Ross and Gourse, 2005).

Interaction of Polymerase with 
Single-Stranded DNA Elements

Interaction of σ70 region 2.4 with an 
unpaired base at position –12
Although the T:A bp at position –12 is recognized 
by σ70 region 2.4 within the context of ds DNA, 
several lines of evidence indicate that the nontem-
plate –12 T may also be recognized when it is ss. 
Marr and Roberts (Marr and Roberts, 1997) dem-
onstrated that RNA polymerase specifi cally recog-
nizes and binds to a ss oligomer containing the 
nontemplate sequence of the –10 element and that 
a –12 T to C mutation within this oligomer is sup-
pressed by the same σ70 substitution, Q437H, that 
suppresses the –12 T:A to C:G bp change in ds 
promoter DNA. Recognition of the –12 nucleotide 
within ss DNA has also been inferred from com-
petition binding experiments which have demon-
strated the specifi city of polymerase for a –12 T 
(Qiu and Helmann, 1999). Finally, the sensitivity 
of the nontemplate T at –12 to KMnO4, which will 
react with unpaired thymines and to a lesser extent 
cytosines, seems to depend on the particular 

promoter and conditions (Davis et al. 2007a; 
Hook-Barnard et al. 2006; Kainz and Roberts, 
1992; Lim et al. 2001; Nguyen and Burgess, 1997; 
Sasse-Dwight and Gralla, 1989; Sasse-Dwight and 
Gralla, 1991; Thouvenot et al. 2004). Thus, 
whether an interaction between σ70 and position 
–12 in the context of ss DNA is crucial for the 
formation of a productive polymerase/promoter 
complex is not known.

Interaction of σ70 region 2.3 
with positions –11 through –7 
of the nontemplate strand
A large body of work, detailed below, has demon-
strated that polymerase recognizes the –10 element 
positions −11ATAAT−7 as ss nontemplate DNA 
formed at the transcription bubble surrounding the 
start of transcription. In most of these studies, the 
A at –11, thought to nucleate strand opening, and 
the nearly invariant T at −7 have been shown to be 
particularly important, with lesser and varying 
contributions from the bases at positions –10 
through –8. In many cases, these conclusions have 
been driven by EMSAs of polymerase and DNA 
performed in the absence and presence of a chal-
lenge, such as heparin. This analysis is meant to 
distinguish between two types of binding: 1) 
unstable binding of polymerase to fully duplex 
DNA, which should only be seen in the absence 
of the competitor challenge, and 2) the stable, 
competitor resistant complex. For most promoters, 
the unstable form is thought to be at an early step 
in initiation, like RPc or I1. The stable form is 
presumed to be at a late step, such as RPo, in which 
the DNA is unwound from position –11 down-
stream and conformational changes have resulted 
in the isomerization of the polymerase. In some 
cases, the presence of the transcription bubble has 
been confi rmed by KMnO4 footprinting.

The fi rst work to demonstrate that polymerase 
specifi cally recognizes only the nontemplate strand 
of the –10 element was reported by Roberts and 
Roberts (Roberts and Roberts, 1996). These authors 
investigated the ability of polymerase to form an 
open complex with promoter DNA containing 
mismatched nucleotides at the crucial –12, −11, and 
–7 positions on either the non-template or template 
strand of the –10 element. To do this analysis they 
performed single round transcription assays after 
allowing the polymerase and DNA to form 
heparin-resistant complexes. Mutations away from 
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consensus on the nontemplate strand at each of these 
three positions were deleterious. In contrast, muta-
tions of template strand bases at these positions were 
inconsequential. EMSA analysis demonstrated that 
polymerase will bind a ss oligomer that contains the 
nontemplate sequence of the –10 element (Marr and 
Roberts, 1997; Qiu and Helmann, 1999). In these 
cases, binding specifi city, which was determined by 
competition of the complex with a mutant ss oligo-
mer, showed that mutations away from the –10 
consensus sequence impaired binding. These stud-
ies confi rmed the importance of the nucleotide 
identity on the nontemplate strand.

Contact between polymerase and the nontemplate 
strand positions –11 to –7 has also been inferred in 
studies using fork template DNA substrates. Fork 
junction templates are ds DNAs with a 3′ extension 
on the nontemplate strand that includes part or all of 
the –10 element. One set of experiments has used 
σ70 labeled with (Eu+3)DTPA-AMCA-maleimide to 
assay luminescence resonance energy transfer to fork 
junction DNA having a 3′ nontemplate extension of 
–11 to –4 and labeled with the fl uorophore Cy5 
(Matlock and Heyduk, 2000). Binding, as assayed 
by the energy transfer, was measured in the presence 
of a non-labeled DNA containing a specifi c mutation. 
This work again indicated that the nontemplate 
–11 A and –7 T are particularly important for binding. 
In addition, substitutions of the –11 A with a series 
of adenine analogs argued that the N1 position of the 
–11 adenine is crucial for polymerase contact. This 
suggests that the interaction of polymerase with this 
base determinant could help disrupt the –11A:T bp, 
nucleating the strand separation that is needed for 
the open complex.

A series of studies from the Gralla lab has inves-
tigated the binding of polymerase to fork junction 
DNAs using EMSAs with or without a heparin chal-
lenge. Experiments with duplex promoter DNA 
from –41 to –12 with a nontemplate ss extension 
from –11 to –7 showed that specifi c base mutations 
within the nontemplate extension impair the forma-
tion of the stable, isomerized complex and again 
demonstrated the importance of the sequence of the 
nontemplate strand, especially at positions −11 and 
–7, for stable binding (Fenton and Gralla, 2001). 
Furthermore, even a fork junction substrate contain-
ing a single, nontemplate base 3' extension at posi-
tion –11 can form a heparin resistant complex if the 
–11 nucleotide is the consensus A (Guo and Gralla, 
1998) or the adenine analog 2-aminopurine, which 
has an amino group at C2 rather than C6 (Tsujikawa 

et al. 2002). These results suggested that the interac-
tion of polymerase with the nontemplate –11 A is 
suffi cient for generating a stable polymerase/pro-
moter complex, in which the polymerase has pre-
sumably isomerized.

Interestingly, the effect of a 2-aminopurine at 
–11 in duplex promoter DNA depends on the par-
ticular promoter context. In one experiment using 
the natural Pgal promoters, which have less than 
ideal promoter elements, this substitution com-
pletely inhibited strand separation (Lim et al. 
2001), while in another study using an ideal pro-
moter (a perfect –35 element, a TGn motif, and a 
perfect –10 element) strand separation was unaf-
fected (Tsujikawa et al. 2002). It has been proposed 
that a fl ipping out of the –11 A nucleates strand 
separation, which then propagates downstream 
(Helmann and Chamberlin, 1988; Helmann and 
deHaseth, 1999; Young et al. 2004). In this model, 
polymerase could facilitate the fl ip or capture the 
–11 A after the fl ip. Thus, the ability of polymerase 
to engage in this process when a 2-aminopurine is 
present at position –11 may be infl uenced by the 
strength of the polymerase interactions with other 
promoter elements.

Clusters of aromatic residues can signify a ss 
DNA or RNA binding motif (Bochkarev et al. 1995; 
Burd and Dreyfuss, 1994; Helmann and Chamberlin, 
1988; Shamoo et al. 1995). Structural analysis of 
σ70 region 2 (Malhotra et al. 1996) suggested that 
several aromatic residues lying along an α-helix 
face in region 2.3 might interact with ss DNA in 
the transcription bubble. Multiple alanine substitu-
tions at Y425, F427, Y430, W433, and/or W434 in 
various combinations render polymerase signifi -
cantly impaired in open, but not closed, complex 
formation at the lambda promoters PR and PRM 
(Cook and deHaseth, 2007; Panaghie et al. 2000). 
Earlier work has shown that substitutions at cor-
responding residues within region 2.3 of the pri-
mary σ of B. subtilis are defective for binding to 
an oligonucleotide containing the nontemplate –10 
sequence (Juang and Helmann, 1994). However, it 
should be noted that despite the extensive analyses 
indicating that the –11ATAAT–7 sequence is highly 
conserved, that the –11 A appears to be crucial for 
starting the process of strand separation, and that 
various aromatic residues in region 2.3 are impor-
tant for ss DNA binding and polymerase function, 
defi nitive residue/base interactions have not been 
identifi ed [(Fenton and Gralla, 2003; Schroeder 
et al. 2007) and references therein].
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Recognition of nontemplate G
at position −5
Studies have indicated that nucleotides downstream 
of the –10 element are contacted by polymerase, and 
the role of σ70 region 1.2 in these interactions has been 
demonstrated (Feklistov et al. 2006; Haugen et al. 
2006; Zenkin et al. 2007). At the ribosomal promoter 
rrnBP1, RPo is unstable, and this short half-life is a 
crucial factor in transcriptional regulation in response 
to growth conditions and nutrient availability (Paul 
et al. 2004). Experiments investigating this instability 
have revealed that the nucleotide on the nontemplate 
strand at position −5 can directly interact with σ70 
region 1.2, stabilizing RPo (Haugen et al. 2006) (Fig. 
1A). The identity of the nontemplate base two bases 
downstream of the −10 element (−5 at most promot-
ers, but –7 at rrnBP1) is crucial in determining RPo 
half-life. For example, changing the nontemplate –5 
nucleotide from a C to a G results in a dramatic 
increase in half-life at rrnBP1. Conversely, substitut-
ing the base at –5 for a C at other promoters (Pgal, 
λPR, λPL) signifi cantly reduces RPo half-life. The –5G 
was shown to crosslink to σ70 region 1.2, indicating a 
direct contact between this region and downstream 
DNA. Interestingly, the crosslink between region 1.2 
and the –5 base was strongest when the σ70 region 1.1 
was missing. This result suggests that either region 
1.1 blocks access to the crosslinking site, or that in the 
absence of region 1.1 the contact between region 1.2 
and −5G is longer lived. The latter interpretation 
implies that the region 1.2/DNA interaction is transient 
and may be modulated by the movement of 1.1.

The strength of the region 1.2/−5 nucleotide 
interaction appears to play an important role in 
determining the inherent stability of RPo. The 
complex half-life can then be further infl uenced 
by cellular factors, such as NTP concentration, the 
small effector molecule ppGpp, and the protein 
factor DksA (Gralla, 2005; Rutherford et al. 2007). 
Thus, the half-life of RPo can be a major determi-
nant of transcriptional activity and is the central 
conveyor of regulation at rrnBP1.

Importance of Spacers 
between Elements

The spacer between the –35 
and –10 elements
In addition to the sequence determinants, RNA 
polymerase also has specific spacer length 

requirements for promoter recognition. An early 
analysis (Hawley and McClure, 1983) of 112 char-
acterized bacterial and phage promoters found that 
50% had a spacer of 17 bp, while 20% had a spacer 
of 16 bp and another 20% had a spacer of 18 bp. 
A more recent analysis indicated that in E. coli 
44% of promoters have a spacer length of 17 bp, 
although promoters with a TGn motif are more 
likely to have a spacer of 18 or more bp (Mitchell 
et al. 2003). It is well established that promoters 
with a 17 bp spacer yield higher levels of transcrip-
tion than otherwise identical promoters that have 
spacers of 16 or 18 bp (Aoyama et al. 1983; Mul-
ligan et al. 1985; Stefano and Gralla, 1982).

The preferred spacer length between the –10 
and −35 promoter elements is dictated by the 
distance between recognition domains within the 
polymerase structure. This distance is set in part, 
by the interaction of σ70 region 4 with a structure 
in core called the β-fl ap, which positions region 
4 to correctly make contact with the –35 sequence 
while region 2 interacts with the –10 sequences 
(Kuznedelov et al. 2002; Murakami et al. 2002b; 
Vassylyev et al. 2002). The role of the sigma sub-
unit in perceiving the spacer length was fi rst 
demonstrated using free σ70 polypeptides and the 
tac promoter with spacer lengths ranging from 11 
to 26 bp (Dombroski et al. 1996). σ70 peptides 
containing either region 2 or region 4 alone bound 
the promoter, unaffected by spacer length. How-
ever, when the polypeptide included regions 2 
through 4, the length of the spacer became so 
important that a change of +/−1 bp rendered the 
promoter no more recognizable than non-promoter 
DNA. This work indicated that the sigma regions 
4 and 2 simultaneously contact the −35 and the 
–10 elements. Luminescence Resonance Energy 
Transfer measurements have also showed that σ70 
undergoes a conformational change upon binding 
to core, which alters the distance between regions 
2.4 and 4.2 from 34Å apart in free σ70 to 50Å in 
holoenzyme (Callaci et al. 1998; Callaci et al. 
1999). The 50Å distance between the recognition 
domains is conducive to interacting with −10 and 
−35 elements separated by the preferred 17 bp 
spacer.

As discussed above, polymerase is known to 
make contacts just upstream of the –10 element at 
the −15TGn−13 motif. Although polymerase does 
not appear to make specifi c contacts with the spacer 
nucleotides upstream of position –15, the sequence 
of this spacer, in addition to its length, can affect 
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promoter function (Chan and Busby, 1989; Chan 
et al. 1990; Liu et al. 2004b; Mellies et al. 1994; 
Repoila and Gottesman, 2003; Thouvenot et al. 
2004; Warne and deHaseth, 1993). For example, 
changing the spacer from GC- to AT-rich sequences 
increases promoter activity and also affects regula-
tion at Plac (Liu et al. 2004b) and the dsrA pro-
moter, (Repoila and Gottesman, 2003), while 
individual base substitutions in the spacer affect 
transcription from galP1 (Chan and Busby, 1989), 
gapAP1 (Thouvenot et al. 2004), and the proU 
promoter (Mellies et al. 1994). Due to the lack of 
any known specifi c contacts, it has been assumed 
that the spacer sequences may affect the structure 
or trajectory of the promoter DNA.

The spacer between the –10 element 
and position +1, the start site
of transcription
The distance between the −10 element and tran-
scriptional start site, which is constrained by the 
polymerase structure (Murakami et al. 2002b; 
Vassylyev et al. 2002), can also affect transcription 
levels. The preference of starting nucleotide and 
location relative to the −10 has been investigated 
in detail at the pyrC promoter (Liu and Turnbough, 
1994). This study found that the preferred +1 
nucleotide is A≥G>T>>C and is typically located 
7>8>9 nucleotides downstream of the –7 base of 
the –10 element (Fig. 3). Similar results have been 
reported for PlacUV5 (Jeong and Kang, 1994) and 
the gal promoters galP1 and galP2 (Lewis and 
Adhya, 2004). The conclusions of these studies are 
consistent with those derived from a computer 
analysis (O’Neill, 1989) of a previous promoter 
set (Hawley and McClure, 1983).

Mix and Match Elements 
for Binding of ds DNA Elements

The –35/10 promoter
Promoters containing good matches to the −35 and 
−10 elements represent the classic group of E. coli 
promoters. Although conservation of each base pair 
varies somewhat within these elements, depending 
upon the promoters included in the data set, the 
relative importance of the bases is fairly consistent. 
The −12 T:A (79%), −11 A:T (87%), and −7 T:A 
(90%) bases are the most highly conserved within 
the –10 element (Lisser and Margalit, 1993; Mitchell 

et al. 2003). Within the −35 region, the –35 T:A, –34 
T:A, and –33 G:C are each found at >69% of pro-
moters (Lisser and Margalit, 1993). Interestingly, 
the –31 C:G bp, which is contacted directly on the 
template strand, is less conserved (~50%) (Lisser 
and Margalit, 1993). As expected, a very strong 
correlation between the consensus sequence and 
promoter activity has been demonstrated [reviewed 
in (Hawley and McClure, 1983)].

Several natural promoters have been studied as 
models for the –10/–35 class including T7A1, λ 
PR, and Plac (Fig. 3). Plac is perhaps the best 
characterized of all promoters and has served as 
a paradigm for the −10/–35 promoter class 
(Borukhov and Lee, 2005; Reznikoff, 1992; Sil-
verstone et al. 1970; Stefano and Gralla, 1982). 
However, Plac deviates from consensus in several 
ways. The –35 element is TTTACA, the –10 element 
is TATGTT, and there is an 18 bp spacer (Fig. 3). 
As a result, Plac transcription is at fairly low lev-
els until activated by CRP (c-AMP receptor pro-
tein), in response to glucose level. Several mutants 
of Plac, which make the –10 and/or the –35 ele-
ments more consensus, are CRP-independent 
(Arditti et al. 1968; Silverstone et al. 1970). Sub-
sequent studies have demonstrated the importance 
of the −10, the –35, and the spacer regions for 
these promoters (Ackerson and Gralla, 1983; Chan 
and Lebowitz, 1990; Liu et al. 2004b; Makoff and 
Oxer, 1991; Mandecki and Reznikoff, 1982). One 
Plac derivative, lacUV5 (Fig. 3), has been studied 
extensively by genetic, biochemical, and structural 
methods (Stefano et al. 1980; Stefano and Gralla, 
1982) [reviewed in (Borukhov and Lee, 2005; 
Siebenlist et al. 1980)]. The lacUV5 mutation, 
which changes the Plac −10 element (TATGTT) 
to the consensus sequence (TATAAT), increases 
transcription and renders lacUV5 independent of 
the CRP activator (Arditti et al. 1968; Silverstone 
et al. 1970). Comparative studies have demon-
strated that, although lacUV5 is a stronger pro-
moter, whose kinetics of RPo formation differ 
from Plac, the fi nal RPo complex is quite similar 
to that of Plac (Meiklejohn and Gralla, 1989) 
(Fenton and Gralla, 2001). Footprinting of RPo at 
these promoters indicates that the transcription 
bubble is from –12/–11 to +4, and the DNA is 
protected from cleavage from −55 to +20 for both 
promoters (Sasse-Dwight and Gralla, 1989; Spassky 
et al. 1984; Spassky et al. 1985).

Despite their classifi cation as –35/–10 promot-
ers, many promoters in this class have other 
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sequences that contribute to promoter activity. For 
instance, AT-rich sequences upstream of λPR and 
T7A1 signifi cantly increase open complex forma-
tion (Cellai et al. 2007; Davis et al. 2005; Sclavi 
et al. 2005). Plac (and therefore lacUV5) has a T: A 
bp at position –15 that infl uences transcription 
levels (Liu et al. 2004a; Munson et al. 1984). Fur-
thermore, the T7A1 promoter has a –15 T:A and 
λPR has a –14 G:C, which may compensate for 
their noncanonical bp at the highly conserved −12 
position. It is well established that the effect of 
promoter mutations is dependent upon context and 
that strong polymerase-DNA contacts can com-
pensate for weaker sites of interaction (Grana et al. 
1988; Michalowski et al. 2004; Miroslavova and 
Busby, 2006; Moyle et al. 1991), and simply assign-
ing a promoter by its matches to the –10 and –35 
elements can fail to identify active promoters 
in vivo (Kawano et al. 2005). Thus, polymerase-
promoter contacts outside of the –10 and –35 ele-
ments infl uence the activity of classic –10/–35 
promoters and these effects should be given con-
sideration when interpreting data.

The TGn/-10 promoter (extended 
–10 promoter)
An early compilation and analysis of promoters 
indicated that there was some preference for the 
TG sequence upstream of −10 (Hawley and 
McClure, 1983). Genetic and biochemical data also 
suggested the importance of polymerase-DNA 
contact in this region of DNA (Berman and Landy, 
1979; Busby et al. 1984; Grana et al. 1985; 
Ponnambalam et al. 1986; Siebenlist and Gilbert, 
1980). More recently, 554 promoters of E. coli, 
whose +1 start sties had been determined and whose 
–10 elements had been identifi ed, were analyzed 
(Burr et al. 2000; Mitchell et al. 2003). This work 
revealed that −15TGn−13 is present in 20% of E. coli 
promoters. In addition, 43% of the 554 promoters 
have a G:C at position −14. Another 246 promoters 
were eliminated from the analysis because they 
were not well defi ned, leaving the possibility that 
the occurrence of –15T or –14G is even higher. This 
could be the case since promoters that deviate sig-
nificantly from consensus in the –10 and –35 
elements are more likely to have a TGn motif and 
may be less well-characterized.

Investigations into the importance of the 
−15TGn−13 motif have shown that this sequence can 
compensate for a poor or missing –35 element. 

One such TGn/−10 promoter is λPre (Fig. 3), 
which has a very poor match to the σ70 –35 ele-
ment, a noncanonical −10 element (−12AAGTAT−7), 
and requires an activator, CII, for detectable pro-
moter function (Keilty and Rosenberg, 1987). The 
mutant derivative λPre* was created with a con-
sensus −10 element, and although it still has no 
recognizable −35 element, λPre* is independent 
of CII (Keilty and Rosenberg, 1987). Both λPre 
and λPre* require the TGn motif, and neither 
promoter requires specifi c sequences within the 
–35 region (Keilty and Rosenberg, 1987). In fact, 
region 4.2 of σ70, which contacts the −35 element, 
can be removed entirely without eliminating tran-
scription from λPre* (Kumar et al. 1993). In 
contrast, a λPre* mutant, in which the –15TG–14 
was changed to –15CC−14, and the promoter Pcons, 
which has consensus −35 and −10, but no TGn, 
have little activity without σ70 region 4.2 (Kumar 
et al. 1993).

Another well-studied member of the TGn/–10 
class is galP1 (Fig. 3). galP1 has an imperfect 
extended –10 sequence (TGnTATGGT) and no 
recognizable homology to the σ70 –35 element. As 
with λPre, the −35 region of galP1 is inessential 
for transcription (Ponnambalam et al. 1986), 
whereas the TGn is required (Busby et al. 1984). 
In addition, galP1 transcription is dependent on 
A/T rich upstream sequences or CRP for activation 
(Chan and Busby, 1989). Perfecting the −10 ele-
ment makes galP1 independent of CRP; however, 
this derivative still requires TGn (Kuhnke et al. 
1987; Kumar et al. 1993; Kumar et al. 1994). In 
contrast, creation of an ideal −35 element allows 
mutation of the TGn, yielding a functional and CRP 
independent promoter (Chan and Busby, 1989; 
Chan et al. 1990).

Footprinting analyses of the open complex at 
galP1 have indicated that the promoter region is 
protected from –55 to +20, similar to that observed 
with the –35/–10 promoters, yet there is less pro-
tection of the –35 region (Grimes et al. 1991). The 
protection upstream from the –35 element to –55 
is dependent on the presence of the α-CTD (Burns 
et al. 1999). At another TGn promoter, PcysG 
(Fig. 3), the DNA is well protected from –55 to 
+20 with an additional weak protection extending 
upstream to –80, presumably due to interactions 
with the UP elements (Belyaeva et al. 1993). These 
results are consistent with the model that at a 
TGn/−10 promoter, polymerase uses other contacts 
to compensate for the lack of the σ70 region 4/−35 
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interaction (Busby et al. 1987). However, KMnO4 
footprints are the same (–11 to +3) whether using 
galP1 or galPcon, a derivative of galP1 in which 
the sequences upstream of –12 have been replaced, 
mutating the TGn and inserting a perfect –35 ele-
ment (Grimes et al. 1991). Thus, a change in 
upstream contacts does not appear to alter the fi nal 
transcription bubble.

Unlike λPre, galP1, and PcysG, other promot-
ers, such as those for proU (Mellies et al. 1994) 
(Fig. 3) and tyrT (Berman and Landy, 1979) 
(Fig. 3) have been characterized as extended –10 
promoters, but they have reasonable matches to 
the –35 element, and for the tyrT promoter, this 
element is essential for activity (Lamond and 
Travers, 1983). In addition, the TGn promoter for 
uvrA (Fig. 3) has a relatively poor –35 element, 
yet this element still enhances transcription 
(Backendorf et al. 1983). This is also the case 
with the ompF promoter (Fig. 3), which has a 
weakly conserved −10 region (AAAGAT) and 
requires the TGn motif for function (Mitchell 
et al. 2003; Taylor et al. 1985). ompF is activated 
by OmpR, whose binding site overlaps the –35 
region, yet transcription is also infl uenced by the 
–35 element in the absence of OmpR (Inokuchi 
et al. 1984; Mitchell et al. 2003; Taylor et al. 
1985). Mutation of the –12 A:T to T:A makes 
transcription independent of the –35 region and 
OmpR (Dairi et al. 1985; Ozawa et al. 1987). In 
contrast, a ompF-tet hybrid, which has the –12 A:
T to T:A change, but also has a mutated TGn, is 
dependent upon OmpR activation (Dairi et al. 
1985). Thus, it appears that below a minimum 
number of polymerase contacts, i.e. a threshold, 
the promoter becomes activator dependent.

In summary, although extended –10 promoters 
have frequently been characterized as not requiring 
sequences upstream of position –15, this is a 
misleading generalization. Most of the examples 
discussed above require or benefi t from –35 and/or 
UP element contacts. In addition, the majority of 
TGn promoters have a –35 region with at least a 
3 out of 6 match to the –35 consensus sequence 
(Mitchell et al. 2003). As observed by Kumar et al. 
(Kumar et al. 1993), “there are no clear examples 
of “pure” extended −10 promoters lacking any −35 
consensus or activator protein-binding site” 
(Kumar et al. 1993 p. 415). Furthermore, TGn pro-
moters are as likely to have an imperfect –10 ele-
ment as a nonconsensus –35 element (Mitchell 
et al. 2003). Thus, the TGn motif can compensate 

for poor or missing –35 contacts, but, as discussed 
below, it may also compensate for weak –10 
interactions.

The –35/TGn promoter
Recently, a new class of promoters has been defi ned, 
which demonstrates the role of TGn contacts in 
compensating for a weak –10 element. As dis-
cussed above, many promoters identified as 
extended −10 promoters require upstream contacts 
for full promoter function. It is also clear that the 
TGn can compensate for a −10 element with a poor 
match to consensus. In fact, as determined by 
Mitchell et al., 38% of TGn promoters have 3 or 
less matches within the –10 element consensus 
sequence, compared to 24% of non-TGn promoters 
(Mitchell et al. 2003).

One well-characterized –35/TGn promoter is 
gapAP1 (Thouvenot et al. 2004) (Fig. 3). Muta-
genesis and in vitro transcription have demon-
strated that both the –35 and TGn sequences are 
required for function at this promoter. These ele-
ments compensate for weak –10 interactions; when 
the noncanonical –10 element (−12AATTTT−7) was 
perfected, creating the sequence −15TGnTATAAT−7, 
the −35 element was no longer necessary (Thou-
venot et al. 2004). This was also the case for 
another –35/TGn promoter, Pminor (Hook-Barnard 
et al. 2006; Vuthoori et al. 2001) (Fig. 3). Both the 
–35 element and the TGn of Pminor are required 
and compensate for the poor −10 element 
(GAAAAC) (Hook-Barnard et al. 2006). Mutation 
of the –14 G:C to A:T eliminates expression, but 
the combination of this mutation with a –12 G:C 
to T:A change results in the same level of transcrip-
tion as wild type Pminor. Thus the −14 G:C contact 
compensates for the poor −10 element and spe-
cifi cally for the lack of contact at –12 G:C.

Chemical probing of gapAP1 demonstrated that 
the polymerase-promoter interactions occur 
throughout the promoter region including the TGn 
and –35 elements. The transcription bubble was 
determined by KMnO4 footprinting to extend from 
–12 to +3. (The observation that the –12 is assess-
able for KMnO4 reactivity in RPo at gapAP1 is not 
unique to this promoter class, since this observation 
was also made at the –35/–10 promoter λPR (Suh 
et al. 1993)). In addition, both the Pminor promoter 
and a Pminor derivative with –12 T:A yielded a 
transcription bubble from –11 to +3. DNase I foot-
printing of Pminor shows protection from –55 to +25; 
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this is also observed with a Pminor derivative in 
which the –10 element has been perfected (Hook-
Barnard, unpublished). Thus, the fi nal open complex 
is essentially the same for all promoter types.

In addition to these well-defi ned –35/TGn pro-
moters, there are other examples that have not been 
recognized as such. For instance, PcspA (Tanabe 
et al. 1992) (Fig. 3) has been described as an 
extended –10 promoter, because the TGn is 
required for transcription (Phadtare and Severinov, 
2005). However, the –35 sequence (TTGCAT) is 
a good match to consensus and may affect promoter 
activity. Moreover, the –10 element (CTTAAT) is 
nonconsensus at the crucial –12 and –11 positions. 
Thus, the required TGn is as likely to compensate 
for the poor –10 element as the –35 element. As 
discussed in the previous section, many promoters, 
which are considered part of TGn/−10 class are 
dependent upon –35 sequences and have poorly 
functional –10 elements. Thus, assumptions should 
not be made about promoter/polymerase contacts 
with other regions simply because a promoter has 
or even requires a TGn sequence.

An UP/−10 promoter (?)
Although a UP/−10 promoter has not been identi-
fi ed, the possibility of such a promoter has been 
revealed by experiments using the bacteriophage 
T4 protein, AsiA. AsiA binds tightly to σ70 region 
4, dramatically changing the structure of region 4 
and preventing its interaction with the –35 DNA 
element ((Lambert et al. 2004) reviewed in (Hinton 
et al. 2005)). Consequently, AsiA signifi cantly 
inhibits transcription from promoters requiring a 
–35 element such as the –35/–10 promoter lacUV5 
or the –35/TGn promoter Pminor. TGn/−10 pro-
moters are not inhibited by AsiA (Colland et al. 
1998; Pahari and Chatterji, 1997; Severinova et al. 
1998). Many T4 early promoters are very strong, 
having portions of all four recognition elements 
(UP/−35/TGn/−10) and as expected, these promot-
ers are much less susceptible to AsiA inhibition 
(Pene and Uzan, 2000). An analysis of what is 
needed to impart resistance to AsiA inhibition for 
one of these promoters has revealed that even if 
the TGn element is mutated, contact between the 
α-CTDs and the UP elements is still suffi cient to 
provide signifi cant resistance to AsiA inhibition, 
suggesting that in the correct context, an UP/−10 
promoter is acceptable for recognition (Orsini et al. 
2004). Furthermore, an extended incubation of 

AsiA-associated polymerase with lacUV5 or 
Pminor eventually results in transcriptionally com-
petent RPo complexes at these promoters (Orsini 
et al. 2001; Pal et al. 2003). Given that the α-CTDs 
can make non-specifi c contacts in the –40 to –60 
region, even when recognizable UP element 
sequences are missing, these results suggest that 
the extended period of incubation provides the time 
needed to form open complexes using these less 
specifi c contacts in the upstream region.

Another example of promoters functioning with 
only a –10 element and upstream contacts was 
demonstrated recently using a set of synthetic 
promoters (Miroslavova and Busby, 2006). In that 
study, the authors began with a promoter, which 
had a –10 element, but none of the other consensus 
sequences. As expected, expression was essentially 
zero. In the presence of CRP and an upstream CRP 
binding site, the promoter became functional even 
without the addition of other contact sequences, 
suggesting that upstream contacts plus a –10 ele-
ment can be suffi cient for promoter activity. Thus, 
although an UP element/–10 promoter has not been 
described, these examples indicate that such pro-
moters may be present within the repertoire of the 
E. coli genome.

Another Way to Consider Promoter 
Types: Binding/Isomerization 
Elements
As detailed in the fi rst section, the earliest step in 
promoter recognition and binding is the formation 
of an unstable polymerase/promoter complex 
through interaction of polymerase with recognition 
elements present in ds DNA. Recent analyses of 
the earliest intermediates leading up to stable com-
plex formation at the strong T7A1 promoter (Sclavi 
et al. 2005) and the λPR promoter (Davis et al. 
2007a) have been performed using hydroxyl radi-
cal footprinting. In these analyses, contact with the 
promoter initiates with the farthest upstream 
regions and proceeds toward the start site of tran-
scription. Thus, the recognition of the specifi c ds 
DNA binding elements starts the process that can 
eventually result in the stable open complex.

Typically, a promoter has been classified 
depending on how well its sequence matches the 
consensus sequences that have been observed in 
σ70-dependent promoters (Harley and Reynolds, 
1987; Hawley and McClure, 1983; Shultzaberger 
et al. 2007) Thus, as described above, promoters 
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have been identifi ed as –35/–10, TGn/−10, or more 
recently, –35/TGn promoters. For some promoters, 
such has the –35/–10 promoter lacUV5, the 
TGn/−10 promoter galP1, and the –35/TGn 
promoter Pminor, these classifi cations seem rea-
sonable (Fig. 3). Matches to the identifi ed consen-
sus sequences are clear, and biochemical analyses 
have indicated that the designations actually refl ect 
the regions that are important for the function of 
the promoter. However, for most promoters this 
seems like an arbitrary system of classifi cation for 
several reasons. First, many promoter sequences 
have a mixture of various potential ds binding 
elements that could contribute to binding (Mitch-
ell et al. 2003) (Fig. 3). TGn/–10 promoters often 
have a recognizable –35 element, and this –35 
element can contribute to transcriptional activity 
(Miroslavova and Busby, 2006; Mitchell et al. 
2003). In addition, UP elements can improve the 
activity of a TGn/−10 promoter in the absence of 
a good –35 element (Miroslavova and Busby, 
2006), and improvement of the –10 element of 
the –35/TGn promoter Pminor increases its activ-
ity (Hook-Barnard et al. 2006). Many promoters 
that are placed in the –35/–10 class have either 
a –15 T:A or –14 G:C and it has been shown that 
having one match to the TGn element can improve 
activity in some cases (Mitchell et al. 2003). The 
second reason that the present promoter classifi ca-
tion is somewhat misleading is because the –10 
element, which is used as one of the classifi cations, 
is fundamentally different from the other elements. 
Accumulated evidence suggests that the –12 bp is 
primarily a ds recognition element for the –10 
region and the –11 to –7 base pairs contribute little 
to specifi c duplex binding. Recognition of base 
determinants in the sequences downstream of posi-
tion –12 occurs during and after polymerase isom-
erization. Thus, the −10 element is not a single 
recognition element. Rather it should be considered 
as two elements: a –10 binding element (primarily 
position –12) and a –10 melting element (posi-
tions –11 to –7). Finally, regardless of the promoter 
classifi cation, the fi nal transcription bubble in RPo 
appears to be the same. KMnO4 analyses have 
indicated that once the open complex is formed, 
the unpaired thymines always extend from –12 
or –11 to around +3 (Davis et al. 2007a; Grimes 
et al. 1991; Hook-Barnard et al. 2006; Kainz and 
Roberts, 1992; Lim et al. 2001; Nguyen and 
Burgess, 1997; Sasse-Dwight and Gralla, 1989; 

Sasse-Dwight and Gralla, 1991; Thouvenot et al. 
2004). In fact, even a minimal promoter, a short 
DNA duplex from –18 to −5 that only contains a 
consensus –10 element (without a TGn motif), will 
eventually produce a transcription bubble after a 
long incubation with polymerase (Niedziela-Majka 
and Heyduk, 2005). Although this is an ineffi cient 
process, it illustrates the point that the initial bind-
ing contacts do not qualitatively infl uence the fi nal 
stable complex. Instead, all the contacts needed for 
isomerization are contained in the –10 element. 
Furthermore, other work has shown that a minimal 
polymerase, containing only σ70 regions 2 and 3 
and just a portion of core, is capable of forming an 
open complex with an extended –10 promoter 
(Young et al. 2004). This fi nding is also consistent 
with the idea that minimal polymerase/DNA con-
tacts are acceptable for isomerization. Thus, the 
strength and number of binding contacts appear to 
affect the kinetics of recognition and isomerization 
without substantively affecting the salient features 
of the fi nal open complex.

Taken together, the data argue that there are 3 
promoter locations that can be used for ds binding: 
UP elements, the –35 element and a −15 element, 
−17tgTGnT−12. (The –15 element is a combination 
of the TGn element with the –12T.) Certainly a 
minimal number of contacts within these ds bind-
ing elements are needed for suffi cient recognition 
and binding, but various combinations are abso-
lutely permitted. Thus, the ds binding elements 
represent a set of mix and match, or as designated 
by the Busby lab: modular (Miroslavova and 
Busby, 2006) elements, which appear to work 
interchangeably for the early steps in transcription 
initiation. The subsequent steps then rely on 
interactions with ss elements, the –11ATAAT–7 and 
the –5 G, which interact with σ70 regions 2.3 and 
1.2 respectively.

Interestingly, a fully consensus promoter is 
undesirable in several ways. First, a number of 
studies have indicated that having too may contacts 
actually reduces transcriptional activity for a pro-
moter, presumably because they impede the transi-
tion from the open complex to promoter clearance 
and elongation (Grana et al. 1988; Miroslavova 
and Busby, 2006). Thus, promoters have evolved 
to contain the optimal number of contacts such that 
the promoter not only can be recognized, but will 
also be released as transcription proceeds. Second, 
a less than canonical sequence provides the oppor-
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tunity for regulation. Promoters that are appropri-
ately responsive to cellular signals provide 
a selective advantage, and are favored over 
promoters that are intrinsically high functioning, 
but unregulated. As we learn more about the steps 
leading to transcription, we see that a promoter not 
only supplies information via its consensus 
sequences, but that the nature of noncanonical 
sequences may provide insight into the form of 
regulation required to trigger activity. For instance, 
promoters with relatively few matches to ds bind-
ing elements may remain latent until an activator 
supplies the additional contacts that strengthen 
initial binding. In contrast, promoters with mis-
matches in the –11 to –7 region may require activa-
tors, or conditions (temperature, salt, supercoiling) 
that facilitate DNA melting, or polymerase isom-
erization. Furthermore, a nonpreferred nucleotide 
at –7 or –5 may indicate that the RPo is unstable 
and therefore responsive to modulating factors 
such as DksA, ppGpp, or NTP concentration 
(Rutherford et al. 2007). Thus, the ability of a 
promoter to respond to cellular conditions is abso-
lutely dependent upon its fl aws, and the mix and 
match nature of promoter elements allows a wide 
variety of ways to arrive at the desired outcome: 
effective transcription. Consequently, perfect pro-
moters are not biologically relevant.

Acknowledgements
We are grateful to R. Martin, R. Bonocora, 
L. Knipling, K. Baxter, and P. Decker for helpful 
discussions. This research was supported by the 
Intramural Research Program of the NIH, National 
Institute of Diabetes and Digestive and Kidney 
Diseases.

References
Ackerson, J.W. and Gralla, J.D. 1983. In vivo expression of lac promoter 

variants with altered −10, −35, and spacer sequences. Cold Spring 
Harb. Symp. Quant. Biol., 47 Pt 1:473–6.

Aoyama, T., Takanami, M., Ohtsuka, E., Taniyama, Y., Marumoto, R., 
Sato, H. and Ikehara, M. 1983. Essential structure of E. coli promoter: 
effect of spacer length between the two consensus sequences on 
promoter function. Nucleic Acids Res., 11:5855–64.

Arditti, R.R., Scaife, J.G. and Beckwith, J.R. 1968. The nature of mutants 
in the lac promoter region. J. Mol. Biol., 38:421–6.

Backendorf, C., Brandsma, J.A., Kartasova, T. and van de Putte, P. (1983). 
In vivo regulation of the uvrA gene: role of the “–10” and “–35” 
promoter regions. Nucleic Acids Res., 11:5795–810.

Barne, K.A., Bown, J.A., Busby, S.J. and Minchin, S.D. 1997. Region 2.5 
of the Escherichia coli RNA polymerase sigma70 subunit is respon-
sible for the recognition of the ‘extended−10’ motif at promoters. 
Embo J., 16:4034–40.

Belyaeva, T., Griffi ths, L., Minchin, S., Cole, J. and Busby, S. 1993. The 
Escherichia coli cysG promoter belongs to the ‘extended−10’ class 
of bacterial promoters. Biochem. J., 296:851–7.

Berman, M.L. and Landy, A. 1979. Promoter mutations in the transfer RNA gene 
tyrT of Escherichia coli. Proc. Natl. Acad. Sci. U.S.A., 76:4303–7.

Bochkarev, A., Barwell, J.A., Pfuetzner, R.A., Furey, W. Jr., Edwards, A.M. 
and Frappier, L. 1995. Crystal structure of the DNA-binding domain 
of the Epstein-Barr virus origin-binding protein EBNA 1. Cell., 
83:39–46.

Borukhov, S. and Lee, J. 2005. RNA polymerase structure and function at 
lac operon. C.R. Biol., 328:576–87.

Bown, J.A., Owens, J.T., Meares, C.F., Fujita, N., Ishihama, A., Busby, S. J. 
and Minchin, S.D. (1999). Organization of open complexes at Esch-
erichia coli promoters. Location of promoter DNA sites close to region 
2.5 of the sigma70 subunit of RNA polymerase. J. Biol. Chem., 
274:2263–70.

Brodolin, K., Zenkin, N. and Severinov, K. 2005. Remodeling of the sigma70 
subunit non-template DNA strand contacts during the fi nal step of 
transcription initiation. J. Mol. Biol., 350:930–7.

Browning, D.F. and Busby, S.J. 2004. The regulation of bacterial transcrip-
tion initiation. Nat. Rev. Microbiol., 2:57–65.

Buc, H. and McClure, W.R. 1985. Kinetics of open complex formation 
between Escherichia coli RNA polymerase and the lac UV5 promoter. 
Evidence for a sequential mechanism involving three steps. Biochem-
istry, 24:2712–23.

Burd, C.G. and Dreyfuss, G. 1994. Conserved structures and diversity of 
functions of RNA-binding proteins. Science, 265:615–21.

Burns, H.D., Ishihama, A. and Minchin, S.D. 1999. Open complex forma-
tion during transcription initiation at the Escherichia coli galP1 
promoter: the role of the RNA polymerase alpha subunit at promot-
ers lacking an UP-element. Nucleic Acids Res., 27:2051–6.

Burr, T., Mitchell, J., Kolb, A., Minchin, S. and Busby, S. 2000. DNA sequence 
elements located immediately upstream of the −10 hexamer in Esch-
erichia coli promoters: a systematic study. Nucleic Acids Res., 
28:1864–70.

Busby, S., Truelle, N., Spassky, A., Dreyfus, M. and Buc, H. 1984. The 
selection and characterisation of two novel mutations in the overlap-
ping promoters of the Escherichia coli galactose operon. Gene, 
28:201–9.

Busby, S., Spassky, A. and Chan, B. 1987. RNA polymerase makes impor-
tant contacts upstream from base pair −49 at the Escherichia coli 
galactose operon P1 promoter. Gene, 53:145–52.

Callaci, S., Heyduk, E. and Heyduk, T. 1998. Conformational changes of 
Escherichia coli RNA polymerase sigma70 factor induced by binding 
to the core enzyme. J. Biol. Chem., 273:32995–33001.

Callaci, S., Heyduk, E. and Heyduk, T. 1999. Core RNA polymerase from 
E. coli induces a major change in the domain arrangement of the 
sigma70 subunit. Mol. Cell., 3:229–38.

Campbell, E.A., Muzzin, O., Chlenov, M., Sun, J.L., Olson, C.A., Weinman, 
O., Trester-Zedlitz, M.L. and Darst, S.A. 2002. Structure of the 
bacterial RNA polymerase promoter specifi city sigma subunit. Mol. 
Cell., 9:527–39.

Cellai, S., Mangiarotti, L., Vannini, N., Naryshkin, N., Kortkhonjia, E., 
Ebright, R.H. and Rivetti, C. 2007. Upstream promoter sequences 
and alphaCTD mediate stable DNA wrapping within the RNA poly-
merase-promoter open complex. EMBO Rep., 8:271–8.

Chan, B. and Busby, S. 1989. Recognition of nucleotide sequences at the 
Escherichia coli galactose operon P1 promoter by RNA polymerase. 
Gene, 84:227–36.

Chan, B., Spassky, A. and Busby, S. 1990. The organization of open com-
plexes between Escherichia coli RNA polymerase and DNA fragments 
carrying promoters either with or without consensus –35 region 
sequences. Biochem. J., 270:141–8.

Chan, P.T. and Lebowitz, J. 1990. Site-directed mutagenesis of the −10 
region of the lacUV5 promoter. Introduction of dA4.dT4 tract sup-
presses open complex formation. J. Biol. Chem., 265:4091–7.



290

Hook-Barnard and Hinton

Gene Regulation and Systems Biology 2007: 1 

Colland, F., Orsini, G., Brody, E.N., Buc, H. and Kolb, A. 1998. The bac-
teriophage T4 AsiA protein: a molecular switch for sigma70−dependent 
promoters. Mol. Microbiol., 27:819–29.

Cook, V.M. and deHaseth, P.L. 2007. Strand opening-defi cient E. coli RNA 
polymerase facilitates investigation of closed complexes with promoter 
DNA: effects of DNA sequence and temperature. J. Biol. Chem.

Craig, M.L., Tsodikov, O.V., McQuade, K.L., Schlax, PE., Jr, Capp, M.W., 
Saecker, R.M. and Record, M.T. Jr. 1998. DNA footprints of the two 
kinetically signifi cant intermediates in formation of an RNA poly-
merase-promoter open complex: evidence that interactions with start 
site and downstream DNA induce sequential conformational changes 
in polymerase and DNA. J. Mol. Biol., 283:741–56.

Dairi, T., Inokuchi, K., Mizuno, T. and Mizushima, S. 1985. Positive control 
of transcription initiation in Escherichia coli. A base substitution at 
the Pribnow box renders ompF expression independent of a positive 
regulator. J. Mol. Biol., 184:1–6.

Davis, C.A., Capp, M.W., Record, MT., Jr. and Saecker, R.M. 2005. The 
effects of upstream DNA on open complex formation by Escherichia 
coli RNA polymerase. Proc. Natl. Acad. Sci. U.S.A., 102:285–90.

Davis, C.A., Bingman, C.A., Landick, R., Record, MT., Jr and Saecker, R.M. 
2007a. Real-time footprinting of DNA in the fi rst kinetically signifi -
cant intermediate in open complex formation by Escherichia coli 
RNA polymerase. Proc. Natl. Acad. Sci. U.S.A.

Davis, C.A., Bingman, C.A., Landick, R., Record, MT., Jr. and Saecker, 
R.M. 2007b. Real-time footprinting of DNA in the fi rst kinetically 
signifi cant intermediate in open complex formation by Escherichia 
coli RNA polymerase. Proc. Natl. Acad. Sci. U.S.A., 104:7833–8.

Dombroski, A.J., Walter, W.A., Record, MT. Jr., Siegele, D.A. and 
Gross, C.A. 1992. Polypeptides containing highly conserved regions 
of transcription initiation factor sigma70 exhibit specifi city of bind-
ing to promoter DNA. Cell., 70:501–12.

Dombroski, A.J., Johnson, B.D., Lonetto, M. and Gross, C.A. 1996. The 
sigma subunit of Escherichia coli RNA polymerase senses promoter 
spacing. Proc. Natl. Acad. Sci. U.S.A., 93:8858–62.

Dombroski, A.J. 1997. Recognition of the –10 promoter sequence by a partial 
polypeptide of sigma70 in vitro. J. Biol. Chem., 272:3487–94.

Estrem, S.T., Gaal, T., Ross, W. and Gourse, R.L. 1998. Identifi cation of an 
UP element consensus sequence for bacterial promoters. Proc. Natl. 
Acad. Sci. U.S.A., 95:9761–6.

Feklistov, A., Barinova, N., Sevostyanova, A. and other authors 2006. 
A Basal Promoter Element Recognized by Free RNA Polymerase 
sigma Subunit Determines Promoter Recognition by RNA Polymerase 
Holoenzyme. Mol. Cell.

Fenton, M.S., Lee, S.J. and Gralla, J.D. 2000. Escherichia coli promoter 
opening and −10 recognition: mutational analysis of sigma70. 
Embo J., 19:1130–7.

Fenton, M.S. and Gralla, J.D. 2001. Function of the bacterial TATAAT −10 
element as single-stranded DNA during RNA polymerase isomeriza-
tion. Proc. Natl. Acad. Sci. U.S.A., 98:9020–5.

Fenton, M.S. and Gralla, J.D. 2003. Roles for inhibitory interactions in the 
use of the −10 promoter element by sigma70 holoenzyme. J. Biol. 
Chem., 278:39669–74.

Gaal, T., Ross, W., Blatter, E.E., Tang, H., Jia, X., Krishnan, V.V., Assa-
Munt, N., Ebright, R.H. and Gourse, R.L. 1996. DNA-binding 
determinants of the alpha subunit of RNA polymerase: novel DNA-
binding domain architecture. Genes Dev., 10:16–26.

Gardella, T., Moyle, H. and Susskind, M.M. 1989. A mutant Escherichia 
coli sigma70 subunit of RNA polymerase with altered promoter 
specifi city. J. Mol. Biol., 206:579–90.

Gralla, J.D. 2005. Escherichia coli ribosomal RNA transcription: regulatory 
roles for ppGpp, NTPs, architectural proteins and a polymerase-bind-
ing protein. Mol. Microbiol., 55:973–7.

Grana, D., Youderian, P. and Susskind, M.M. 1985. Mutations that improve 
the ant promoter of Salmonella phage P22. Genetics, 110:1–16.

Grana, D., Gardella, T. and Susskind, M.M. 1988. The effects of mutations 
in the ant promoter of phage P22 depend on context. Genetics, 
120:319–27.

Gregory, B.D., Nickels, B.E., Darst, S.A. and Hochschild, A. 2005. An 
altered-specifi cty DNA-binding mutant of E. coli σ70 facilitates the 
analysis of σ70 function in vivo. Molec Microbiol, in press

Grimes, E., Busby, S. and Minchin, S. 1991. Different thermal energy 
requirement for open complex formation by Escherichia coli RNA 
polymerase at two related promoters. Nucleic Acids Res., 
19:6113–18.

Gruber, T.M. and Gross, C.A. 2003. Multiple sigma subunits and the par-
titioning of bacterial transcription space. Annu Rev. Microbiol., 
57:441–66.

Guo, Y. and Gralla, J.D. 1998. Promoter opening via a DNA fork junction 
binding activity. Proc. Natl. Acad. Sci. U.S.A., 95:11655–60.

Harley, C.B. and Reynolds, R.P. 1987. Analysis of E. coli promoter sequences. 
Nucleic Acids Res., 15:2343–61.

Haugen, S.P., Berkmen, M.B., Ross, W., Gaal, T., Ward, C. and Gourse, R.L. 
2006. rRNA promoter regulation by nonoptimal binding of sigma 
region 1.2: an additional recognition element for RNA polymerase. 
Cell., 125:1069–82.

Hawley, D.K. and McClure, W.R. 1983. Compilation and analysis of Escherichia 
coli promoter DNA sequences. Nucleic Acids Res., 11:2237–55.

Helmann, J.D. and Chamberlin, M.J. 1988. Structure and function of bacte-
rial sigma factors. Annu. Rev. Biochem., 57:839–72.

Helmann, J.D. 1995. Compilation and analysis of Bacillus subtilis sigma 
A-dependent promoter sequences: evidence for extended contact 
between RNA polymerase and upstream promoter DNA. Nucleic 
Acids Res., 23:2351–60.

Helmann, J.D. and deHaseth, P.L. 1999. Protein-nucleic acid interactions 
during open complex formation investigated by systematic alteration 
of the protein and DNA binding partners. Biochemistry, 
38:5959–67.

Hinton, D.M., Pande, S., Wais, N., Johnson, X.B., Vuthoori, M., Makela, A. 
and Hook-Barnard, I. 2005. Transcriptional takeover by sigma 
appropriation: remodelling of the sigma70 subunit of Escherichia 
coli RNA polymerase by the bacteriophage T4 activator MotA and 
co-activator AsiA. Microbiology, 151:1729–40.

Hook-Barnard, I., Johnson, X.B. and Hinton, D.M. 2006. Escherichia coli 
RNA polymerase recognition of a sigma70-dependent promoter 
requiring a –35 DNA element and an extended −10 TGn motif. 
J. Bacteriol., 188:8352–9.

Inokuchi, K., Furukawa, H., Nakamura, K. and Mizushima, S. 1984. Char-
acterization by deletion mutagenesis in vitro of the promoter region 
of ompF, a positively regulated gene of Escherichia coli. J. Mol. Biol., 
178:653–68.

Jeong, W. and Kang, C. 1994. Start site selection at lacUV5 promoter affected 
by the sequence context around the initiation sites. Nucleic Acids 
Res., 22:4667–72.

Juang, Y.L. and Helmann, J.D. 1994. A promoter melting region in the 
primary sigma factor of Bacillus subtilis. Identifi cation of function-
ally important aromatic amino acids. J. Mol. Biol., 235:1470–88.

Kainz, M. and Roberts, J. 1992. Structure of transcription elongation com-
plexes in vivo. Science, 255:838–41.

Kawano, M., Storz, G., Rao, B.S., Rosner, J.L. and Martin, R.G. 2005. 
Detection of low-level promoter activity within open reading 
frame sequences of Escherichia coli. Nucleic Acids Res., 
33:6268–76.

Keener, J. and Nomura, M. 1993. Dominant lethal phenotype of a mutation 
in the −35 recognition region of Escherichia coli sigma70. Proc. Natl. 
Acad. Sci. U.S.A., 90:1751–5.

Keilty, S. and Rosenberg, M. 1987. Constitutive function of a positively 
regulated promoter reveals new sequences essential for activity. 
J. Biol. Chem., 262:6389–95.

Kontur, W.S., Saecker, R.M., Davis, C.A., Capp, M.W. and Record, M.T., Jr. 
2006. Solute probes of conformational changes in open complex 
(RPo) formation by Escherichia coli RNA polymerase at the lamb-
daPR promoter: evidence for unmasking of the active site in the 
isomerization step and for large-scale coupled folding in the subse-
quent conversion to RPo. Biochemistry, 45:2161–77.



291

Binding of E. coli RNA polymerase to promoter DNA

Gene Regulation and Systems Biology 2007: 1 

Kuhnke, G., Fritz, H.J. and Ehring, R. 1987. Unusual properties of pro-
moter-up mutations in the Escherichia coli galactose operon and 
evidence suggesting RNA polymerase-induced DNA bending. 
Embo J., 6:507–13.

Kumar, A., Malloch, R.A., Fujita, N., Smillie, D.A., Ishihama, A. and 
Hayward, R.S. 1993. The minus 35-recognition region of Escherichia 
coli sigma70 is inessential for initiation of transcription at an 
“extended minus 10” promoter. J. Mol. Biol., 232:406–18.

Kumar, A., Grimes, B., Fujita, N., Makino, K., Malloch, R.A., Hayward, R.S. 
and Ishihama, A. 1994. Role of the sigma70 subunit of Escherichia coli 
RNA polymerase in transcription activation. J. Mol. Biol., 235:405–13.

Kuznedelov, K., Minakhin, L., Niedziela-Majka, A., Dove, S.L., Rogulja, D., 
Nickels, B.E., Hochschild, A., Heyduk, T. and Severinov, K. 2002. 
A role for interaction of the RNA polymerase fl ap domain with the 
sigma subunit in promoter recognition. Science, 295:855–7.

Lambert, L.J., Wei, Y., Schirf, V., Demeler, B. and Werner, M.H. 2004. T4 
AsiA blocks DNA recognition by remodeling sigma(70) region 4. 
Embo J., 23:2952–62.

Lamond, A.I. and Travers, A.A. 1983. Requirement for an upstream element 
for optimal transcription of a bacterial tRNA gene. Nature, 
305:248–50.

Lewis, D.E. and Adhya, S. 2004. Axiom of determining transcription start points 
by RNA polymerase in Escherichia coli. Mol. Microbiol., 54:692–701.

Lim, H.M., Lee, H.J., Roy, S. and Adhya, S. 2001. A “master” in base 
unpairing during isomerization of a promoter upon RNA polymerase 
binding. Proc. Natl. Acad. Sci. U.S.A., 98:14849–52.

Lisser, S. and Margalit, H. 1993. Compilation of E. coli mRNA promoter 
sequences. Nucleic Acids Res., 21:1507–16.

Lisser, S. and Margalit, H. 1994. Determination of common structural 
features in Escherichia coli promoters by computer analysis. Eur. J. 
Biochem., 223:823–30.

Liu, J. and Turnbough, CL., Jr. 1994. Effects of transcriptional start site 
sequence and position on nucleotide-sensitive selection of alternative 
start sites at the pyrC promoter in Escherichia coli. J. Bacteriol., 
176:2938–45.

Liu, M., Garges, S. and Adhya, S. 2004a. lacP1 promoter with an extended 
–10 motif. Pleiotropic effects of cyclic AMP protein at different steps 
of transcription initiation. J. Biol. Chem., 279:54552–7.

Liu, M., Tolstorukov, M., Zhurkin, V., Garges, S. and Adhya, S. 2004b. 
A mutant spacer sequence between −35 and −10 elements makes the 
Plac promoter hyperactive and cAMP receptor protein-independent. 
Proc. Natl. Acad. Sci. U.S.A., 101:6911–6.

Lonetto, M., Gribskov, M. and Gross, C.A. 1992. The sigma70 family: 
sequence conservation and evolutionary relationships. J. Bacteriol., 
174:3843.

Makoff, A.J. and Oxer, M.D. 1991. High level heterologous expression in 
E. coli using mutant forms of the lac promoter. Nucleic Acids Res., 
19:2417–21.

Malhotra, A., Severinova, E. and Darst, S.A. 1996. Crystal structure of a 
sigma70 subunit fragment from E. coli RNA polymerase. Cell., 
87:127–36.

Mandecki, W. and Reznikoff, W.S. 1982. A lac promoter with a changed 
distance between –10 and –35 regions. Nucleic Acids Res., 
10:903–12.

Marr, M.T. and Roberts, J.W. 1997. Promoter recognition as measured by 
binding of polymerase to nontemplate strand oligonucleotide. Science, 
276:1258–60.

Matlock, D.L. and Heyduk, T. 2000. Sequence determinants for the recog-
nition of the fork junction DNA containing the −10 region of promoter 
DNA by E. coli RNA polymerase. Biochemistry, 39:12274–83.

McKane, M., Malone, C. and Gussin, G.N. 2001. Mutations at position −10 
in the lambda PR promoter primarily affect conversion of the initial 
closed complex (RPc) to a stable, closed intermediate (RPi). 
Biochemistry, 40:2023–31.

Meiklejohn, A.L. and Gralla, J.D. 1989. Activation of the lac promoter and 
its variants. Synergistic effects of catabolite activator protein and 
supercoiling in vitro. J. Mol. Biol., 207:661–73.

Mekler, V., Kortkhonjia, E., Mukhopadhyay, J. and other authors. 2002. 
Structural organization of bacterial RNA polymerase holoenzyme 
and the RNA polymerase-promoter open complex. Cell., 
108:599–614.

Mellies, J., Brems, R. and Villarejo, M. 1994. The Escherichia coli proU 
promoter element and its contribution to osmotically signaled tran-
scription activation. J. Bacteriol., 176:3638–45.

Michalowski, C.B., Short, M.D. and Little, J.W. 2004. Sequence tolerance 
of the phage lambda PRM promoter: implications for evolution of 
gene regulatory circuitry. J. Bacteriol., 186:7988–99.

Miroslavova, N.S. and Busby, S.J. 2006. Investigations of the modular 
structure of bacterial promoters. Biochem. Soc. Symp., 1–10.

Mitchell, J.E., Zheng, D., Busby, S.J. and Minchin, S.D. 2003. Identifi cation 
and analysis of ‘extended −10’ promoters in Escherichia coli. Nucleic 
Acids Res., 31:4689–95.

Moran, CP., Jr, Lang, N., LeGrice, S.F., Lee, G., Stephens, M., 
Sonenshein, A.L., Pero, J. and Losick, R. 1982. Nucleotide sequences 
that signal the initiation of transcription and translation in Bacillus 
subtilis. Mol. Gen. Genet., 186:339–46.

Moyle, H., Waldburger, C. and Susskind, M.M. 1991. Hierarchies of base 
pair preferences in the P22 ant promoter. J. Bacteriol., 173:1944–50.

Mulligan, M.E., Brosius, J. and McClure, W.R. 1985. Characterization in 
vitro of the effect of spacer length on the activity of Escherichia coli 
RNA polymerase at the TAC promoter. J. Biol. Chem., 260:3529–38.

Munson, L.M., Mandecki, W., Caruthers, M.H. and Reznikoff, W.S. 1984. 
Oligonucleotide mutagenesis of the lacPUV5 promoter. Nucleic Acids 
Res., 12:4011–17.

Murakami, K.S., Masuda, S., Campbell, E.A., Muzzin, O. and Darst, S.A. 
2002a. Structural basis of transcription initiation: an RNA polymerase 
holoenzyme-DNA complex. Science, 296:1285–90.

Murakami, K.S., Masuda, S. and Darst, S.A. 2002b. Structural basis of 
transcription initiation: RNA polymerase holoenzyme at 4 A resolu-
tion. Science, 296:1280–4.

Murakami, K.S. and Darst, S.A. 2003. Bacterial RNA polymerases: the 
wholo story. Curr. Opin. Struct. Biol., 13:31–9.

Naryshkin, N., Revyakin, A., Kim, Y., Mekler, V. and Ebright, R.H. 2000. 
Structural organization of the RNA polymerase-promoter open 
complex. Cell., 101:601–11.

Nguyen, L.H. and Burgess, R.R. 1997. Comparative analysis of the interac-
tions of Escherichia coli sigma S and sigma70 RNA polymerase 
holoenzyme with the stationary-phase-specifi c bolAp1 promoter. 
Biochemistry, 36:1748–54.

Niedziela-Majka, A. and Heyduk, T. 2005. Escherichia coli RNA polymerase 
contacts outside the –10 promoter element are not essential for pro-
moter melting. J. Biol. Chem., 280:38219–27.

O’Neill, M.C. 1989. Escherichia coli promoters. I. Consensus as it relates 
to spacing class, specifi city, repeat substructure, and three-dimen-
sional organization. J. Biol. Chem., 264:5522–30.

Orsini, G., Kolb, A. and Buc, H. 2001. The Escherichia coli RNA poly-
merase.anti-sigma70 AsiA complex utilizes alpha-carboxyl-terminal 
domain upstream promoter contacts to transcribe from a –10/−35 
promoter. J. Biol. Chem., 276:19812–19.

Orsini, G., Igonet, S., Pene, C., Sclavi, B., Buckle, M., Uzan, M. and Kolb, A. 
2004. Phage T4 early promoters are resistant to inhibition by the 
anti-sigma factor AsiA. Mol. Microbiol., 52:1013–28.

Ozawa, Y., Mizuno, T. and Mizushima, S. 1987. Roles of the Pribnow box 
in positive regulation of the ompC and ompF genes in Escherichia 
coli. J. Bacteriol, 169:1331–4.

Paget, M.S. and Helmann, J.D. 2003. The sigma70 family of sigma factors. 
Genome Biol., 4:203.

Pahari, S. and Chatterji, D. 1997. Interaction of bacteriophage T4 AsiA protein 
with Escherichia coli sigma70 and its variant. FEBS Lett., 411:60–2.

Pal, D., Vuthoori, M., Pande, S., Wheeler, D. and Hinton, D.M. 2003. 
Analysis of regions within the bacteriophage T4 AsiA protein 
involved in its binding to the sigma70 subunit of E. coli RNA poly-
merase and its role as a transcriptional inhibitor and co-activator. 
J. Mol. Biol., 325:827–41.



292

Hook-Barnard and Hinton

Gene Regulation and Systems Biology 2007: 1 

Panaghie, G., Aiyar, S.E., Bobb, K.L., Hayward, R.S. and de Haseth, P.L. 
2000. Aromatic amino acids in region 2.3 of Escherichia coli sigma70 
participate collectively in the formation of an RNA polymerase-
promoter open complex. J. Mol. Biol., 299:1217–30.

Paul, B.J., Ross, W., Gaal, T. and Gourse, R.L. 2004. rRNA transcription 
in Escherichia coli. Annu Rev. Genet., 38:749–70.

Pene, C. and Uzan, M. 2000. The bacteriophage T4 anti-sigma factor AsiA 
is not necessary for the inhibition of early promoters in vivo. Mol. 
Microbiol., 35:1180–91.

Phadtare, S. and Severinov, K. 2005. Extended −10 motif is critical for 
activity of the cspA promoter but does not contribute to low-tem-
perature transcription. J. Bacteriol., 187:6584–9.

Ponnambalam, S., Webster, C., Bingham, A. and Busby, S. 1986. Transcrip-
tion initiation at the Escherichia coli galactose operon promoters in 
the absence of the normal −35 region sequences. J. Biol. Chem., 
261:16043–8.

Qiu, J. and Helmann, J.D. 1999. Adenines at –11, –9 and –8 play a key role 
in the binding of Bacillus subtilis Esigma(A) RNA polymerase to 
−10 region single-stranded DNA. Nucleic Acids Res., 27:4541–6.

Repoila, F. and Gottesman, S. 2003. Temperature sensing by the dsrA 
promoter. J. Bacteriol., 185:6609–14.

Reznikoff, W.S. 1992. The lactose operon-controlling elements: a complex 
paradigm. Mol. Microbiol., 6:2419–22.

Roberts, C.W. and Roberts, J.W. 1996. Base-specifi c recognition of the 
nontemplate strand of promoter DNA by E. coli RNA polymerase. 
Cell., 86:495–501.

Ross, W., Gosink, K.K., Salomon, J., Igarashi, K., Zou, C., Ishihama, A., 
Severinov, K. and Gourse, R.L. 1993. A third recognition element in 
bacterial promoters: DNA binding by the alpha subunit of RNA 
polymerase. Science, 262:1407–13.

Ross, W., Ernst, A. and Gourse, R.L. 2001. Fine structure of E. coli RNA 
polymerase-promoter interactions: alpha subunit binding to the UP 
element minor groove. Genes Dev., 15:491–506.

Ross, W. and Gourse, R.L. 2005. Sequence-independent upstream DNA-
alphaCTD interactions strongly stimulate Escherichia coli RNA 
polymerase-lacUV5 promoter association. Proc. Natl. Acad. Sci. 
U.S.A., 102:291–6.

Rutherford, S.T., Lemke, J.J., Vrentas, C.E., Gaal, T., Ross, W. and 
Gourse, R.L. 2007. Effects of DksA, GreA, and GreB on transcription 
initiation: insights into the mechanisms of factors that bind in the 
secondary channel of RNA polymerase. J. Mol. Biol., 366:1243–57.

Saecker, R.M., Tsodikov, O.V., McQuade, K.L., Schlax, PE., Jr, Capp, M.W. 
and Record, MT., Jr. 2002. Kinetic studies and structural models of 
the association of E. coli sigma(70) RNA polymerase with the 
lambdaP(R) promoter: large scale conformational changes in forming 
the kinetically signifi cant intermediates. J. Mol. Biol., 319:649–71.

Sanderson, A., Mitchell, J.E., Minchin, S.D. and Busby, S.J. 2003. Substi-
tutions in the Escherichia coli RNA polymerase sigma70 factor that 
affect recognition of extended −10 elements at promoters. FEBS Lett., 
544:199–205.

Sasse-Dwight, S. and Gralla, J.D. 1989. KMnO4 as a probe for lac promoter 
DNA melting and mechanism in vivo. J. Biol. Chem., 264:8074–81.

Sasse-Dwight, S. and Gralla, J.D. 1991. Footprinting protein-DNA com-
plexes in vivo. Methods Enzymol, 208:146–68.

Schickor, P., Metzger, W., Werel, W., Lederer, H. and Heumann, H. 1990. 
Topography of intermediates in transcription initiation of E. coli. 
Embo J., 9:2215–20.

Schroeder, L.A., Choi, A.J. and DeHaseth, P.L. 2007. The –11A of promoter 
DNA and two conserved amino acids in the melting region of sigma70 
both directly affect the rate limiting step in formation of the stable 
RNA polymerase-promoter complex, but they do not necessarily 
interact. Nucleic Acids Res., 35:4141–53.

Sclavi, B., Zaychikov, E., Rogozina, A., Walther, F., Buckle, M. and 
Heumann, H. 2005. Real-time characterization of intermediates in 
the pathway to open complex formation by Escherichia coli RNA 
polymerase at the T7A1 promoter. Proc. Natl. Acad. Sci. U.S.A., 
102:4706–11.

Severinova, E., Severinov, K. and Darst, S.A. 1998. Inhibition of Escherichia 
coli RNA polymerase by bacteriophage T4 AsiA. J. Mol. Biol., 
279:9–18.

Shamoo, Y., Friedman, A.M., Parsons, M.R., Konigsberg, W.H. and Steitz, T.A. 
1995. Crystal structure of a replication fork single-stranded DNA 
binding protein (T4 gp32) complexed to DNA. Nature, 376:362–6.

Shultzaberger, R.K., Chen, Z., Lewis, K.A. and Schneider, T.D. 2007. 
Anatomy of Escherichia coli sigma70 promoters. Nucleic Acids Res., 
35:771–88.

Siebenlist, U. and Gilbert, W. 1980. Contacts between Escherichia coli RNA 
polymerase and an early promoter of phage T7. Proc. Natl. Acad. 
Sci. U.S.A., 77:122–6.

Siebenlist, U., Simpson, R.B. and Gilbert, W. 1980. E. coli RNA poly-
merase interacts homologously with two different promoters. Cell., 
20:269–81.

Siegele, D.A., Hu, J.C., Walter, W.A. and Gross, C.A. 1989. Altered promoter 
recognition by mutant forms of the sigma70 subunit of Escherichia 
coli RNA polymerase. J. Mol. Biol., 206:591–603.

Silverstone, A.E., Arditti, R.R. and Magasanik, B. 1970. Catabolite-insen-
sitive revertants of lac promoter mutants. Proc. Natl. Acad. Sci. 
U.S.A., 66:773–9.

Spassky, A., Busby, S. and Buc, H. 1984. On the action of the cyclic AMP-
cyclic AMP receptor protein complex at the Escherichia coli lactose 
and galactose promoter regions. Embo J., 3:43–50.

Spassky, A., Kirkegaard, K. and Buc, H. 1985. Changes in the DNA 
structure of the lac UV5 promoter during formation of an open 
complex with Escherichia coli RNA polymerase. Biochemistry, 
24:2723–31.

Stefano, J.E., Ackerson, J.W. and Gralla, J.D. 1980. Alterations in two 
conserved regions of promoter sequence lead to altered rates of 
polymerase binding and levels of gene expression. Nucleic Acids 
Res., 8:2709–23.

Stefano, J.E. and Gralla, J.D. 1982. Spacer mutations in the lac ps promoter. 
Proc. Natl. Acad. Sci. U.S.A., 79:1069–72.

Straney, D.C. and Crothers, D.M. 1985. Intermediates in transcription ini-
tiation from the E. coli lac UV5 promoter. Cell., 43:449–59.

Straney, D.C. and Crothers, D.M. 1987a. Comparison of the open complexes 
formed by RNA polymerase at the Escherichia coli lac UV5 promoter. 
J. Mol. Biol., 193:279–92.

Straney, S.B. and Crothers, D.M. 1987b. Kinetics of the stages of transcrip-
tion initiation at the Escherichia coli lac UV5 promoter. Biochemistry, 
26:5063–70.

Suh, W.C., Ross, W. and Record, M.T. Jr. 1993. Two open complexes and 
a requirement for Mg2+ to open the lambda PR transcription start 
site. Science, 259:358–61.

Tanabe, H., Goldstein, J., Yang, M. and Inouye, M. 1992. Identifi cation of 
the promoter region of the Escherichia coli major cold shock gene, 
cspA. J. Bacteriol., 174:3867–73.

Taylor, R.K., Garrett, S., Sodergren, E. and Silhavy, T.J. 1985. Mutations 
that defi ne the promoter of ompF, a gene specifying a major outer 
membrane porin protein. J. Bacteriol., 162:1054–60.

Thouvenot, B., Charpentier, B. and Branlant, C. 2004. The strong effi -
ciency of the Escherichia coli gapA P1 promoter depends on a 
complex combination of functional determinants. Biochem. J., 
383:371–82.

Tsujikawa, L., Strainic, M.G., Watrob, H., Barkley, M.D. and DeHaseth, P.L. 
2002. RNA polymerase alters the mobility of an A-residue crucial to 
polymerase-induced melting of promoter DNA. Biochemistry, 
41:15334–41.

Typas, A. and Hengge, R. 2005. Differential ability of sigma(s) and sigma70 
of Escherichia coli to utilize promoters containing half or full 
UP-element sites. Mol. Microbiol., 55:250–60.

Vassylyev, D.G., Sekine, S., Laptenko, O., Lee, J., Vassylyeva, M.N., Borukhov, 
S. and Yokoyama, S. 2002. Crystal structure of a bacterial RNA poly-
merase holoenzyme at 2.6 A resolution. Nature, 417:712–19.

Voskuil, M.I. and Chambliss, G.H. 2002. The TRTGn motif stabilizes the 
transcription initiation open complex. J. Mol. Biol., 322:521–32.



293

Binding of E. coli RNA polymerase to promoter DNA

Gene Regulation and Systems Biology 2007: 1 

Vuthoori, S., Bowers, C.W., McCracken, A., Dombroski, A.J. and 
Hinton, D.M. 2001. Domain 1.1 of the sigma(70) subunit of Esch-
erichia coli RNA polymerase modulates the formation of stable 
polymerase/promoter complexes. J. Mol. Biol., 309:561–72.

Waldburger, C., Gardella, T., Wong, R. and Susskind, M.M. 1990. Changes 
in conserved region 2 of Escherichia coli sigma70 affecting promoter 
recognition. J. Mol. Biol., 215:267–76.

Warne, S.E. and deHaseth, P.L. 1993. Promoter recognition by Escherichia 
coli RNA polymerase. Effects of single base pair deletions and inser-
tions in the spacer DNA separating the –10 and –35 regions are 
dependent on spacer DNA sequence. Biochemistry, 32:6134–40.

Wilson, C. and Dombroski, A.J. 1997. Region 1 of sigma70 is required for 
effi cient isomerization and initiation of transcription by Escherichia 
coli RNA polymerase. J. Mol. Biol., 267:60–74.

Young, B.A., Gruber, T.M. and Gross, C.A. 2002. Views of transcription 
initiation. Cell., 109:417–20.

Young, B.A., Gruber, T.M. and Gross, C.A. 2004. Minimal machinery of 
RNA polymerase holoenzyme sufficient for promoter melting. 
Science, 303:1382–4.

Zenkin, N., Kulbachinskiy, A., Yuzenkova, Y., Mustaev, A., Bass, I., 
Severinov, K. and Brodolin, K. 2007. Region 1.2 of the RNA poly-
merase sigma subunit controls recognition of the −10 promoter 
element. Embo J., 26:955–64.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


