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Abstract: Gene and protein networks offer a powerful approach for integration of the disparate yet complimentary types of data that result from high-
throughput analyses. Although many tools and databases are currently available for accessing such data, they are left unutilized by bench scientists 
as they generally lack features for effective analysis and integration of both public and private datasets and do not offer an intuitive interface for use 
by scientists with limited computational expertise. We describe BioNetwork Bench, an open source, user-friendly suite of database and software tools 
for constructing, query ing, and analyzing gene and protein network models. It enables biologists to analyze public as well as private gene expression; 
interactively query gene expression datasets; integrate data from mul tiple networks; store and selectively share the data and results. Finally, we describe 
an application of BioNetwork Bench to the assembly and iterative expansion of a gene network that controls the differentiation of retinal progenitor 
cells into rod photoreceptors. The tool is available from http://bionetworkbench.sourceforge.net/
Background: The emergence of high-throughput technologies has allowed many biological investigators to collect a great deal of information about 
the behavior of genes and gene products over time or during a particular disease state. Gene and protein networks offer a powerful approach for 
integration of the disparate yet complimentary types of data that result from such high-throughput analyses. There are a growing number of public 
databases, as well as tools for visualization and analysis of networks. However, such databases and tools have yet to be widely utilized by bench 
scientists, as they generally lack features for effective analysis and integration of both public and private datasets and do not offer an intuitive interface 
for use by biological scientists with limited computational expertise.
Results: We describe BioNetwork Bench, an open source, user-friendly suite of database and software tools for constructing, querying, and analyzing 
gene and protein network models. BioNetwork Bench currently supports a broad class of gene and protein network models (eg, weighted and un-
weighted, undirected graphs, multi-graphs). It enables biologists to analyze public as well as private gene expression, macromolecular interaction and 
annotation data; interactively query gene expression datasets; integrate data from multiple networks; query multiple networks for interactions of inter-
est; store and selectively share the data as well as results of analyses. BioNetwork Bench is implemented as a plug-in for, and hence is fully interoper-
able with, Cytoscape, a popular open-source software suite for visualizing macromolecular interaction networks. Finally, we describe an application 
of BioNetwork Bench to the problem of assembly and iterative expansion of a gene network that controls the differentiation of retinal progenitor cells 
into rod photoreceptors.
Conclusions: BioNetwork Bench provides a suite of open source software for construction, querying, and selective sharing of gene and protein 
networks. Although initially aimed at a community of biologists interested in retinal development, the tool can be adapted easily to work with other 
biological systems simply by populating the associated database with the relevant datasets.
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Introduction
Understanding how the basic molecular building 
blocks work together to form dynamic functional 
units (eg, gene and protein networks that orchestrate 
development, aging, and response to disease) is one 
of the central goals of modern biology. The emer-
gence of high-throughput techniques for measuring 
the expression of thousands of genes, interactions 
between proteins, genes, regulatory RNAs, and other 
signaling agents, has made possible system-wide 
measurements of biological variables.

Network models offer a powerful approach for 
the representation, integration, and analysis of the 
resulting data. Hence, the construction and analysis 
of genetic regulatory networks,1 protein-protein 
interaction networks, metabolic networks,2 and their 
combinations3,4 are central concerns of systems 
biology.1–10 Recent advances in systems biology 
have led to substantial progress on problems such 
as understanding the essential macromolecular 
sequence and structural features of molecular 
interactions;11 extracting signaling pathways 
from gene and protein interaction networks;12,13 
discovering topological and other characteristics of 
these networks;14–18 integration of disparate types of 
data (microarrays, proteomics, physical interaction, 
subcellular localization, etc.);13,19,20 predicting the 
most important nodes in networks;21 and finding 
functional modules in networks.22–24 Such efforts 
necessarily involve extracting, often in an iterative 
fashion, meaningful information from large amounts 
of disparate—often noisy—data and then storing, 
modifying, and annotating the results of such analyses 
(eg, hypothesized networks or pathways). There is an 
urgent need for user-friendly software tools to assist 
bench scientists to efficiently navigate and manage 
such a discovery process. Consequently, a number of 
efforts have focused on development of databases or 
data warehouses to support specific types of analysis 
of high throughput gene expression or protein-protein 
interaction datasets.

Gene expression databases such as the Gene 
 Expression Database (GXD),25 the Stanford Microarray 
Database (SMD),26 and ArrayExpress27 provide  excellent 
resources for disseminating gene  expression data. 
 However, they provide limited support for advanced 
querying of expression datasets or selective sharing of 
private datasets within or among research groups.

A variety of software packages have recently 
become available for constructing and enriching 
genetic and regulatory networks from gene expression 
data (eg, ARACNe28 is a command line tool for recon-
structing gene regulatory networks from expression 
data using information gain; ExpressionCorrelation 
Cytoscape29 is a plug-in for constructing gene-
 correlation networks using Pearson correlation), 
binding data (eg, MINDy18 is an algorithm for finding 
the influence of a modulator gene on the regulatory 
activity of a transcription factor gene given a set of 
target genes; MatrixREDUCE30 is a tool for predict-
ing binding specificity and concentration of transcrip-
tion factors in the nucleus), and information from 
literature searches (eg, Agilent Literature Search,31 
GSNet,32 and Biology Networks Gene Ontology 
tool (BINGO)33 construct gene networks based on 
combining information parsed from paper abstracts/
literature), and for visualizing and analyzing networks 
(eg, Cytoscape,34 Osprey,35 BioMiner,36 Pathway 
Editor,37 GenePath,38 Genetic Network Analyzer,39 
GenMapp2,40 GeneWays,41 and geWorkbench42 are 
all platforms for visualization and analysis of gene/
protein networks). Currently, no single plug-in exists 
that automates the tasks of constructing, querying, and 
analyzing the network models for both weighted and 
un-weighted networks based on gene expression data 
within Cytoscape while also providing a user-friendly 
interface for all the functionality, and a repository for 
storing and retrieving the networks.

It is against this background that we developed 
BioNetwork Bench, a user-friendly open source 
suite of database and software tools for constructing, 
querying, and analyzing gene and protein network 
models as a Cytoscape plug-in featuring a common 
and intuitive user-interface for all the functionality. 
BioNetwork Bench currently supports a broad class 
of gene and protein network models (eg, weighted 
and un-weighted undirected graphs, multi-graphs). 
It enables biologists (especially, bench biologists with 
limited expertise in database query languages etc.) 
to manipulate public as well as private gene expres-
sion, macromolecular interaction and annotation 
data; interactively query gene expression datasets; 
integrate data from multiple networks; query mul-
tiple networks for interactions of interest; and store 
and selectively share the data as well as the results 
of analyses. BioNetwork Bench is implemented as 
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a plug-in for, and hence is fully interoperable with, 
Cytoscape—a popular open-source software suite for 
visualizing macromolecular interaction networks.

BioNetwork Bench has been successfully used by 
a team of bench biologists to assemble and iteratively 
expand an experimentally well-characterized seed 
network of genes that orchestrate the differentiation 
of retinal progenitor cells into rod photoreceptors. 
BioNetwork Bench offers a powerful and easy-to-
use tool for bench biologists to explore multiple high 
throughput datasets in the context of their specialized 
biological knowledge, to help them generate and 
prioritize hypotheses for further investigation 
using traditional molecular or genetic approaches. 
Although initially aimed at a community of biologists 
interested in the retina, the tool can be adapted easily 
to work with other systems simply by populating the 
associated database with the relevant datasets.

BioNetwork Bench currently supports the storage, 
manipulation, and sharing of annotated networks and 
expression datasets; concurrent searching of mul-
tiple private and public datasets; transferring query 
results into a new search, and easy querying by Gene 
Ontology (GO) annotation43 (including display and 
browsing of GO categories and automatic retrieval of 
GO annotations). It also offers features such as con-
structing correlation networks from expression data 
and advanced network merging.

program Features
BioNetwork Bench supports multiple types of users 
with different privileges (administrators, expert users, 
and standard users). Database administrators have 
rights to administer the database and user accounts 
(and in principle, have access to all datasets stored 
on the system). A script is provided for database 
administrators to install a MySQL database that will 
be utilized by BioNetwork Bench, as well as a script 
to update a local copy of the GO database44 used for 
finding GO annotations of network genes.

All users, including database administrators, expert 
users, and standard users, are allowed to utilize public 
data and their own private data as well as query net-
works and expression datasets that they are allowed 
to access. All users are allowed to load any dataset 
of their choice into the database, annotate it, and if 
they so choose, selectively share data (including data-
sets that they have uploaded into the system, or results 

of analyses that they do) with other users by granting 
them rights to view, update, or delete specific  datasets. 
All users are allowed to create a private copy of a 
public dataset, modify their private copy and store it in 
their private space, which is invisible to others except 
the administrator and the specific users or groups of 
users that have been granted access rights.

Manipulating networks  
and expression data
BioNetwork Bench provides a simple method to 
load networks or expression data into the database, 
save and delete networks from the database, or load 
expression datasets from a file. BioNetwork Bench 
requires the user to supply dataset citation, a record 
that includes some basic information about the 
source of the data (name of the dataset, title of the 
publication, journal, etc.) when saving a new  dataset 
into the database. Users can query for the dataset 
using the dataset citation information. In the case of 
derived data, the citation can include details of the 
workflow or analysis steps that were used to gener-
ate the derived data (eg, selection of a subset of data 
based on some criteria).

Building correlation networks  
from expression data
BioNetwork Bench currently supports the construction 
of gene expression correlation networks (undirected 
weighted graphs) from expression data using a Pearson 
or Spearman Rank correlation function and a user-
specified positive or negative correlation threshold.

Querying expression data
The search function enables users to find genes 
correlated with “any” or “all” user-provided “target” 
genes with a correlation coefficient higher than the 
selected threshold (using Pearson or Spearman 
functions). A set of networks is returned, where 
each is a correlation network extracted from a single 
dataset, trimmed to only include the target genes and 
genes they are correlated with, in a given dataset. 
Resulting networks can be loaded into Cytoscape for 
viewing, merged (with a Merge option in the Networks 
window) to identify intersection and/or overlap of the 
networks, or reused for further queries. An “Import 
selected names from Cytoscape” option imports a list 
of target gene names of user-selected network nodes 
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from networks loaded in Cytoscape. “Correlated in at 
least k datasets” option produces a network composed 
of target genes and genes correlated with them in at 
least k datasets, where k is a parameter specified by 
the user.

Merging networks
The Merge function allows the creation of a new net-
work merged from a set of selected networks. A result-
ing network will only include nodes and edges present 
in all of the selected networks if an “intersection” 
option is chosen, or all nodes and edges present in 
at least one of the selected networks if the “union” 
option is chosen. The users have the ability to force a 
certain set of nodes to be included in the intersection 
network, even if these nodes are not present in all of 
the networks used for merging.

Querying networks
BioNetwork Bench provides multiple querying capa-
bilities for easily searching for genes in networks 
loaded into Cytoscape as well as networks stored in 
the database. The list of genes that satisfy the query 
criteria are highlighted in the networks being queried. 
The results can be used in multiple ways, such as cre-
ating a new network from highlighted nodes (utilizing 
Cytoscape’s functionality), storing resulting networks 
in the database, merging networks, and reusing the 
results by transferring names of highlighted nodes to 
new queries.

Querying nodes by name allows the user to 
determine which networks in the database contain the 
gene(s) of interest or quickly locate gene(s) in a loaded 
network. Querying nodes by attribute locates nodes that 
possess a certain attribute, such as “CanonicalName.” 
Querying by interaction provides a way to find nodes/
genes connected to a set of target genes in previously 
annotated networks. Querying genes by their GO 
 annotation (see Fig. 4D) provides an easy way to find 
genes that belong to a certain GO category with respect 
to molecular function, biological process, or cellular 
location. A GO graph is loaded in a form of an expand-
able tree, where a user can select any category at any 
level to query a network (loaded in Cytoscape or stored 
in the database) for genes in that category.

Implementation
BioNetwork Bench consists of a database for storage 
and manipulation of networks and expression data 
for multiple users, together with an interactive query 
engine. The query engine allows interactive prob-
ing of expression datasets and annotated networks, 
as well as merging and reuse of the results obtained 
(Fig. 1). The query engine retrieves information from 
networks and expression data loaded into Cytoscape, 
networks and expression data stored in the database, 
and GO annotations and term relationships stored in 
the local copy of the GO database. The BioNetwork 
Bench Database stores protein and gene expression 
datasets, as well as inferred or proposed genetic or 
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Figure 1. A diagram of the main components of BioNetwork Bench and a typical workflow.
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interaction networks. Since our research is focused 
on mouse retinal development, the datasets currently 
present in the database reflect that interest. However, 
data for any organism or tissue can be stored in the 
database; the schema used is equally suitable for stor-
ing gene/protein expression data and networks for any 
biological system. A relational database was installed 
using MySQL Server 5.0 which was chosen due to 
its widespread use and non-commercial availability.45 
Taking into consideration a possible expansion of 
the database and a need for future improvements in 
speed, MySQL was also chosen among other RDBMS 
(Relational Database Management Systems) due to 
its support of range and hash partitioning (available 
in MySQL server 5.0.1 beta). The database consists 
of 11 tables containing network data, gene expression 
data, and information about users (Fig. 2).

A MySQL copy of GO was obtained from the GO 
consortium website.46 The Gene Ontology schema 
is used for finding gene annotations and determin-
ing which nodes (genes) in a network belong to a 
given GO category. A batch script simplifying the 
extraction of corresponding files was created to sim-
plify the update process of Mygo, the local copy of 
the GO schema. A database administrator can easily 

update the GO database copy on a regular basis by 
downloading the corresponding releases of the tool.

The database querying program was developed as a 
plug-in for Cytoscape, a widely used software package 
for visualization and analysis of genetic networks. The 
querying engine is written in Java, employing JDBC 
(Java Database Connector) to create database connec-
tions with the Retina and Mygo databases. Several 
Borland JBuilder47 libraries were used in the creation 
of the graphical user interface. The querying engine 
translates user-selected options in the Query tab in 
Expression or Networks window into a set of corre-
sponding SQL queries. Occasionally, extra computation 
is required in addition to querying, such as computing 
correlations between gene expression profiles.

Case study
As noted earlier, BioNetwork Bench is intended to 
assist bench biologists in exploiting large scale gene 
expression datasets to iteratively refine a hypothesized 
gene network and to prioritize hypotheses for further 
experimental investigation. We describe a case study 
that demonstrates how BioNetwork Bench supports 
this type of analysis. Specifically, we illustrate the 
application of BioNetwork Bench using the analysis 
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previously reported by Hecker et al,13 which explored 
an approach to querying gene expression data from 
five previously published datasets from developing 
mouse retina.48–51 This approach used a ‘seed net-
work’ of genes (Fig. 3) that have been shown using 
detailed molecular and genetic experiments to govern 
rod photoreceptor development.52–60

Despite their reported low level of concordance 
across the different datasets, Hecker et al13 showed 
that by integrating multiple datasets, they could 
reconstruct a majority of the links between the seed 
network genes simply on the basis of observed corre-
lations between genes in multiple (at least 2 out of 5) 
gene expression datasets (recreated using BioNetwork 
Bench, Table 1). The resulting network showed posi-
tive correlations between several genes known to be 
expressed by dividing cells and positive correlations 
between genes known to be expressed by mature pho-
toreceptors, with negative correlations between the two 
groups. Based on the premise that genes that are likely 
to play important roles in rod photoreceptor develop-
ment are likely to be correlated with more than one 
seed-network gene, multiple datasets were queried to 
identify genes that were correlated with more than one 
seed-network member. Cell signaling pathway data 
(KEGG, http://www.genome.jp/kegg/pathway.html)61 
was then retrieved for each gene that was correlated 
with multiple members of the seed network. Using 
this procedure, 10 such genes were identified as part 
of the BMP/SMAD signaling pathway. BMP/SMAD 

signaling has been implicated in rod  photoreceptor 
development62 and 22 proteins were identified as 
members of WNT/Frizzled signaling, which has been 
implicated in rod photoreceptor  differentiation.63 
From the list of genes correlated with multiple seed-
network members, Hecker et al reported 8 additional 
hypothesized candidates for addition to the seed-
 network using this approach.13

The analysis reported by Hecker et al utilized a 
combination of custom-written statistical analysis 
routines in R to compute the correlations and match 
ids across datasets. The basic steps used in this 
analysis are not especially complicated. However, 
perhaps because of the effort needed to glue together 
the individual steps, either manually or with user-
written scripts, such analyses is not commonly used 
by bench biologists.

BioNetwork Bench was created primarily for use 
by biologists with limited exposure to database query 
languages such as SQL but who are nevertheless 
interested in acquiring and manipulating informa-
tion about their genes/proteins/pathways of interest. 
The software can be used by scientists with diverse 
backgrounds and levels of expertise in informatics. 
Our goal was to build a software system that would 
allow users to ask biologically meaningful ques-
tions about their data and let them combine and reuse 
their results to construct and annotate genetic net-
works. We utilized BioNetwork Bench in our case 
study (which recreated an analysis of mouse retinal 
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Cdk 4/6
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Cyclin D1
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Figure 3. The seed network utilized by Hecker et al for querying expression dataset for genes that have been shown to govern rod development.
notes: The network was constructed based on published experimental evidence and is made up of ten genes. Solid lines indicate direct relationships 
between seed genes and dashed lines indicate indirect relationships.

http://www.la-press.com
www.genome.jp/kegg/pathway.html


BioNetwork bench: user-friendly software for analysis of networks

Bioinformatics and Biology Insights 2012:6 241

development), specifically to identify and prioritize 
experimental  targets for analysis of rod  photoreceptor 
 differentiation. BioNetwork Bench, a plug-in for 
Cytoscape, is freely available for download at http://
bionetworkbench.sourceforge.net.

We now proceed to describe how all of the steps 
in the analysis described by Hecker et al can be 
carried out using the BioNetwork Bench. We start 
by populating the BioNetwork Bench database 
with gene expression data from developing mouse 
retinas using the following datasets: an Affymetrix 
microarray containing gene expression measurements 
in developing retina from Dorrell et al,64 another 
Affymetrix microarray of retinal genes from Liu et al,65 
Serial Analysis of Gene Expression (SAGE) of 
developing retina from Blackshaw et al,66 a cDNA 
microarray of whole retina from Zhang et al,67 and an 
Affymetrix microarray with measurements limited to 
rod progenitor cells only from Akimoto et al.68

Datasets were pre-processed prior to the  analysis. 
Expression profiles of unidentified genes were 
 discarded. The datasets were processed in the same 
manner described by Hecker et al.13 Specifically, in 
cases where multiple SAGE tags or 2D PAGE spots 
mapped to a single gene, the total expression for the 
gene was obtained by summing the values of the 
SAGE tags/2D PAGE spots. In cases where  multiple 
microarray probes mapped to a single gene, the total 
expression for the gene was obtained by taking the 
median of the probes’ expressions.13 As this pre-
 processing step is highly dataset dependent (eg, SAGE 
datasets/spots are treated differently than microarray 
datasets), BioNetwork Bench does not currently offer 

a streamlined approach to automate the aforemen-
tioned pre-processing steps. However, BioNetwork 
Bench offers the option to normalize any imported 
dataset. Thus, the datasets were normalized with 
respect to a mean of 0 and variance of 1 by BioNet-
work Bench to ensure that the changes in expression 
levels were represented on the same scale.

Currently, several methods are available for data-
set normalization. For example, RMAExpress (http://
rmaexpress.bmbolstad.com) is a program available for 
Microsoft Windows and Mac OS X platforms for nor-
malizing Affymetrix microarray datasets. Similarly, 
R’s Bioconductor (http://www.bioconductor.org) 
package provides several functions including RMA, 
MAS 5.0, Quantile and LOESS normalization.

BioNetwork Bench was used to construct a gene 
network based on each dataset by establishing a link 
between a pair of genes if the magnitude of Spearman 
Rank correlation between their expression values was 
greater than or equal to a threshold of 0.65 (Fig. 4A). 
Table 1 shows the links between pairs of genes in the 
seed network that can be recovered from the resulting 
gene network.

The Expression Dataset Query window (Fig. 4C) 
was used to search for genes that are positively or 
negatively correlated with at least two genes in the 
seed network at a |0.65| Spearman Rank correlation 
cutoff in at least two out of the five datasets. To do 
this, all 21 possible pairwise links between nrl, 
nr2e3, chx10, rho, neurod1, crx, and rb1 (ie, nrl-
nr2e3, nrl-chx10, nrl-rho … etc.) were used as queries. 
The generated networks from each query were then 
searched for genes that correlated (either positively 

Table 1. Datasets supporting each edge between all pairs of genes shown to be linked in the seed network.

sAGe MOe430.20 Mu74Av2_1 Mu74Av2_2 cDnA  
microarray

Satisfied in at least  
2/5 datasets?

Original seed 
network

Ccnd1-Cdk4 X X X X * Yes
Ccnd1-Chx10 Yes
Ccnd1-rb1 X No
Cdk4-rb1 X X * Yes
Cdk4-Chx10 X No
Crx-Nrl X X X * No
Nrl-Nr2e3 X X * Yes
Nrl-rhodopsin X X X * Yes
Crx-rhodopsin X X X * Yes

notes: BioNetwork Bench was used to construct the correlation network for each dataset while only including nodes whose correlations were equal to or 
above a 0.65 Spearman rank correlation cutoff (see Fig. 4A). each link in the table was then verified using the Network Query functionality of BioNetwork 
Bench (see Fig. 4B).
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or negatively) with both query genes using the 
Network Query window (Fig. 4B). The specific 
procedure within BioNetwork Bench is as follows: 
using the Expression Dataset Query window (example 
is shown in Fig. 4C) each of the seed network genes 
was entered, the “Any” radio button was selected 
(instead of “All”), and the “calculate” field was set to 
“All Correlated Nodes” (instead of “Only Positively 
Correlated Nodes” or “Only Negatively Correlated 
Nodes”). We then queried the network using each 
of the 21 possible pairwise links between nrl, nr2e3, 
chx10, rho, neurod1, crx, and rb1 (ie, nrl-nr2e3, nrl-
chx10, nrl-rho … etc.). The generated networks from 
each query were then searched for genes that correlated 
(either positively or negatively) with the seed network 
genes using the Network Query window (Fig. 4B). 
The gene list of correlated genes was then exported in 
tabular format through Cytoscape’s built-in “Export 
Table” functionality.

The above analysis demonstrates BioNetwork 
Bench’s capability to ease the construction and 
querying of gene networks without requiring the user 

to possess background knowledge in SQL, scripting 
languages or other specialized software packages. 
The time required to perform this analysis was around 
4 hours of computing time (total time required for 
the construction of the networks from the expression 
data conducted on a 2.4 GHz Quad-core machine 
with 4 GB of memory). The results produced through 
this case study reflected the same results presented in 
Hecker et al’s paper while abiding by a streamlined 
process that is consistent and less prone to errors that 
may result from exporting data from one software 
package format to another, as was necessary for the 
analysis presented in Hecker et al.13

Discussion
A number of databases for multi-organism data aug-
mented with front-end querying applications have 
been created in the recent years. The Biological 
Networks tool69 offers support for arbitrary queries, 
clustering and Gene Ontology enrichment analysis 
of nodes, searching over 20 public databases uti-
lizing known annotations for the stored pathways, 

Figure 4. (A) The expression data window and settings used to construct each of the networks for constructing Table 1 is shown. BioNetwork Bench was 
used to construct the correlation network for each dataset while only including nodes whose correlations was equal to or above a 0.65 Spearman rank 
correlation cutoff. (B) The Networks Query window used to query for nodes connected to each gene in the seed network is shown. each link in table 1 was 
verified using the Network Query functionality of BioNetwork Bench. (c) An example of the settings used to construct the positively correlated nodes with 
two or more genes of the seed network supported by at least two datasets with a correlation cutoff of 0.65. (D) A screenshot of the Network Query window 
demonstrating BioNetwork Bench’s feature to query a loaded or stored network based on the Go category of the genes in the network.
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and presents several network construction options. 
 However, it does not allow users to easily include 
their own networks or datasets in a database search or 
to easily store and reuse query results.  Furthermore, 
constructing complex queries requires a grasp of 
database querying language at a level that is often 
beyond the expertise of a bench biologist. The Biozon 
database contains sequence, structure, and interaction 
data and supports querying and fuzzy searches using 
sequence, expression, or structural similarity.70,71 
However, it does not offer support for user-defined 
attributes or visualizing search results in the form 
of a network. Other public databases or data ware-
houses with limited querying capabilities include: 
Protein, Signaling, Transcriptional Interactions and 
Inflammation Networks Gateway (pSTIING), which 
provides support for generating pictorial representa-
tions of protein-protein interactions and transcrip-
tional regulatory networks and includes CLADIST, a 
tool for clustering gene or protein expression data;72 
BioWarehouse, a data warehouse populated with bio-
logical data from public databases;73 the ONDEX 
framework, which supports analysis of protein-
 protein interactions, transcription factors, analysis of 
relationships between expressed genes, and some text 
mining;74 and cPath, a cancer pathway database.75

BioNetwork Bench provides the ability to store, 
share, and modify biological networks and expression 
datasets seamlessly through Cytoscape. In addition 
to the correlation network construction functionality 
that BioNetwork Bench offers, it also allows the users 
to query the genes in the stored networks and datasets 
based on Gene Ontology categories (for networks 
only), custom annotations, interaction partners, and 
correlation of their expression patterns.

conclusions
We have developed BioNetwork Bench, an open 
source, user-friendly suite of database and software 
tools for constructing, querying, and analyzing gene 
and protein network models. BioNetwork Bench 
currently supports a broad class of gene and protein 
network models (eg, weighted and un-weighted 
undirected graphs, multi-graphs). It enables 
biologists to manipulate public as well as private 
gene expression, macromolecular interaction and 
annotation data; interactively query gene expression 
datasets using a network of seed genes of interest; 

integrate data from multiple networks; query multiple 
networks for interactions of interest; as well as store 
and selectively share both the data and the Results 
of analysis. BioNetwork Bench is implemented as 
a plug-in for, and hence is fully interoperable with 
Cytoscape, a popular open-source software suite for 
visualizing macromolecular interaction networks.

Our case study has demonstrated the usefulness of 
the BioNetwork Bench to bench biologists interested 
in exploiting high throughput datasets to identify can-
didate genes and generate testable hypotheses to take 
back to the bench. Work in progress is aimed at extend-
ing the BioNetwork Bench to support a broad class 
of network representations (eg, Boolean networks,76 
temporal Boolean networks,77 and their probabilistic 
counterparts);78,79 additional algorithms for network 
construction, topological analysis;15,16 discovery of 
network motifs22,23 and network alignment;80,81 and 
support for capturing, storing, publishing, and sharing 
workflows that include a complex pipeline of analysis 
or queries. Although initially aimed at a community 
of biologists interested in the retina, the tool can be 
adapted easily to work with other biological systems 
simply by populating the associated database with the 
relevant datasets.

Availability and requirements
BioNetwork Bench is downloadable from http:// 
bionetworkbench.sourceforge.net/. Minimum require-
ments for running BioNetwork Bench include:

• 512 Mb of RAM or higher
• 1GHz CPU or better
• Windows 2000/XP/Vista, Mac OS X 10.4, 

Linux with Java SE 5 or 6 installed (required by 
CytosCape)

• Screen resolution of 1024×768 or higher (required 
by CytosCape)

• CytosCape 2.5.0 or above installed
• An active internet connection

Acknowledgements
This research was funded in part by a grant by a 
National Institutes of Health grant (EY014931) 
to Heather West Greenlee and Vasant Honavar, a 
National Science Foundation Integrative Graduate 
Education and Research Training (IGERT) grant to 
Iowa State University (DGE 0504304), and by the 

http://www.la-press.com
http://bionetworkbench.sourceforge.net
http://bionetworkbench.sourceforge.net


Kohutyuk et al

244 Bioinformatics and Biology Insights 2012:6

Center for Integrative Animal Genomics and the 
Center for Computational Intelligence, Learning, 
and Discovery at Iowa State University. The work of 
Vasant Honavar while working at the National Science 
Foundation was supported by the National Science 
Foundation. Any opinion, finding, and conclusions 
contained in this article are those of the authors and 
do not necessarily represent the views of the National 
Science Foundation. The authors are grateful to Tim 
Alcon and Laura Hecker for helpful discussions on 
the research described in this paper.

Authors’ contributions
Conceived the BioNetwork Bench: VH and HWG. 
Designed, implemented, and developed the docu-
mentation for the BioNetwork Bench: oK and FT. 
Carried out the case study demonstrating the inte-
grative analysis of multiple datasets from the devel-
oping retina using the BioNetwork Bench: FT. 
Prepared the manuscript for publication: OK, FT, 
HWG, and VH.

Funding
This research was funded in part by a grant by a 
National Institutes of Health grant (EY014931) 
to Heather West Greenlee and Vasant Honavar, a 
National Science Foundation Integrative Graduate 
Education and Research Training (IGERT) grant to 
Iowa State University (DGE 0504304), and by the 
Center for Integrative Animal Genomics and the 
Center for Computational Intelligence, Learning, and 
Discovery at Iowa State University.

competing Interests
Author(s) disclose no potential conflicts of interest.

Disclosures and ethics
As a requirement of publication author(s) have pro-
vided to the publisher signed confirmation of com-
pliance with legal and ethical obligations including 
but not limited to the following: authorship and 
contributorship, conflicts of interest, privacy and 
confidentiality and (where applicable) protection of 
human and animal research subjects. The authors 
have read and confirmed their agreement with the 
ICMJE authorship and conflict of interest criteria. 
The authors have also confirmed that this article is 
unique and not under consideration or published in 

any other publication, and that they have permission 
from rights holders to reproduce any copyrighted 
material. Any disclosures are made in this section. 
The external blind peer reviewers report no conflicts 
of interest.

References
 1. de Jong H. Modeling and simulation of genetic regulatory systems: 

a literature review. J Comput Biol. 2002;9(1):67–103.
 2. Jeong H, Tombor B, Albert R, Oltvai ZN, Barabási AL. The large-scale 

organization of metabolic networks. Nature. 2000;407(6804):651–4.
 3. Auffray C, Imbeaud S, Roux-Rouquie M, Hood L. From functional 

genomics to systems biology: concepts and practices. C R Biol. 2003; 
326(10–1):879–92.

 4. Baitaluk M, Qian X, Godbole S, Raval A, Ray A, Gupta A. PathSys: integrat-
ing molecular interaction graphs for systems biology. BMC Bioinformatics. 
2006;7:55.

 5. Bruggeman FJ, Westerhoff HV. The nature of systems biology. Trends 
Microbiol. 2007;15(1):45–50.

 6. Ideker T. Systems biology 101—what you need to know. Nat Biotechnol. 
2004;22(4):473–5.

 7. Klipp E, Herwig R, Kowald A, Wierling C, Lehrach H. Systems Biology in 
Practice: Concepts, Implementation and Application. Weinheim, Germany: 
Wiley-VCH; 2005.

 8. Special Issue: Systems Biology. Science. 2002;295:5560.
 9. Ge H, Walhout AJ, Vidal M. Integrating ‘omic’ information: a bridge between 

genomics and systems biology. Trends Genet. 2003;19(10):551–60.
 10. Liu ET. Systems biology, integrative biology, predictive biology. Cell. 

2005;121(4):505–6.
 11. Walhout AJ. Unraveling transcription regulatory networks by protein-DNA  

and protein-protein interaction mapping. Genome Res. 2006;16(12):1445–54.
 12. Scott J, Ideker T, Karp RM, Sharan R. Efficient algorithms for detecting signaling 

pathways in protein interaction networks. J Comput Biol. 2006;13(2):133–44.
 13. Hecker LA, Alcon TC, Honavar VG, Greenlee MH. Using a seed-network 

to query multiple large-scale gene expression datasets from the developing 
retina in order to identify and prioritize experimental targets. Bioinform Biol 
Insights. 2008;2:91–102.

 14. Farkas IJ, Jeong H, Vicsek T, Barabasi AL, Oltvai ZN. The Topology of the 
Transcription Regulatory Network in the Yeast, Saccharomyces Cerevisiae 
[online manuscript]. Chicago: Northwestern University Medical School; 
2003. Available from: http://www.ingentaconnect.com/content/els/037843
71/2003/00000318/00000003/art01731.

 15. Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabási AL. 
Hierarchical organization of modularity in metabolic networks. Science. 
2002;297(5586):1551–5.

 16. Yook SH, Oltvai ZN, Barabasi AL. Functional and topological characterization 
of protein interaction networks. Proteomics. 2004;4(4):928–42.

 17. Khanin R, Wit E. How scale-free are biological networks. J Comput Biol. 
2006;13(3):810–8.

 18. Basso K, Margolin AA, Stolovitzky G, Klein U, Dalla-Favera R, Califano A. 
Reverse engineering of regulatory networks in human B cells. Nat Genet. 
2005;37(4):382–90.

 19. Sharan R, Ideker T. Modeling cellular machinery through biological net-
work comparison. Nat Biotechnol. 2006;24(4):427–33.

 20. Bernard A, Hartemink AJ. Informative structure priors: joint learning 
of dynamic regulatory networks from multiple types of data. Pac Symp 
 Biocomput. 2005:459–70.

 21. Jeong H, Mason SP, Barabási AL, Oltvai ZN. Lethality and centrality in 
protein networks. Nature. 2001;411(6833):41–2.

 22. Segal E, Shapira M, Regev A, et al. Module networks: identifying regula-
tory modules and their condition-specific regulators from gene expression 
data. Nat Genet. 2003;34(2):166–76.

 23. Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U. 
 Network motifs: simple building blocks of complex networks. Science. 
2002;298(5594):824–7.

http://www.la-press.com
http://www.ingentaconnect.com/content/els/03784371/2003/00000318/00000003/art01731


BioNetwork bench: user-friendly software for analysis of networks

Bioinformatics and Biology Insights 2012:6 245

 24. Sen TZ, Kloczkowski A, Jernigan RL. Functional clustering of yeast pro-
teins from the protein-protein interaction network. BMC Bioinformatics. 
2006;7:355.

 25. Constance M. Smith, Jacqueline H. Finger, Hayamizu TF, McCright IJ, 
Eppig JT, Kadin JA, Richardson JE,  Ringwald M. The mouse Gene Expression 
Database (GXD): 2007 update. NAR. 2006;35(1):D618–D623.

 26. Sherlock G, Hernandez-Boussard T, Kasarskis A, Binkley G, Matese JC, 
Dwight SS, Kaloper M, Weng S, Jin H, Ball CA, Eisen MB, Spellman PT, 
Brown PO, Botstein D, Cherry JM. The Stanford Microarray Database. 
NAR. 2001;29(1):125–155.

 27. Parkinson H, Kapushesky M, Shojatalab M, Abeygunawardena N, 
Coulson R, Farne A, Holloway E, Kolesnykov N, Lilja P, Lukk M, Mani 
R, Rayner T, Sharma A, William E, Sarkans U, Brazma, A. ArrayExpress—
a public database of microarray experiments and gene expression profiles. 
NAR. 2006;35(1):D747–D750.

 28. Margolin A, Nemenman I, Basso K, et al. ARACNE: an algorithm for the 
reconstruction of gene regulatory networks in a mammalian cellular context. 
BMC Bioinformatics. 2006;7(Suppl 1):S7.

 29. Niissalo A. Cytoscape and its Plugins. Finland: Department of Computer 
Science, University of Helsinki; 2007.

 30. Foat BC, Morozov AV, Bussemaker HJ. Statistical mechanical modeling 
of genome-wide transcription factor occupancy data by MatrixREDUCE. 
Bioinformatics. 2006;22(14):e141.

 31. Agilent Technologies (2007). Agilent Literature Search [Computer soft-
ware]. Santa Clara, CA. Retrieved July 22, 2007.

 32. Choi YJ (2006). GSNet [Computer software]. Daejeon, Korea. Retrieved 
June 23, 2006.

 33. Maere S, Heymans K, Kuiper M. BiNGO: a Cytoscape plug-in to assess 
overrepresentation of gene ontology categories in biological networks. 
Bioinformatics. 2005;21(16):3448–9.

 34. Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment 
for integrated models of biomolecular interaction networks. Genome Res. 
2003;13:2498–504.

 35. Breitkreutz BJ, Stark C, Tyers M. Osprey: a network visualization system. 
Genome Biol. 2003;4(3):R22.

 36. Sirava M, Schafer T, Eiglsperger M, et al. BioMiner—modeling, analyz-
ing, and visualizing biochemical pathways and networks. Bioinformatics. 
2002;18 Suppl 2:S219–30.

 37. Sorokin A, Paliy K, Selkov A, et al. The Pathway Editor: a tool for managing 
complex biological networks. IBM Journal of Research and Development. 
2006;50(6):561–73.

 38. Zupan B, Bratko I, Demsar J, et al. GenePath: a system for inference of 
genetic networks and proposal of genetic experiments. Artif Intell Med. 
2003;29(1–2):107–30.

 39. de Jong H, Geiselmann J, Hernandez C, Page M. Genetic network analyzer: 
qualitative simulation of genetic regulatory networks. Bioinformatics. 
2003;19(3):336–44.

 40. Salomonis N, Hanspers K, Zambon AC, et al. GenMAPP 2: new features 
and resources for pathway analysis. BMC Bioinformatics. 2007;8:217.

 41. Rzhetsky A, Iossifov I, Koike T, et al. GeneWays: a system for extracting, 
analyzing, visualizing, and integrating molecular pathway data. J Biomed 
Inform. 2004;37(1):43–53.

 42. Califano A, Floratoros A, Smith K, Ji Z, Watkinson J. geWorkbench: an open-
source platform for integrated genomics. Bioinformatics. 2010;26(14):1779–80.

 43. Ashburner M, Ball, CA, Blake JA, et al. Gene Ontology: tool for the 
unification of biology. Nat Genet. 2000;25(1):25–9.

 44. Harris MA, Clark J, Ireland A, et al. The Gene Ontology (GO) database and 
informatics resource. Nucleic Acids Res. 2004;32 (Database issue): D258–61.

 45. Oracle Corporation (2012). MySQL Server V5.0 [Computer software]. 
Redwood Shores, CA. Retrieved June 1, 2012.

 46. Gene Ontology Downloads [website]. 2007. Available from: http://www.
godatabase.org/dev/database/archive/.

 47. Borland (2007). Borland JBuilder 5 [Computer software]. Cupertino, CA. 
Retrieved May 1, 2007.

 48. Akimoto M, Cheng H, Zhu D, et al. Targeting of GFP to newborn rods by Nrl 
promoter and temporal expression profiling of flow-sorted  photoreceptors. 
Proc Natl Acad Sci U S A. 2006;103(10):3890–5.

 49. Blackshaw S, Harpavat S, Trimarchi J, et al. Genomic analysis of mouse 
retinal development. PLoS Biol. 2004;2(9):E247.

 50. Dorrell MI, Aguilar E, Weber C, Friedlander M. Global gene expression 
analysis of the developing postnatal mouse retina. Invest Ophthalmol Vis 
Sci. 2004;45(3):1009–19.

 51. Liu J, Wang J, Huang Q, et al. Gene expression profiles of mouse retinas dur-
ing the second and third postnatal weeks. Brain Res. 2006;1098(1):113–25.

 52. Ahmad I, Acharya HR, Rogers JA, Shibata A, Smithgall TE, Dooley CM. 
The role of NeuroD as a differentiation factor in the mammalian retina.  
J Mol Neurosci. 1998;11(2):165–78.

 53. Chen S, Wang QL, Nie Z, et al. Crx, a novel Otx-like paired-homeodo-
main protein, binds to and transactivates photoreceptor cell-specific genes. 
Neuron. 1997;19(5):1017–30.

 54. Cheng H, Khanna H, Oh EC, Hicks D, Mitton KP, Swaroop A. Photoreceptor-
specific nuclear receptor NR2E3 functions as a transcriptional activator in 
rod photoreceptors. Hum Mol Genet. 2004;13(15):1563–75.

 55. Green ES, Stubbs JL, Levine EM. Genetic rescue of cell number in a mouse 
model of microphthalmia: interactions between Chx10 and G1-phase cell 
cycle regulators. Development. 2003;130(3):539–52.

 56. Mears AJ, Kondo M, Swain PK, et al. Nrl is required for rod photoreceptor 
development. Nat Genet. 2001;29(4):447–52.

 57. Nishida A, Furukawa A, Koike C, et al. Otx2 homeobox gene controls reti-
nal photoreceptor cell fate and pineal gland development. Nat Neurosci. 
2003;6(12):1255–63.

 58. Pennesi ME, Cho JH, Yang Z, et al. BETA2/NeuroD1 null mice: a new 
model for transcription factor-dependent photoreceptor degeneration.  
J Neurosci. 2003;23(2):453–61.

 59. Rutherford AD, Dhomen N, Smith HK, Sowden JC. Delayed expression of 
the Crx gene and photoreceptor development in the Chx10-deficient retina. 
Invest Ophthalmol Vis Sci. 2004;45(2):375–84.

 60. Zhang J, Gray J, Wu L, Leone G, et al. Rb regulates proliferation and rod 
photoreceptor development in the mouse retina. Nat Genet. 2004;36(4): 
351–60.

 61. Kanehisa M, Araki M, Goto S, et al. KEGG for linking genomes to life 
and the environment. Nucleic Acids Res. 2008;36(Database issue): 
D480–4.

 62. Murali D, Yoshikawa S, Corrigan RR, et al. Distinct developmental pro-
grams require different levels of Bmp signaling during mouse retinal 
 development. Development. 2005;132(5):913–23.

 63. Yu J, He S, Friedman JS, et al. Altered expression of genes of the Bmp/
Smad and Wnt/calcium signaling pathways in the cone-only Nrl-/- mouse 
retina, revealed by gene profiling using custom cDNA microarrays. J Biol 
Chem. 2004;279(40):42211–20.

 64. Dorrell MI, Aguilar E, Weber C, Friedlander M. Global gene expression 
analysis of the developing postnatal mouse retina. Invest Ophthalmol Vis 
Sci. 2004;45:1009–9.

 65. Liu J, Wang J, Huang Q, et al. Gene expression profiles of mouse retinas 
during the second and third postnatal weeks. Brain Res. 2006;1098(1): 
113–25.

 66. Blackshaw S, Harpavat S, Trimarchi J, et al. Genomic analysis of mouse 
retinal development. PLoS Biol. 2004;2(9):E247.

 67. Zhang SSM, Xuming X, Liu MG, et al. A biphasic pattern of gene expres-
sion during mouse retina development. BMC Dev Biol. 2006;6:48.

 68. Akimoto M, Cheng H, Zhu D, et al. Targeting of GFP to newborn rods by 
Nrl promoter and temporal expression profiling of flow-sorted photorecep-
tors. Proc Natl Acad Sci U S A. 2006;103(10):3890–5.

 69. Baitaluk M, Sedova M, Ray A, Gupta A. Biological Networks: visualization 
and analysis tool for systems biology. Nucleic Acids Res. 2006;34(Web 
Server issue):W466–71.

 70. Birkland A, Yona G. BIOZON: a hub of heterogeneous biological data. 
Nucleic Acids Res. 2006;34(Database issue):D235–42.

 71. Birkland A, Yona G. Biozon: a system for unification, management and 
analysis of heterogeneous biological data. BMC Bioinformatics. 2006;7:70.

 72. Ng A, Busrteinas B, Gao Q, Mollison E, Zvelebil M. PSTIING: a ‘systems’ 
approach towards integrating signaling pathways, interaction and transcrip-
tional regulatory networks in inflammation and cancer. Nucleic Acids Res. 
2006;34:D527–34.

http://www.la-press.com
http://www.godatabase.org/dev/database/archive/
http://www.godatabase.org/dev/database/archive/


Kohutyuk et al

246 Bioinformatics and Biology Insights 2012:6

 73. Lee TJ, Pouliot Y, Wagner V, et al. BioWarehouse: a bioinformatics database 
warehouse toolkit. BMC Bioinformatics. 2006;7:170.

 74. Köhler J, Baumbach J, Taubert J, et al. Graph-based analysis and visu-
alization of experimental results with ONDEX. Bioinformatics. 2006; 
22(11):383–90.

 75. Cerami EG, Bader GD, Gross BE, Sander C. CPath: open source software  
for collecting, storing, and querying biological pathways. BMC 
Bioinformatics. 2006;7:497.

 76. Akutsu T, Miyano S, Kuhara S. Identification of genetic networks from 
a small number of gene expression patterns under the Boolean network 
model. Pac Symp Biocomput. 1999:17–28.

 77. Silvescu A, Honavar V. Temporal boolean network models of genetic 
networks and their inference from gene expression time series. Complex 
Systems. 2001;13:54–75.

 78. Shmulevich I, Dougherty ER, Kim S, Zhang W. Probabilistic Boolean 
 networks: a rule-based uncertainty model for gene regulatory networks. 
Bioinformatics. 2002;18(2):261–74.

 79. Santos E, Young JD. Probabilistic temporal networks: A unified frame-
work for reasoning with time and uncertainty. Int J Approx Reason. 
1999;20(3):263–91.

 80. Kalaev M, Bafna V, Sharan R. Fast and accurate alignment of multiple pro-
tein networks. J Comput Biol. 2009 Aug;16(8):989–99.

 81. Towfic F, Greenlee MHW, Honavar V. Aligning biomolecular networks 
using modular graph kernels. To Appear In Lecture Notes in Bioinformatics. 
2009.

http://www.la-press.com

