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Abstract
Background: The popularity of a large number of microarray applications has in cancer research led to the development of predictive 
or prognostic gene expression profiles. However, the diversity of microarray platforms has made the full validation of such profiles 
and their related gene lists across studies difficult and, at the level of classification accuracies, rarely validated in multiple independent 
datasets. Frequently, while the individual genes between such lists may not match, genes with same function are included across such 
gene lists. Development of such lists does not take into account the fact that genes can be grouped together as metagenes (MGs) based 
on common characteristics such as pathways, regulation, or genomic location. Such MGs might be used as features in building a predic-
tive model applicable for classifying independent data. It is, therefore, demanding to systematically compare independent validation of 
gene lists or classifiers based on metagene or individual gene (SG) features.
Methods: In this study we compared the performance of either metagene- or single gene-based feature sets and classifiers using random 
forest and two support vector machines for classifier building. The performance within the same dataset, feature set validation perfor-
mance, and validation performance of entire classifiers in strictly independent datasets were assessed by 10 times repeated 10-fold cross 
validation, leave-one-out cross validation, and one-fold validation, respectively. To test the significance of the performance difference 
between MG- and SG-features/classifiers, we used a repeated down-sampled binomial test approach.
Results: MG- and SG-feature sets are transferable and perform well for training and testing prediction of metastasis outcome in strictly 
independent data sets, both between different and within similar microarray platforms, while classifiers had a poorer performance when 
validated in strictly independent datasets. The study showed that MG- and SG-feature sets perform equally well in classifying indepen-
dent data. Furthermore, SG-classifiers significantly outperformed MG-classifier when validation is conducted between datasets using 
similar platforms, while no significant performance difference was found when validation was performed between different platforms.
Conclusion: Prediction of metastasis outcome in lymph node–negative patients by MG- and SG-classifiers showed that SG-classifiers 
performed significantly better than MG-classifiers when validated in independent data based on the same microarray platform as used 
for developing the classifier. However, the MG- and SG-classifiers had similar performance when conducting classifier validation in 
independent data based on a different microarray platform. The latter was also true when only validating sets of MG- and SG-features 
in independent datasets, both between and within similar and different platforms.
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Background
Microarray gene expression analysis has in several 
studies been applied to elucidate the relation between 
clinical outcome and gene expression patterns in 
breast cancer and has demonstrated improvement 
of recurrence prediction.1–14 In some studies, genes 
in such profiles might be fully or partially missing 
in the test data used for validation due to the choice 
of microarray platform or the presence of missing 
values associated with a given probe.  Furthermore, 
an obtained gene list can have none or few genes 
in common with other gene lists addressing the 
same  clinical outcome,15,16 due to usage of different 
microarray platforms, different methods for measur-
ing mRNA expression levels, variation in patient 
sampling,15 lab variation/measurement noise,17 and 
differences in data processing such as different nor-
malization methods.18 Furthermore, a wide array of 
feature selection methods is available for gene selec-
tion, which also affects the constitution of such final 
gene lists.15 These feature selection methods encom-
pass filter approaches; selection of top features from 
a ranked list of genes; wrapper methods where model 
selection algorithms are wrapped in the search pro-
cess of feature subsets (ie, the Gini index in random 
forest);19 and embedded methods where the feature 
selection is an integrated part of the classification 
method, such as iteratively eliminating redundant 
features with minimal information regarding clas-
sification performance.20 More recent approaches to 
gene selection include recursive feature elimination 
based on support vector machines (SVM-RFE). This 
approach uses the coefficient of the weight vector to 
compute a feature ranking score, from which features 
with the smallest ranking scores are built into the 
model, for example, a leave-out-N number of genes 
approach.21 The advanced version combines SVM-
RFE with a minimum-redundancy and maximum-
relevancy filter, where relevance of each feature is 
determined by the mutual information among genes 
and class labels, and the redundancy is given by the 
mutual information among the genes.22

In addition to the above mentioned factors, the 
choice of classification method also impacts the final 
model and gene lists. Furthermore, the validations 
of such gene lists in independent data are very het-
erogeneous, with the majority testing significant dif-
ferences in survival, which barely reflect the actual 

classification accuracy, while few studies conducts 
validations in terms of classification accuracies.

To overcome the above obstacles, individual genes 
could be considered part of a larger network, that is, 
their expression being controlled by the expression 
level of other genes or that a group of genes belong 
to a specific pathway performing a well-defined task. 
These genes may be controlled by the same tran-
scription factor or located in the same chromosomal 
region. Such grouping has been collected in public 
databases such as the Kyoto Encyclopedia of Genes 
and Genomes (KEGG)23 the Molecular Signature 
Database (MsigDB),24 and the Gene Ontology data-
base (GO).25 In relation to breast cancer, for example, 
cell cycle upregulation or deregulation of other path-
ways are associated with metastasis2,3,26,27 Further-
more, it has been shown that metastasis progression28 
and tumor grading29 in breast cancer are associated 
with accumulated mutations in several genes, lead-
ing to amplification or inactivation of genes, and even 
large genomic losses or gains in specific chromosomal 
regions affecting gene expression levels.

Our previous studies showed that the expression lev-
els of such specific entities, called metagenes (MGs), 
are significantly associated with metastatic outcome 
in breast cancer across eight different datasets.30,31 
Several studies have defined metagene/gene modules 
derived from microarray data using various methods 
such as penalized matrix decomposition which clusters 
similar genes but without similar expression profiles32 
hierarchical clustering,33 correlation,34 or combining 
a priori protein-protein interactions with microarray 
gene expression data defining interaction networks as 
features.35,36 Few studies have attempted to use such 
predefined gene sets for prediction models. One such 
study used a compendia of microarray cancer genes for 
defining metagene/gene modules by performing hierar-
chical clustering of these genes expressions and seed-
ing genes within the clusters into gene sets annotated 
in the public databases.33 A second study defined meta-
gene/gene modules as sets of significantly correlated 
or anticorrelated genes combined with prior informa-
tion about the genes.34 One of the strengths of using 
gene sets as features is that this circumvents the neces-
sity of sharing all genes between studies.  Furthermore, 
grouping the genes together also reduces the dimen-
sionality of the datasets and thus functions as feature 
reduction.  Therefore,  profiles consisting of MGs might 
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be used for developing predictive classifiers that can be 
validated in independent data.

This study systematically assesses and compares 
the performance of MG- and SG-(single gene) fea-
ture sets and MG- and SG-classifiers extracted from 
the same samples in predicting metastasis outcome 
among lymph node–negative breast cancer patients 
who have not been treated with adjuvant therapy.

These comparisons were first made by model 
building and classification within the same data-
set using 10-fold cross validation. Furthermore, the 
comparisons were also done across datasets in two 
ways: (1) application of the entire classifier on the 
test data and (2) only the features from the classifier 
are transferred to the test data for model building and 
testing and evaluated by leave-one-out cross valida-
tion (LOOCV). In each case, we also examined two 
possible scenarios. In the first, the  validations were 

conducted between  studies using the same microarray 
platform  (Affymetrix classifier/feature set validated on 
an independent Affymetrix dataset), while the  second, 
encompassed validations across studies with differ-
ent platforms (Agilent-developed  classifier/feature set 
validated on an independent Affymetrix dataset).

Results
Features and models
The 71 metagenes used in this study wer determined 
as gene sets covering similar biological pathways 
having common transcription factor binding sites 
or genes located in the same chromosomal region 
 (Supplementary Table 1), which in previous studies 
have proven to be associated with breast cancer metas-
tasis across eight different datasets using a rank-based 
method (Fig. 1).30,31 An overview of the eight datasets 
is shown in Table 1. The final MGs consist, on  average, 
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Sotiriou
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Sotiriou
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HUMAC

32418 genes

1057
gene sets

71 significant
gene sets

71
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Huang

Uppsala
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Rank
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Figure 1. Metagene and single gene selection procedure.
Notes: Mgs (blue) and Sgs (red) were both derived from the same eight breast cancer gene expression datasets. These covered 32418 genes. 1057 gene 
lists was defined from these 32418 genes/probes. These were subjected to gene set enrichment analysis (GSEA), ranked within each dataset according 
to their signal-to-noise ratio, and their across dataset mean rank calculated. This mean rank was significance tested as described in the Materials and 
Methods section, resulting in 71 metagenes that were scored by the median gene expression of the gSeA leading edge genes. The single genes were 
selected by directly ranking each gene/probe across the datasets and subsequently following the same procedure as for the metagenes, resulting in 
283 significant single genes. The measure for each single is the gene expression level associated with each gene.
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of 21 genes, with the smallest MGs consisting of only 
2 genes and the largest, of 65 genes. This rank-based 
method was also applied to each gene across the same 
eight datasets, which led to identification of 283 rank-
significant SGs (Supplementary Table 2) shared by the 
four datasets to be used later. Amongst the 283 SGs, 
119 genes were also present on the gene lists underly-
ing the MGs (data not shown). These 71 MGs and 283 
SGs were used for selecting the optimal MG- and SG-
feature sets and development of their corresponding 
MG- and SG-classifiers.

Two (AG1 and AF1) of the eight datasets used to 
define the features were, therefore, solely used for 
training purposes (Table 1). The AF1 corresponds to 
the Affymetrix-based Rotterdam dataset and AG1 is a 
subset of the Agilent-based Amsterdam dataset. Both 
dataset containing only node-negative samples. The 
AF2 and AF3 datasets are both based on the Affyme-
trix platform and function as test sets for classifiers 
and feature sets developed and selected by the AG1 
and AF1 datasets (Table 1). Furthermore, AF2 was 
used for training to validate on AF3 and vice versa 
(Table 1). The following three classification methods 

were used for model building: random forest (RF) 
and support vector machines with a radial-based ker-
nel (R-SVM) or a sigmoid-based kernel (S-SVM). 
These were optimized to achieve the best mean of 
sensitivity and specificity, referred to as balanced 
accuracy (bAcc).

In order to build the models, the SGs or MGs within 
each training dataset were ranked according to their 
random forest importance values. For a given feature, 
this value reports the standardized drop in predic-
tion accuracy when the class labels are  permuted.37 
This rank was then used for model building by sub-
sequently adding one feature at a time in a top-down 
forward wrapper approach starting with the top two 
features. To avoid creating bias during gene selection 
and training of the final classifier and on classification 
performance, 10 times repeated 10-fold cross valida-
tion bAcc was used as optimization measure, as this 
optimization metric has previously been shown to 
give an excellent bias-variance balance.38 The above 
described procedure led to a total of 24 models, with 
12 composed of MG and SG features, respectively 
(Table 2). In the metagene models, each metagene 

Table 1. Overview of datasets.

Dataset chip probes  
(K)

patients Outcome Treatment Define 
MG

Define 
sG

Train Test Ref.

Amsterdam Agilent/ 
rosetta

25 295, N+,  
N-

DM None, et, ct √ √ [14]

Amsterdam (Ag1) 
(subset of the above)

Agilent/ 
rosetta

25 151, N- DM None √ √ √ [14]

rotterdam (AF1) Affymetrix 
hg-133A

22 286, N- DM None √ √ √ [3]

hUMAC Spotted  
oligonucleotides

29 60, N- Me None √ √ [7]

huang Affymetrix 
95av2

12 52, N+ re Ct √ √ [13]

Sotiriou 2003 Spotted cDNA 7.6 99, N+/N- re et, ct √ √ [1]
Sotiriou 2006 Affymetrix 

hg-133A
22 179, N+/N- DM et √ √ [12]

Uppsala Affymetrix 
hg-133A+B

44 236, N+/N- DF None, ct, et √ √ [52]

Stockholm Affymetrix 
hg-133A+B

44 159, N+/N- re None, ct, et √ √ [11]

TrANSBIg (AF2) Affymetrix 
hg-133A

22 147, N- DM None √a √ [35]

Mainz (AF3) Affymetrix 
hg-133A

22 200, N- DM None √b √ [53]

Notes: The table shows name of dataset, microarray chip, number of probes, patients, outcome, patient treatment, datasets used to define features 
and for training and testing and the references. adesignate used as training only when validating AF3; bdesignate used for training only when 
validating AF2.
Abbreviations: K, thousands; N+ and N-, node-positive and -negative patients; DM, distant metastasis; Me, metastasis; re, relapse; DF, death from 
breast cancer; et, endocrine therapy; ct, chemo therapy; none, no adjuvant therapy.
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contributes one input value calculated as the median 
expression level of the genes underlying that particu-
lar metagene. We, therefore, considered a metagene 
model composed of four metagenes to have four inputs 
or four features. These MG- and SG-models varied in 
complexity, consisting of 4 to 122 features (Table 2). 
Comparison of the number of features in each model 
displays a slightly higher complexity of SG-models 
with MG-models ranging from 4 to 67 features hav-
ing, on average, 26 features per model (Table 2), 
while SG-models varied from 14 to 122 features with 
an average of 34 features per model (Table 2). This 
suggests that each SG-feature is less  informative 
 compared to the MG-features and thus a larger  number 
of SG-features is a requirement for reaching optimal 
performance.

Internal performance of Mg-  
and Sg-models
To reduce variability and complexity and keeping 
validation parameters as constant as possible, the 
performance of MG- and SG-models were evaluated 

within the same dataset from which they were ini-
tially developed. This internal model performance 
was evaluated using 10 times repeated 10-fold 
cross validation (Fig. 2). This validation scheme 
partitions the training data into 10 nearly equally 
sized folds.  Subsequently, 10 iterations of training 
and validation are performed. During each of these 
iterations, a different fold of the training data is left 
out for  validation, and the remaining folds are used 
for learning. The mean accuracy of all 10 folds vali-
dated is thus the 10-fold cross validated accuracy 
of the model. By repeating this process 10 times, 
a more robust and unbiased estimation of the gen-
eralization performance is obtained.39 It should, 
therefore, also be noted that the individual classi-
fication performances are artificially elevated due 
to information leakage caused by using the entire 
dataset for ranking. However, as metagenes are 
a simple linear combination of single genes, we 
assume that the comparisons between the MG- and 
SG-model performances are similarly affected by 
this leakage.

Table 2. The number of metagene and single genes  features in the 24 models.

Dataset AG1 AF1 AF2 AF3
Features method #MG #sG #MG #sG #MG #sG #MG #sG
rF 4 21 15 21 14 14 21 26
r-SVM 18 20 57 25 5 22 10 71
S-SVM 29 17 67 35 9 19 64 122

Training set Feature
ranking

Feature
selection Classifier

Internal validation

Compare

10 × 10-fold CV
performance

Mean 10 × 10-fold CV
performance
MG classifier

Mean 10 × 10-fold CV
performance
SG classifier

Figure 2. The internal dataset validation procedure.
Notes: For both types of features, the entire training set was used to rank each feature by the random forest importance value. This rank was used for feature 
selection adding one feature at a time starting from top 2 to top 71 (for MGs) or top 283 (for SGs), thus testing a classifier with a fixed number of features in 
each round. The performance of the classifier was evaluated using 10 times repeated 10-fold cross validation. Using the same combination of training data 
and classification method, the mean 10 times repeated 10-fold cross validation of the MG-classifier and SG-classifier were compared with each other.
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Figure 3. Internal classification performance.
Notes: The 10 times repeated 10-fold cross validation balanced accuracies (bAcc) within the four datasets, Ag1, AF1, AF2, and AF3, using random forest 
(RF), support vector machines with a radial (R-SVM) or sigmoid-kernel (S-SVM), or across the three classification methods (Overall) are shown in blue 
and red respectively.

As indicated by the internal classification 
performances, the models predicted outcome with 
high accuracy (Fig. 3). Comparison across the three 
classification methods within the majority of each 
training dataset showed that MG-models perform 
slightly better than SG-models (Fig. 3). However, 
these differences were only minor and nonsignificant, 
suggesting that these results tend to converge to a 
common optimization level independent of feature 
type.

Feature set transferability
The feature sets within the MG- and SG-models were 
then transferred to independent datasets to examine 
if these features could be used to build a model for 
predicting outcome within the test data as illustrated 
in Figure 4A and B. The transferability was assessed 

by leave-one-out cross validation (LOOCV). Briefly, 
in LOOCV, one sample is left out at a time and used 
for testing, while the remaining samples are used for 
training a classifier, which is used to classify the left 
out sample. This process is repeated until all samples 
have been left out for testing.

The results show that transfer of the feature sets 
are able to classify samples with a mean LOOCV 
bAcc ranging from 54.0% to 72.0%, and where all 
the MG- and SG-gene lists have a mean LOOCV 
bAcc of 65.7% and 63.4%, respectively (Fig. 5). 
This suggests that the majority of these gene lists 
perform significantly better than random and that the 
selected MG- and SG-feature sets, being optimal in 
one dataset, display transferability across studies and 
can train and build a predictive model in independent 
samples.
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Figure 4. Between study classifier or feature set validation. (A) Between different platform validations. The best classifiers developed from the training 
set (AG1) are either directly (transfer classifier) applied and validated in the independent test data (AF2 or AF3) or the features only from the best classi-
fier are used within the test data for model building and testing by leave-one-out cross validation (LOOCV). In each case comparison of MG- (blue) and 
SG-classifier (red) or feature set performance is conducted using the same training data, classification method and test data. (B) Between similar platform 
validations. The best classifiers developed from the training set (AF1, AF2, or AF3) are either directly (Transfer classifier) applied and validated in the 
independent test data (AF2 or AF3) or the features only from the best classifier are used within the test data for model building and testing by leave-one-
out cross validation (LOOCV). In each case, comparison of MG- and SG-classifier or feature set performance is conducted using the same training data, 
classification method, and test data.

Comparison of classifier performance 
based on Mg- and Sg-feature sets  
in independent datasets
Comparison of the classification performance 
between the transferred MG- and SG-feature sets 
between different platforms (AG1-feature sets val-
idated in AF2 or AF3) (Fig. 4A) showed MG fea-
tures significantly outperformed SG-features using 
R-SVM (P = 3.7 × 10-9). This is also true when 
comparing across the three classification methods 
(P = 0.02) (Fig. 5). However no significant difference 
in  performance was found when using RF (P = 0.30) 
or S-SVM (P = 0.39). This could suggest that the 
overall effect is solely due to the significance associ-
ated with the R-SVM method (Fig. 5). Comparison 
of the similar-platform performances (AF1-feature 
sets validated on AF2 or AF3, AF2-feature sets 

 validated on AF3, and AF3-feature sets validated on 
AF2) (Fig. 4B), revealed that MG- and SG-features 
performed equally well for all three classification 
methods used (Fig. 5).

Classifier transferability and performance
We next used the entire classifier developed in the 
training sets, based on the features and rules associ-
ated with the classifier, to classify the independent 
samples in the entire test data and, therefore, to deter-
mine if the classifier can be exported and used in the 
test data (Fig. 4A and B). These results showed that the 
classifiers are less transferable than the feature sets, 
which is reflected by the weak mean bAcc ranging 
from 52.5% to 61.5%, with MG- and  SG-classifiers 
having an overall mean bAcc of 56.0% and 58.2%, 
respectively (Fig. 6).
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Figure 5. Exported feature set classification performance.
Notes: The mean balanced accuracies for the between platform validation (Ag1 vs. AF2 or AF3) and the within similar platform validations (AF1 vs. AF2 
or AF3 or AF2 vs. AF3, and vice versa) using random forest (rF), support vector machines with a radial (r-SVM) or sigmoid-kernel (S-SVM), or across the 
three classification methods (Across) are shown in blue and red respectively. The P values show the significance in classification between down-sampled 
testing using exported Mg- and Sg-feature sets for model building and testing in independent data.
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Figure 6. Exported classifier classification performance.
Notes: The mean balanced accuracies for the between platform classifier validation (AG1 vs. AF2 or AF3) and the within similar platform classifier 
validations (AF1 vs. AF2 or AF3 or AF2 vs. AF3, and vice versa) using random forest (rF), support vector machines with a radial (r-SVM) or sigmoid-
kernel (S-SVM), or across the three classification methods (Across) are shown in blue and red respectively. The P values show the significance in 
classification between MG- and SG-classifiers in terms of down-sampled testing.
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Comparison of classifier performance
Comparison of MG- and SG-classifiers external vali-
dation performance, when the classifier was devel-
oped on the Agilent dataset (AG1) and validated 
on the Affymetrix datasets (AF2 and AF3), showed 
that MG- and SG-classifiers performed equally well, 
with the exception of using S-SVM, which favored 
the MG-classifiers (Fig. 6) (P = 0.006). Comparison 
of classifier performance across the three methods 
revealed that MG-classifiers performed slightly bet-
ter than SG-profiles (Fig. 6). However, this difference 
was not statistically significant (P = 0.42).

Comparison of MG- and SG-classifiers  developed 
from an Affymetrix dataset and validated on another 
 independent Affymetrix dataset showed that SG- 
classifiers performed significantly better than MG- 
classifiers for each of the three classification methods 
(RF, P = 0.02; R-SVM, P = 0.015; S-SVM, P = 0.007) 
and across the three classification methods (P , 0.001).

Discussion
A strong prediction model should be robust, repro-
ducible, and ideally exportable to allow validation in 
independent datasets. In this study, predictive mod-
els based on metagenes or single genes being sig-
nificantly associated with breast cancer metastasis 
outcome were developed. The metagene features are 
composed of gene lists sharing a biological consen-
sus, while the single genes are features representing 
the expression of one gene. The study examined the 
transferability of MG- and SG-feature sets and classi-
fiers and compared their classification performance on 
independent datasets. The genes present in the MG-
feature sets were always present in the validation, as 
we had assured that the single genes and metagenes 
were shared by all four datasets. However, such shar-
ing of gene lists between classifiers derived from 
different studies is rarely the case. The reason that 
different studies derive gene expression based classi-
fiers having few or no genes in common is probably 
due to the selection bias caused by the microarray 
platform used for measuring gene expression, patient 
sampling, and the way the data were analyzed. In this 
respect, a study by Ein-Dor and coworkers showed 
that the same dataset could derive classifiers having 
comparable performances but differing substantially 
with respect to which genes are contained in these 
classifiers, thus also leading to a selection bias.15 

In our study, the problem with missing common genes 
was circumvented by using features shared by all four 
datasets used in the study.

We found that both MG- and SG-feature sets could 
be transferred to independent datasets and were able 
to build a predictive model achieving good results for 
classifying node-negative breast cancer metastasis 
outcome.

The finding that the SG-feature sets are export-
able agrees well with few predictive gene lists being 
exportable to independent data. One such gene 
list is the 70-gene Mammaprint prognosis gene list 
 embedded in the 70-gene correlation classifier origi-
nally developed to predict metastasis within five years 
(defined as poor prognosis), or no metastasis within 
five years (good prognosis).2 Transfer of this 70-gene 
Mammaprint list for model training and testing in 
independent datasets have proved successful using 
the original correlation classification method7,40 or 
by SVM,7 while another study only showed random 
performance when validating this gene list in inde-
pendent data.35 Due to missing genes, other studies 
have only validated a subset of the 70 genes success-
fully by correlation,8 VFI-classification,8 and centroid 
 classification.41 A second frequently validated gene 
list is the 76-gene list underlying the 76-gene clas-
sifier based on a regression determined risk score 
trained to predict distant metastasis within five years 
among lymph node–negative breast cancer patients.3 
 Transfer of the 76-gene list for model building and 
testing in fully independent datasets have been proven 
with limited success in one study by using SVM 
achieving balanced accuracies of 37% to 64%,35 while 
a subset of 46 of the 76 genes performed well in pre-
dicting metastasis from low-malignant breast cancer, 
achieving balanced accuracy of 75%.27 A third list is 
a “wound signature” containing 512 genes, which is 
able to predict increased risk of metastasis in three 
types of cancers, including breast cancer,42 The entire 
wound signature gene list has been transferred to inde-
pendent data for model building and testing, obtain-
ing results in the range of our transferred SG-gene 
lists using decision trees,43 but also using a subset of 
252 genes has provided similar performance when 
predicting metastasis outcome among low- malignant 
breast cancer patients using SVM.27 A fourth study 
derived a 70-gene Cox-ranked gene list, which was 
developed to achieve optimal significant hazard 
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ratios with respect to survival analysis in a cohort 
of patients with early breast cancer.5 Subsets of this 
list were transferred to two independent datasets for 
validation by model training and testing using nearest 
centroid classification obtaining balanced accuracies 
of 72% and 59%.5

Validation of the classifiers with some of the gene 
lists mentioned above using the original classifica-
tion method and cutoffs for class/outcome prediction 
has been conducted for the 70-gene profile achiev-
ing balanced accuracies of 63%,44 while validation of 
the 76-gene profile has achieved balanced accuracies 
of 53% to 65%,45 59%,44 and 62%.46 These reported 
balanced classification accuracies are  similar or 
fairly lower than those obtained by the MG- and SG- 
classifiers in our study. Although, these MG- and 
SG-classifier performances are far from optimal to be 
used in the clinic, they do perform better for long-
term outcome prediction than clinicopathological risk 
criteria illustrated by the findings from three studies. 
The study by Daemen and coworkers showed that the 
St. Gallen, NIH, and the Nottingham prognostic index 
assessors predicted metastasis outcome in a group of 
147 breast cancer patients with balanced accuracies 
of 51%, 52%, and 57%.47 Another study by Sun and 
coworkers demonstrated that the St. Gallen assessor 
predicted 5-year relapse free survival in 97 node-
negative breast cancer patients with only 51% bal-
anced accuracy.48 Furthermore, the study by Schmidt 
and coworkers showed that the St. Gallen assessor 
predicted 5-year and 10-year distant metastasis free 
survival with a balanced accuracy of 57% and 54%, 
respectively, and that the Adjuvant! Online algorithm 
predicted the same endpoints with 56% bAcc in 410 
node-negative patients.49

Interestingly, although the 76-gene profile was 
developed to predict outcome among lymph node–
negative patients, as in our study, the majority of 
MG- and SG-classifiers obtained in our study actu-
ally performed slightly better than those reported by 
the above studies. However, the reported low perfor-
mance is likely caused by the classifiers being specific 
to the dataset from which they were developed, and 
the results, therefore, cannot be generalized. Despite 
the fact that the primary tumors from both the train-
ing and test sets all are lymph node–negative, they 
might still not be very representative of each other, 
due to, for example, biological variation, follow-up 

time of the studies (affecting outcome-coding), and 
cross-study/lab variation, thus impairing classifier 
external classification performance. The lack of clas-
sifier transferability has been shown in other studies, 
for example, in the classification of normal versus 
tumor tissue50 and in the prediction of pathologically 
complete response to breast cancer chemotherapy 
 treatment.51 This stresses the importance of homoge-
neity between the samples used for building classi-
fiers and those used for validation.

We evaluated and compared the classification per-
formance between MG- and SG-models within the 
same datasets. We found that MG- and SG-models 
had equal performance during internal model build-
ing and performance testing, with a trend of MG-
models performing slightly better than SG-models. 
 However, the model sizes could imply that SG- models 
need to contain more features than the MG-models 
to obtain a similar performance, suggesting that the 
 individual MG-features are more informative than 
each SG-feature.

The study found no significant difference in per-
formance only between exported MG- and SG-feature 
sets when used for training and testing on independent 
datasets. In this setup, the models based on transferred 
features are trained and tested in the same indepen-
dent dataset, rendering the measurements underlying 
the intratraining and testing iterations comparable. 
One explanation for this similar performance could 
be that there is a great deal of overlap between the 
genes constituting the metagenes and those underly-
ing the list of 283 single genes, as the 119 genes are 
shared. A second explanation could concern the way 
the metagenes were defined and scored. In our study, 
the MGs cover lists of genes having a consensus. The 
first advantage of being defined as such is that the 
metagenes are conserved and robust across microarray 
 platforms. A second advantage is that the metagenes 
are narrowed down to the gene set enrichment analysis 
(GSEA) leading edge genes, thereby picking the best 
genes within the predefined lists. However, the limi-
tations of the metagenes are that they only consider 
interactions with members within the defined meta-
gene, but do not take interactions with genes beyond 
the members of the defined pathways and gene sets. 
Furthermore, although the human genome has been 
sequenced, there are still many genes with unknown 
functions, and, thus, these have still not been  annotated 

http://www.la-press.com


 Prediction of breast cancer metastasis by gene expression profiles

Cancer Informatics 2012:11 203

to a specified functional gene set. Such undiscovered 
networks might be discovered by single gene classi-
fiers composed of mixed biological predictors, which 
might be more easily discovered when using the same 
microarray technology, reducing the variation caused 
by the shift in microarray platforms.

In this study, the scoring of the metagenes was 
based on the median expression values among the 
GSEA leading edge within each predefined metagene. 
The fact that only a weak difference in performance 
between MG- and SG-models was detected suggests 
that the definition of metagenes and/or their expres-
sion calculation might not be able to detect such a 
significant difference in performance, at least not for 
metastasis outcome among lymph node–negative 
breast cancer patients. Other studies have scored gene 
module/metagene activity in a different way compared 
with our median expression score by either using the 
arithmetic mean,52 the sum of discrete values within 
each module/set,33 the expression values of a median 
gene in a module/gene set (defined as the gene within 
the gene set having the smallest sum of distances to 
other genes within the given gene set/module),53 aver-
age rank score (calculated as the average rank of the 
relative expression levels in a pathway normalized by 
the total number of genes),54 or by probabilistic infer-
ence using log-likelihood ratios.55

Another reason could be that exported MG- and 
SG-feature sets used for training and testing, and 
that we only used random forest and support vector 
machines as classification methods. The above con-
finement implied, as some of our unpublished results 
suggest, that classifiers based on random forest and 
support vector machines have a better classification 
performance when validated in completely indepen-
dent datasets compared with other classification meth-
ods such as logistic regression or neural networks. In 
this respect, an option is to validate if the MG- and 
SG-feature set performances also are similar when 
using other classification methods.

Interestingly, other studies have found a similarly 
slight performance difference between models com-
posed of gene modules or individual genes. These 
studies have also addressed breast cancer metasta-
sis outcome, but using a different module definition 
and scoring. The gene modules in one study were 
defined as a subset of genes from gene compendia 
with  correlated expression across arrays and showed 

that classifiers consisting of gene set modules had 
a slightly better classification performance, com-
pared with classifiers of individual genes.33 A second 
similar study, comparing the performance of clas-
sifiers consisting of gene sets defined by MsigDB, 
with classifiers consisting of individual genes, found 
that the two groups of classifiers had similar per-
formance, but that gene set classifiers were more 
stable.56 A third study by Blazadonakis and cowork-
ers57 used the 70-gene Mammaprint gene list2 and a 
previously determined 59-gene gene list58 to extract 
the presence of significant gene ontology biologi-
cal processes (GOBPs). The underlying genes in 
each of these GOBPS, beyond those present in the 
gene lists, were used to construct of pool of genes 
for constructing new gene-lists. Interestingly, com-
parison of classification performance between the 
original gene-list and the GOBP-derived gene lists 
in model training and testing within the validation 
datasets showed that using the GOBP-derived gene-
list performed slightly better than the gene lists from 
which they were derived.57 However, compared with 
our study, the validations in these three studies were 
confined to using a single classification method 
(Bayes classifier),33 or centroid classification.56,57 
Also, the predicted outcome differed compared with 
our study, being either defined as a “good” or “bad” 
outcome relative to 5-year time to metastasis33,56 or 
5-year breast cancer survival.57

The results from applying the classifiers developed 
in the training sets directly upon the test sets revealed 
that SG-classifiers trained on an Affymetrix dataset 
and validated on an independent Affymetrix dataset 
performed significantly better than MG- classifiers. 
This suggests that the single gene expression values 
are better for defining classification functions to clas-
sify independent data. Therefore, although the genes 
underlying each MG have been limited to the leading 
edge, signals from highly predictive genes might be 
diluted within the metagenes by the median expres-
sion scoring across the metagenes, and therefore lose 
predictive power compared with sets of single genes, 
which has been picked by feature selection, making 
each of them highly predictive. This performance 
difference could also be due to classifier functions/
rules based on single gene expression measurements 
being more transferable than leading edge median 
expression measurements.
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In contrast, no significant difference in performance 
was found between the MG- and SG-classifiers when the 
classifier was trained on an Agilent dataset and tested on 
an Affymetrix dataset. This suggests that when switch-
ing platforms, measurements underlying the classifier 
functions and rules differ significantly between the train-
ing and test set, that is, the Agilent and Affymetrix mea-
surements being defined as log ratios and log intensities, 
respectively. The finding that the MG- and SG-classifi-
ers are equally impaired suggests that Agilent-defined 
rules are not applicable to an Affymetrix dataset either 
when using median expression measures or individual 
gene expression measures, which agrees well with a pre-
vious finding showing poor correlations between corre-
sponding measurements conducted on the Agilent and 
Affymetrix platforms.59 Interestingly, a previous study 
has shown that Agilent log ratios show a bigger variabil-
ity compared with Affymetrix log intensities, even after 
correcting the Agilent variance using log ratios.60 The 
higher Agilent variability suggests that it would be less 
feasible to conduct Agilent to Agilent validations com-
pared with Affymetrix to Affymetrix validations.

Conclusions
In this study we compared the performance of metagene- 
or single gene-based feature sets and classifiers. As the 
function of the genes within breast cancer predictive 
profiles are frequently conserved, but not the individual 
genes, as we expected, gene sets having a biological con-
sensus would both have predictive power and potentially 
also better validation performance than classical single 
gene lists when validated in new samples. Surprisingly, 
the metagene- and single gene-based features had equal 
performance. When comparing classifier performance 
in independent datasets, we found only a significant dif-
ference between MG- and SG-classifier performances 
when validation was conducted on datasets measured 
upon the same microarray platform from which the clas-
sifiers were developed. In this situation, SG-classifiers 
significantly outperformed MG-classifiers.

Methods
Datasets used in this study
This study used a total of ten different datasets. Eight 
datasets were used for defining the metagene and  single 
gene features. These samples samples from the stud-
ies,1,11–14 and samples from the Gene Expression Omni-
bus (GEO-) series GSE2034,3 GSE4796,7 GSE3494.61 

In the further study, the GSE2034 (abbreviated AF1) 
and a subset of 151 node-negative samples from the 
Amsterdam dataset by van de Vijver14 (abbreviated 
AG1) were used for  internal validation within the 
same dataset by 10 times repeated 10-fold cross vali-
dation. Furthermore, these two datasets were also used 
for defining gene sets used to build and train a classi-
fier within the independent test datasets and also for 
building classifiers to be validated in our independent 
datasets. The following samples from two datasets 
were used as  independent test datasets: 147 samples 
from GSE739040  (abbreviated AF2) and all samples 
from GSE1112162 (abbreviated AF3).

Dataset processing
The normalizations performed in the studies were 
retained because the authors found these methods opti-
mal for the eight datasets and because initial ranking of 
metagenes and single genes was performed separately 
in each data set. Furthermore, the normalizations of the 
four datasets, AG1, AF1, AF2, and AF3, were retained 
for the reasons mentioned above. However, all four 
datasets were standardized, having a mean of zero and 
a standard deviation of one. Calculations and classifica-
tion were also conducted using the R-environment. For 
random forest and support vector machines, we used 
the randomForest and e1071 packages, respectively.

Single gene and metagene features
To determine which single genes should be used to build 
single gene-based gene expression profiles, we focussed 
on the eight publicly available datasets used in our two pre-
vious studies.30,31 The determination of single genes was 
done by applying the microarray meta-analysis described 
in our previous study30 upon the same individual gene 
expression values of each individual probe/gene used to 
derive the metagenes in the eight datasets. This method 
ranks each individual gene in each dataset according to its 
signal-to-noise ratio (SNR). The SNR finds the features 
that will discriminate between two classes by calculating a 
score that gives the highest score to those features whose 
expression levels differ most on average in the two groups 
while favoring those with small deviations in scores in the 
respective classes. The SNR for a feature j is calculated as:

 SNRj =
-

+

X X

s s

A j B j

A j B j

, ,

, ,
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In this formula, XA, j, XB, j are the mean gene 
expression of class A (metastasis group) and class B 
(nonmetastasis group) and sA,j, sB,j are their associated 
standard deviations for feature j. In this setting, features 
that obtain the most positive values are correlated with 
the metastasis class, while the most negative values 
are most correlated with the nonmetastasis class.

Following gene ranking within each dataset, the 
meta-analysis calculates the genes’ mean rank across 
datasets and determines if this mean rank is significantly 
high or low, according to a significance cutoff at FDR # 
0.05. Using gene symbols, 283 genes  (Supplementary 
Table 2) were found significant and shared by the AG1, 
AF1, AF2, and AF3 datasets and used in the further 
analysis. The MGs are 71 selected gene sets covering 
a specific biological pathway, chromosomal region, 
or a gene set sharing a DNA transcription factor bind-
ing motif. In a previous meta-analysis across eight 
breast cancer microarray datasets using individual 
gene enrichment score ranks calculated by GSEA. The 
71 metagenes were shown to be associated with breast 
cancer metastasis30,31 These are listed in Supplementary 
Table 1. The gene sets covering biological pathways are 
defined by KEGG (http://www.genome.ad.jp/KEGG), 
GenMapp (http://www.genmapp.org), and Biocarta 
(http://www.biocarta.com), while the transcription fac-
tor motifs are collected from TransFac (http://www.
gene-regulation.com) and sets of genes regulated by 
the same microRNA from the mirBase (http://microrna.
sanger.ac.uk). The gene sets belonging to these were 
defined using bioinformatic prediction as described in 
our previous study.30 However, as only a fraction of the 
genes within each gene set display differential expres-
sion between the classes, we limited the final gene sets 
to those that constituted the leading edge in a GSEA 
analysis. These leading edge genes are considered to be 
the core of genes driving the enrichment signal.63 These 
leading edge genes thus form each of the final meta-
genes, and the score of each metagene is defined as the 
median expression of these leading edge genes.

Classifier building
SGs or MGs within each training dataset were ranked 
according to their random forest importance value. 
For each feature, this value reports the standardized 
drop in prediction accuracy when the class labels 
are imputed.37 For each feature, this rank was used 
for model building by subsequently adding one 

feature at a time in a top-down forward-selection 
wrapper-approach starting with the top two features. 
To avoid creating bias during gene selection and 
training of the final classifier or on classification 
performance, we used 10 times repeated 10-fold 
cross validation accuracies as a performance measure 
as this metric has previously been shown to give an 
excellent bias-variance balance.38 In this study, the 
models were developed to achieve the best mean 
sensitivity and specificity thus forcing the overall 
accuracy to give a balanced sensitivity and specific-
ity. Three different classification methods were used 
for model building which included Random Forest 
(RF)37 and SVM with a radial-based kernal (R-SVM) 
and a sigmoid-based kernel (S-SVM).64 As all the 
classification methods have hyperparameters, we 
determined the optimal combination of these param-
eters using a grid search built into the 10-fold cross 
validation procedure. For this purpose the tune com-
mand from the e1071 R-package was applied. In ran-
dom forest, we optimized the number of trees in the 
forest (ntree) from settings of 2000, 3000, 4000, and 
5000 trees and the number of subselected predictors 
for node-splitting (mtry) with settings of 1, 0.5 times 
the number of features), 1 times the square root of 
features, 2 times the number of features, and the total 
number of features. In all support vector machines, 
the slack variable penalizing cost parameter (C) was 
optimized using settings of 0.01, 0.1, 1, and 10. The 
γ-parameter controlling the spreading of samples in 
feature space was optimized with the settings 0.001, 
0.01, 0.1, times the the square root of features

Classification performance assessment
We compared the bAcc of SG- and MG-profiles 
developed from the four datasets (AG1, AF1, AF2, 
and AF3) at three levels. At each level, we report 
the classification accuracy as the mean of sensitivity 
and specificity, which is referred to as the balanced 
accuracy (bAcc). Within the same dataset (AG1 or 
AF1) this was done by 10 times repeated 10-fold 
cross validation classification accuracies. For each 
combination of either MG or SG and classification 
method, this led to generation of 100 different models. 
 Therefore, the internal performance for either MG- 
or SG-models was defined as the mean performance 
of these 100  models. When  transferring features 
(defined by AG1, AF1, AF2, or AF3) for classifier 
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 building and testing in independent data, leave-one-out 
cross validation bAcc was used as a performance 
 metric. Although the 10 times repeated 10-fold cross 
validation is known to be a robust performance met-
ric, we wanted to classify each patient in the valida-
tion datasets one by one to mimic the clinical situation 
and, therefore, the LOOCV bAcc was chosen as a 
performance metric.

When transferring the best trained classifier (defined 
by AG1, AF1, AF2, or AF3) from the training sets to 
classify the independent samples, the classification cor-
responding to one-fold validation upon all test samples 
is reported. During transfer of features and classifiers, 
we examined between different platform and between 
similar platform classification performances. The 
between platform (Agilent validated on Affymetrix) 
covers AG1 validations on AF2 or AF3. The similar 
platform covers validation of using the same microar-
ray platform as the external validation set (Affymetrix 
validated on Affymetrix), that is, AF1 on AF2 or AF3, 
but also AF2 validated on AF3 and vice versa.

endpoint/outcome
Several studies that have developed classifiers predicting 
a dichotomous endpoint, have all optimized classifier per-
formance using a particular longitudinal cutoff,2,3,8,22 thus 
excluding patients not experiencing an event within the 
longitudinal cutoff and excluding patients experiencing 
events after this particular time point. These two circum-
stances could enhance the performance of these classi-
fiers with respect to classifying early metastasis events, 
but they are prone to perform poorly when classifying 
late metastasis events.40,46 However, a study by Thomas-
sen and coworkers used full follow-up time for classifier 
development, addressing if a patient would ever develop 
a metastasis for the length of the entire study7 and thus 
have the strength of giving equal weight to both early 
and late metastasis events. Furthermore, time-to-event 
analysis sometimes can be misleading when considering 
classification, and transformation of time-to-event into 
an binary outcome can blur prediction of the classes.65 In 
addition, genes being significantly correlated with sur-
vival time are not always optimal for classification.66

The outcome differs in the eight datasets used for 
defining the single genes and metagenes, that is, local 
and regional recurrences are included in some  studies. 
However, non-metastatic relapses constitute a minority 

in clinical cohorts. Therefore, the outcome is defined 
as metastasis or no metastasis after time of diagnosis.

Comparison of external validation 
performance
To test the significance of the performance difference 
between MG- and SG-features/classifiers, we used a 
repeated down-sampling approach consisting of the 
following five steps: (1) The MG- and SG-features/
classifiers classification results upon the entire test 
data were initially converted into a balanced test-result 
by down-sampling. Down-sampling obtains a class-
 balanced dataset from an imbalanced dataset by remov-
ing a subset of randomly selected samples from the 
majority class, where the number of samples removed 
equals the sample size of the minor class. In this study 
the majority class is the non-metastasis class. (2) The 
number of samples correctly classified by MGs but 
incorrectly by SGs and vice versa is counted; (3) the 
significance of the difference in these counts in deter-
mined using a χ2 test;67 (4) The P value of this test is 
stored and the steps 2 to 4 are repeated 1000 times; and 
(5) the median P value from the 1000 tests is reported 
as the significance between the MGs and SGs.
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bAcc, balanced accuracy; GEO, Gene Expression 
Omnibus; GO, Gene Ontology; GOBP, Gene Ontol-
ogy Biological Process; GSEA, gene set enrichment 
analysis; KEGG, Kyoto Encyclopedia of Genes 
and Genomes; LOOCV, leave-one-out cross valida-
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Table S1. List of the 71 metagenes.

Metagene Type # genes
12q13 Chromosome region 28
14q24 Chromosome region 18
16q22 Chromosome region 23
16q24 Chromosome region 14
17q23 Chromosome region 13
17q25 Chromosome region 16
1p31 Chromosome region 14
1q42 Chromosome region 24
20q11 Chromosome region 10
20q13 Chromosome region 29
5q14 Chromosome region 6
5q33 Chromosome region 7
8p21 Chromosome region 14
8q22 Chromosome region 12
8q24 Chromosome region 21
ACTINYPAThWAY Biological pathway 14
AMINOACYL_TrNA_BIOSYNTheSIS Biological pathway 8
ArAPPAThWAY Biological pathway 5
ATrBrCAPAThWAY Biological pathway 10
BeTA_ALANINe_MeTABOLISM Biological pathway 11
CeLL_CYCLe_Kegg Biological pathway 39
DNA_rePLICATION_reACTOMe Biological pathway 19
egFPAThWAY Biological pathway 8
eLeCTrON_TrANSPOrT_ChAIN Biological pathway 39
erBB2_grB7 Biological pathway 2
FATTY_ACID_MeTABOLISM Biological pathway 20
FrUCTOSe_AND_MANNOSe_MeTABOLISM Biological pathway 10
g2PAThWAY Biological pathway 11
gCCATNTTg_V$YY1_Q6 Transcription factor binding motif 65
gLeeVeCPAThWAY Biological pathway 7
gLYCerOLIPID_MeTABOLISM Biological pathway 14
gLYCOLYSIS_AND_gLUCONeOgeNeSIS Biological pathway 12
gPCrPAThWAY Biological pathway 8
hISTIDINe_MeTABOLISM Biological pathway 11
Il-12 Biological pathway 8
MrNA_PrOCeSSINg_reACTOMe Biological pathway 24
MrPPAThWAY Biological pathway 3
NUCLeAr_reCePTOrS Biological pathway 12
OXIDATIVe_PhOSPhOrYLATION Biological pathway 26
PDgFPAThWAY Biological pathway 7
PeNTOSe_PhOSPhATe_PAThWAY Biological pathway 11
PPArAPAThWAY Biological pathway 10
PrOTeASOMe_DegrADATION Biological pathway 18
PUrINe_MeTABOLISM Biological pathway 28
PYrIMIDINe_MeTABOLISM Biological pathway 23
rNA_TrANSCrIPTION_reACTOMe Biological pathway 9
S1P_SIgNALINg Biological pathway 6
S1P54_01 Biological pathway 53
TgASTMAgC_V$NFe2_01 Transcription factor binding motif 35
TNFr2 Biological pathway 9
TOLLPAThWAY Biological pathway 10

(Continued)
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Table S1. (Continued)

Metagene Type # genes
UBIQUITIN_MeDIATeD_PrOTeOLYSIS Biological pathway 2
V$AP1_01 Transcription factor binding motif 39
V$AP2_Q3 Transcription factor binding motif 33
V$ArNT_02 Transcription factor binding motif 34
V$BACh1_01 Transcription factor binding motif 50
V$CeTS1P54_01 Transcription factor binding motif 53
V$COUP_Dr1_Q6 Transcription factor binding motif 29
V$e2F_Q6_01 Transcription factor binding motif 52
V$eLK1_02 Transcription factor binding motif 38
V$er_Q6_02 Transcription factor binding motif 25
V$gABP_B Transcription factor binding motif 20
V$hIF1_Q5 Transcription factor binding motif 27
V$MYCMAX_B Transcription factor binding motif 54
V$NFY_Q6 Transcription factor binding motif 22
V$NrF1_Q6 Transcription factor binding motif 35
V$NrF2_01 Transcription factor binding motif 35
V$SP1_Q6_01 Transcription factor binding motif 26
V$USF2_Q6 Transcription factor binding motif 34
VALINe_LeUCINe_AND_ISOLeUCINe_DegrADATION Biological pathway 15
VegFPAThWAY Biological pathway 9

Notes: The first column shows the name of the metagenes. The second column shows whether the metagene covers a biological pathway, chromosomal 
region or genes sharing a specific transcription factor binding motif. # genes lists the number of genes underlying the final metagene.
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Table S2. List of the 283 single genes.

Gene symbol Description
ABCA5 ATP-binding cassette, sub-family A (ABC1), member 5
ABCA8 ATP-binding cassette, sub-family A (ABC1), member 8
ABCC10 ATP-binding cassette, sub-family C (CFTr/MrP), member 10
ABCC5 ATP-binding cassette, sub-family C (CFTr/MrP), member 5
ABTB2 Ankyrin repeat and BTB (POZ) domain containing 2
ACD Adrenocortical dysplasia homolog (mouse)
ADFP Adipose differentiation-related protein
ADh1B Alcohol dehydrogenase IB (class I), beta polypeptide
ADrA2A Adrenergic, alpha-2A-, receptor
ADrM1 Adhesion regulating molecule 1
ALDh1A1 Aldehyde dehydrogenase 1 family, member A1
ALDh2 Aldehyde dehydrogenase 2 family (mitochondrial)
ALDh6A1 Aldehyde dehydrogenase 6 family, member A1
APOD Apolipoprotein D
ArhgeF6 rac/Cdc42 guanine nucleotide exchange factor (geF) 6
ATP1B3 ATPase, Na+/K+ transporting, beta 3 polypeptide
ATP2A2 ATPase, Ca++ transporting, cardiac muscle, slow twitch 2
ATP9A ATPase, Class II, type 9A
AUrKB Aurora kinase B
BArD1 BrCA1 associated rINg domain 1
BCL2 B-cell CLL/lymphoma 2
BCL2L1 BCL2-like 1
BrCA1 Breast cancer 1, early onset
BUB1 BUB1 budding uninhibited by benzimidazoles 1 homolog (yeast)
BUB1B BUB1 budding uninhibited by benzimidazoles 1 homolog beta (yeast)
C6 Complement component 6
C7OrF24 Chromosome 7 open reading frame 24
CACNA1D Calcium channel, voltage-dependent, L type, alpha 1D subunit
CArS Cysteinyl-trNA synthetase
CAT Catalase
CCNA2 Cyclin A2
CCNB1 Cyclin B1
CCNB2 Cyclin B2
CCNe2 Cyclin e2
CCNF Cyclin F
CCT5 Chaperonin containing TCP1, subunit 5 (epsilon)
CCT6A Chaperonin containing TCP1, subunit 6A (zeta 1)
CD44 CD44 molecule (Indian blood group)
CDC2 Cell division cycle 2, g1 to S and g2 to M
CDC20 CDC20 cell division cycle 20 homolog (S. cerevisiae)
CDC25B Cell division cycle 25B
CDC25C Cell division cycle 25C
CDC34 Cell division cycle 34
CDC45L CDC45 cell division cycle 45-like (S. cerevisiae)
CDK8 Cyclin-dependent kinase 8
CDKN3 Cyclin-dependent kinase inhibitor 3 (CDK2-associated dual specificity phosphatase)
CDO1 Cysteine dioxygenase, type I
CeNPe Centromere protein e, 312 kDa
CeNPF Centromere protein F, 350/400 ka (mitosin)
Ch25h Cholesterol 25-hydroxylase
ChAF1B Chromatin assembly factor 1, subunit B (p60)
CIrBP Cold inducible rNA binding protein
CKAP5 Cytoskeleton associated protein 5
CKS2 CDC28 protein kinase regulatory subunit 2
CNN3 Calponin 3, acidic

(Continued)
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Table S2. (Continued)

Gene symbol Description
CNTN1 Contactin 1
CP Ceruloplasmin (ferroxidase)
CreBL2 CAMP responsive element binding protein-like 2
CrIM1 Cysteine rich transmembrane BMP regulator 1 (chordin-like)
CSe1L CSe1 chromosome segregation 1-like (yeast)
CSTF1 Cleavage stimulation factor, 3′ pre-rNA, subunit 1, 50 kDa
CTPS CTP synthase
CTSD Cathepsin D (lysosomal aspartyl peptidase)
CTSL Cathepsin L
CX3Cr1 Chemokine (C-X3-C motif) receptor 1
CYP4B1 Cytochrome P450, family 4, subfamily B, polypeptide 1
CYP4F12 Cytochrome P450, family 4, subfamily F, polypeptide 12
DDIT4 DNA-damage-inducible transcript 4
DDX39 DeAD (Asp-glu-Ala-Asp) box polypeptide 39
DLg7 Discs, large homolog 7 (Drosophila)
DLX2 Distal-less homeobox 2
DOCK1 Dedicator of cytokinesis 1
DPT Dermatopontin
DUSP1 Dual specificity phosphatase 1
DUSP4 Dual specificity phosphatase 4
DYrK2 Dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 2
eBP emopamil binding protein (sterol isomerase)
eDg1 endothelial differentiation, sphingolipid g-protein-coupled receptor, 1
egr2 early growth response 2 (Krox-20 homolog, Drosophila)
eLOVL5 eLOVL family member 5, elongation of long chain fatty acids (FeN1/elo2, SUr4/elo3-like, yeast)
eNPP2 ectonucleotide pyrophosphatase/phosphodiesterase 2 (autotaxin)
ePhX2 epoxide hydrolase 2, cytoplasmic
eSPL1 extra spindle poles like 1 (S. cerevisiae)
eVPL envoplakin
eXO1 exonuclease 1
eZh2 enhancer of zeste homolog 2 (Drosophila)
F3 Coagulation factor III (thromboplastin, tissue factor)
FADD Fas (TNFrSF6)-associated via death domain
FANCg Fanconi anemia, complementation group g
FAS Fas (TNF receptor superfamily, member 6)
FBLN1 Fibulin 1
FBLN5 Fibulin 5
FCer1A Fc fragment of IgE, high affinity I, receptor for; alpha polypeptide
FeN1 Flap structure-specific endonuclease 1
FgL2 Fibrinogen-like 2
FLJ22531 –
FMO2 Flavin containing monooxygenase 2 (non-functional)
FOS v-fos FBJ murine osteosarcoma viral oncogene homolog
FOXM1 Forkhead box M1
FrZB Frizzled-related protein
FUCA1 Fucosidase, alpha-L-1, tissue
gABArAP gABA(A) receptor-associated protein
gAD1 glutamate decarboxylase 1 (brain, 67 kDa)
gALK1 galactokinase 1
geM gTP binding protein overexpressed in skeletal muscle
ggCX gamma-glutamyl carboxylase
gLA galactosidase, alpha
gLI1 Glioma-associated oncogene homolog 1 (zinc finger protein)
gMPS guanine monphosphate synthetase
gNg11 guanine nucleotide binding protein (g protein), gamma 11

(Continued)
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Table S2. (Continued)

Gene symbol Description
gNg12 guanine nucleotide binding protein (g protein), gamma 12
gPSM2 g-protein signalling modulator 2 (AgS3-like, C. elegans)
grIK1 glutamate receptor, ionotropic, kainate 1
gSTM3 glutathione S-transferase M3 (brain)
gUK1 guanylate kinase 1
gYS2 glycogen synthase 2 (liver)
h2AFZ h2A histone family, member Z
hIST1h3D histone cluster 1, h3d
hMgB2 high-mobility group box 2
hMMr hyaluronan-mediated motility receptor (rhAMM)
hNMT histamine N-methyltransferase
hNrPAB heterogeneous nuclear ribonucleoprotein A/B
hNrPh2 heterogeneous nuclear ribonucleoprotein h2 (h′)
hPN hepsin (transmembrane protease, serine 1)
hPrT1 hypoxanthine phosphoribosyltransferase 1 (Lesch-Nyhan syndrome)
IFNgr2 Interferon gamma receptor 2 (interferon gamma transducer 1)
IgFBP4 Insulin-like growth factor binding protein 4
IQgAP2 IQ motif containing gTPase activating protein 2
ITM2A Integral membrane protein 2A
ITPr1 Inositol 1,4,5-triphosphate receptor, type 1
JAK2 Janus kinase 2 (a protein tyrosine kinase)
KCTD12 Potassium channel tetramerisation domain containing 12
KIF11 Kinesin family member 11
KIF13B Kinesin family member 13B
KIF14 Kinesin family member 14
KIF2C Kinesin family member 2C
KIFC1 Kinesin family member C1
KIAA0101 KIAA0101
KIAA0247 KIAA0247
KIAA0286 –
KIAA0319 KIAA0319
LAMA2 Laminin, alpha 2 (merosin, congenital muscular dystrophy)
LArP1 La ribonucleoprotein domain family, member 1
LeP Leptin (obesity homolog, mouse)
LIg1 Ligase I, DNA, ATP-dependent
LMNB1 Lamin B1
LMO2 LIM domain only 2 (rhombotin-like 1)
LPhN2 Latrophilin 2
LPL Lipoprotein lipase
LrIg1 Leucine-rich repeats and immunoglobulin-like domains 1
LrP2 Low density lipoprotein-related protein 2
MAD2L1 MAD2 mitotic arrest deficient-like 1 (yeast)
MAPre1 Microtubule-associated protein, rP/eB family, member 1
MArS Methionine-trNA synthetase
MCM3 MCM3 minichromosome maintenance deficient 3 (S. cerevisiae)
MCM6 MCM6 minichromosome maintenance deficient 6 (MIS5 homolog, S. pombe) (S. cerevisiae)
MCM7 MCM7 minichromosome maintenance deficient 7 (S. cerevisiae)
MeIS1 Meis1, myeloid ecotropic viral integration site 1 homolog (mouse)
MeLK Maternal embryonic leucine zipper kinase
MgP Matrix gla protein
MKI67 Antigen identified by monoclonal antibody Ki-67
MN1 Meningioma (disrupted in balanced translocation) 1
MrPL12 Mitochondrial ribosomal protein L12
MT2A Metallothionein 2A
MThFD2 Methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 2, methenyltetrahydrofolate cyclohydrolase

(Continued)
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Table S2. (Continued)

Gene symbol Description
MVD Mevalonate (diphospho) decarboxylase
MYBL2 v-myb myeloblastosis viral oncogene homolog (avian)-like 2
NCOA1 Nuclear receptor coactivator 1
NDUFA9 NADh dehydrogenase (ubiquinone) 1 alpha subcomplex, 9, 39 kDa
NeDD9 Neural precursor cell expressed, developmentally down-regulated 9
NeK2 NIMA (never in mitosis gene a)-related kinase 2
NMe5 Non-metastatic cells 5, protein expressed in (nucleoside-diphosphate kinase)
NNAT Neuronatin
NP Nucleoside phosphorylase
Nr3C2 Nuclear receptor subfamily 3, group C, member 2
NTrK2 Neurotrophic tyrosine kinase, receptor, type 2
NUDT1 Nudix (nucleoside diphosphate linked moiety X)-type motif 1
NUP155 Nucleoporin 155 kDa
NUP62 Nucleoporin 62 kDa
NVL Nuclear VCP-like
OMD Osteomodulin
P4hA2 Procollagen-proline, 2-oxoglutarate 4-dioxygenase (proline 4-hydroxylase), alpha polypeptide II
PDCD4 Programmed cell death 4 (neoplastic transformation inhibitor)
PDe4A Phosphodiesterase 4A, cAMP-specific (phosphodiesterase E2 dunce homolog, Drosophila)
PDZrN3 PDZ domain containing RING finger 3
PFKP Phosphofructokinase, platelet
PhLDA2 Pleckstrin homology-like domain, family A, member 2
PIN1 Protein (peptidylprolyl cis/trans isomerase) NIMA-interacting 1
PIP Prolactin-induced protein
PIr Pirin (iron-binding nuclear protein)
PKMYT1 Protein kinase, membrane associated tyrosine/threonine 1
PLK4 Polo-like kinase 4 (Drosophila)
PLP2 Proteolipid protein 2 (colonic epithelium-enriched)
PNMA2 Paraneoplastic antigen MA2
PNrC1 Proline-rich nuclear receptor coactivator 1
POLD1 Polymerase (DNA directed), delta 1, catalytic subunit 125 kDa
POLr2h Polymerase (rNA) II (DNA directed) polypeptide h
POLS Polymerase (DNA directed) sigma
PrAMe Preferentially expressed antigen in melanoma
PSD3 Pleckstrin and Sec7 domain containing 3
PSMB3 Proteasome (prosome, macropain) subunit, beta type, 3
PSMB7 Proteasome (prosome, macropain) subunit, beta type, 7
PSMD1 Proteasome (prosome, macropain) 26S subunit, non-ATPase, 1
PSMD11 Proteasome (prosome, macropain) 26S subunit, non-ATPase, 11
PTDSr Phosphatidylserine receptor
PTger3 Prostaglandin e receptor 3 (subtype eP3)
PTger4 Prostaglandin e receptor 4 (subtype eP4)
PTPrT Protein tyrosine phosphatase, receptor type, T
PTTg1 Pituitary tumor-transforming 1
QDPr Quinoid dihydropteridine reductase
rABggTA rab geranylgeranyltransferase, alpha subunit
rABIF rAB interacting factor
rAD51 rAD51 homolog (recA homolog, E. coli) (S. cerevisiae)
rAD51AP1 rAD51 associated protein 1
rAe1 rAe1 rNA export 1 homolog (S. pombe)
rALA v-ral simian leukemia viral oncogene homolog A (ras related)
rBMS3 rNA binding motif, single stranded interacting protein
rDBP rD rNA binding protein
reCQL4 recQ protein-like 4
rFC3 replication factor C (activator 1) 3, 38 kDa

(Continued)
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Table S2. (Continued)

Gene symbol Description
rFC4 replication factor C (activator 1) 4, 37 kDa
rgS5 regulator of g-protein signalling 5
rICS –
rNASeh2A ribonuclease h2, subunit A
rrM1 ribonucleotide reductase M1 polypeptide
rrM2 ribonucleotide reductase M2 polypeptide
rTN1 reticulon 1
SAC3D1 SAC3 domain containing 1
SC5DL Sterol-C5-desaturase (erg3 delta-5-desaturase homolog, fungal)-like
SDS Serine dehydratase
SeC14L2 SeC14-like 2 (S. cerevisiae)
SeC61g Sec61 gamma subunit
SeLe Selectin e (endothelial adhesion molecule 1)
SeMA3e Sema domain, immunoglobulin domain (Ig), short basic domain, secreted, (semaphorin) 3e
SerPINA1 Serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), member 1
SF3B4 Splicing factor 3b, subunit 4, 49 kDa
SFrP4 Secreted frizzled-related protein 4
SFrS5 Splicing factor, arginine/serine-rich 5
Sh3BgrL Sh3 domain binding glutamic acid-rich protein like
SIAhBP1 –
SIX1 Sine oculis homeobox homolog 1 (Drosophila)
SLBP Stem-loop (histone) binding protein
SLC14A1 Solute carrier family 14 (urea transporter), member 1 (Kidd blood group)
SLC16A3 Solute carrier family 16, member 3 (monocarboxylic acid transporter 4)
SLC25A1 Solute carrier family 25 (mitochondrial carrier; citrate transporter), member 1
SLC4A7 Solute carrier family 4, sodium bicarbonate cotransporter, member 7
SLIT2 Slit homolog 2 (Drosophila)
SMArCA2 SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 2
SOrBS2 Sorbin and Sh3 domain containing 2
SOrL1 Sortilin-related receptor, L(DLr class) A repeats-containing
SPAg5 Sperm associated antigen 5
SPrY2 Sprouty homolog 2 (Drosophila)
SSPN Sarcospan (Kras oncogene-associated gene)
SSrP1 Structure specific recognition protein 1
STC2 Stanniocalcin 2
STMN1 Stathmin 1/oncoprotein 18
SUrF2 Surfeit 2
TACSTD1 Tumor-associated calcium signal transducer 1
TAT Tyrosine aminotransferase
TBCD Tubulin-specific chaperone d
TgFB3 Transforming growth factor, beta 3
TIMeLeSS Timeless homolog (Drosophila)
TIMM17B Translocase of inner mitochondrial membrane 17 homolog B (yeast)
TLr3 Toll-like receptor 3
TOP2A Topoisomerase (DNA) II alpha 170 kDa
TPX2 TPX2, microtubule-associated, homolog (Xenopus laevis)
TrIP13 Thyroid hormone receptor interactor 13
TrOAP Trophinin associated protein (tastin)
TUBA1 Tubulin, alpha 1
TXN Thioredoxin
TXNIP Thioredoxin interacting protein
TXNrD1 Thioredoxin reductase 1
TYrP1 Tyrosinase-related protein 1
UBe2C Ubiquitin-conjugating enzyme E2C
UBe2V2 Ubiquitin-conjugating enzyme E2 variant 2

(Continued)
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Table S3. Internal result.

Internal results RF R-sVM s-sVM Across
Method sen spe bAcc sen spe bAcc sen spe bAcc sen spe bAcc
Mg 73 69 71 80 65 73 71 76 74 75 70 73
Sg 85 53 69 85 59 72 69 79 74 80 64 72

Table S4. exported feature set performance (different platform).

Feature set 
different platforms

RF R-sVM s-sVM Across

Method sen spe bAcc sen spe bAcc sen spe bAcc sen spe bAcc
Mg 14 95 55 70 74 72 70 74 72 51 81 66
Sg 35 79 57 48 66 57 72 69 71 52 71 62

Notes: The table shows the mean sensitivity, specificity and balanced accuracies for feature sets defined by AG1 and validated in AF2 and AF3, using 
either metagenes (Mg) or single genes (Sg) as features and using random forest (rF), support vector machine with a radial-based kernel (r-SVM) or a 
sigmoid kernel (S-SVM). Across shows the mean of the results across the three classification methods.

Table S5. exported feature set performance (similar platform).

Feature set 
similar platforms

RF R-sVM s-sVM Across

Method sen spe bAcc sen spe bAcc sen spe bAcc sen spe bAcc
Mg 71 46 59 68 69 69 73 72 73 71 62 67
Sg 76 39 58 67 71 69 71 71 71 71 60 66

Notes: The table shows the mean sensitivity, specificity and balanced accuracies for external validation of feature sets covering the following validation: 
Feature sets defined by AF1 and validated in AF2 and AF3. Feature sets defined by AF2 and validated in AF3 and vice versa, using either metagenes (MG) 
or single genes (Sg) as features and using random forest (rF), support vector machine with a radial-based kernel (r-SVM) or a sigmoid kernel (S-SVM). 
Across shows the mean of the results across the three classification methods.

Table S6. Exported classifier performance (different platform).

Feature set 
different platforms

RF R-sVM s-sVM Across

Method sen spe bAcc sen spe bAcc sen spe bAcc sen spe bAcc
Mg 42 75 59 26 85 56 33 85 59 34 82 58
Sg 56 67 62 49 66 58 33 71 52 46 68 58

Notes: The table shows the mean sensitivity, specificity and balanced accuracies for classifiers defined by AG1 and validated in AF2 and AF3, using either 
metagenes (Mg) or single genes (Sg) as features and using random forest (rF), support vector machine with a radial-based kernel (r-SVM) or a sigmoid 
kernel (S-SVM).

Table S2. (Continued)

Gene symbol Description
WDhD1 WD repeat and hMg-box DNA binding protein 1
WFDC2 WAP four-disulfide core domain 2
WWP2 WW domain containing e3 ubiquitin protein ligase 2
XPOT exportin, trNA (nuclear export receptor for trNAs)
YWhAZ Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta polypeptide
ZNF238 Zinc finger protein 238
ZWINT ZW10 interactor
AASS Aminoadipate-semialdehyde synthase

Notes: gene symbol shows the gene symbol of the 283 single genes. Description shows their name.
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Table S7. Exported classifier performance (similar platform).

Feature set 
Similar platforms

RF R-sVM s-sVM Across

Method sen spe bAcc sen spe bAcc sen spe bAcc sen spe bAcc
Mg 53 61 57 67 42 55 62 43 53 61 49 55
Sg 65 58 62 65 53 59 58 60 59 63 57 60

Notes: The table shows the mean sensitivity, specificity and balanced accuracies for external validation of classifiers covering the following validation: 
Feature sets defined by AF1 and validated in AF2 and AF3. Feature sets defined by AF2 and validated in AF3 and vice versa, using either metagenes 
(Mg) or single genes (Sg) as features and using random forest (rF), support vector machine with a radial-based kernel (r-SVM) or a sigmoid kernel 
(S-SVM).
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