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Abstract: Optimizing microalgal biofuel production using metabolic engineering tools requires an in-depth understanding of the 
structure-function relationship of genes involved in lipid biosynthetic pathway. In the present study, genome-wide identification and 
characterization of 398 putative genes involved in lipid biosynthesis in Arabidopsis thaliana Chlamydomonas reinhardtii, Volvox carteri, 
Ostreococcus lucimarinus, Ostreococcus tauri and Cyanidioschyzon merolae was undertaken on the basis of their conserved motif/
domain organization and phylogenetic profile. The results indicated that the core lipid metabolic pathways in all the species are carried 
out by a comparable number of orthologous proteins. Although the fundamental gene organizations were observed to be invariantly 
conserved between microalgae and Arabidopsis genome, with increased order of genome complexity there seems to be an association 
with more number of genes involved in triacylglycerol (TAG) biosynthesis and catabolism. Further, phylogenomic analysis of the genes 
provided insights into the molecular evolution of lipid biosynthetic pathway in microalgae and confirm the close evolutionary proximity 
between the Streptophyte and Chlorophyte lineages. Together, these studies will improve our understanding of the global lipid metabolic 
pathway and contribute to the engineering of regulatory networks of algal strains for higher accumulation of oil.
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Introduction
Growing levels of atmospheric pollution, mounting 
energy demand, and the incessant rise in crude oil 
prices are some of the issues which have in recent 
times driven global efforts in biofuel research. 
Currently, commercial-scale biofuels are sourced 
primarily from a variety bioenergy crops that include 
sugarcane (Saccharum officinarum), sugar beet (Beta 
vulgaris), switch grass (Panicum virgatum), soybean 
(Glycine max), canola (Brassica napus) and sunflower 
(Helianthus annus).1 Although the environmental 
benefits of biofuels as compared to fossil fuels are 
well established, concerns are being raised about 
their long-term sustainability, especially against the 
backdrop of diversion of arable land for biofuel-
based cropping systems and their corresponding 
adverse impact on the global food supply chain.2 In 
consequence, algae-based biofuels are increasingly 
gaining the attention of researchers due to their rapid 
growth rate coupled with high carbon dioxide uptake, 
high lipid content and comparatively low, marginal 
land usage rates.3

Notwithstanding the many advantages of biofuels 
and their technical feasibility, the commercial viabil-
ity of the algal biofuel process is still an area of con-
cern requiring better strain development and improved 
post-harvest process engineering.4 The major chal-
lenge is to achieve accumulation of improved lipid 
profiles with concomitant reduction in energy inputs 
in order to minimize the cost of production.2 The 
enhancement of lipid production in microalgal cells 
under controlled stress conditions and engineering 
metabolic pathways are promising strategies to 
obtain large amounts of standard biofuel for industry. 
Despite positive experimental reports on enhanced 
microalgal lipid accumulation under physiological 
or nutritional stress regimes, many contrasting stud-
ies have indicated a concomitant reduction in overall 
biomass yield under such conditions.5 In this context, 
harnessing the potential of genome-scale metabolic 
engineering has been suggested as a promising area 
of research to boost oil production in microalgal 
strains, including modification of algal lipid profile 
for improved biofuel properties.6,7

Over the past few years various studies have 
been carried out concerning alteration of fatty 
acid composition in plants through genetic 
engineering approaches, along with the development 

and deployment of a number of plant lipid-related 
genomics databases.8–11 Comparative genomics 
analyses using bioinformatics tools have also been 
performed recently to identify genes involved in 
lipid biosynthesis in various oleaginous plants. For 
example, a total of 1003 maize lipid-related genes were 
cloned and annotated by Lin et al,12 while Sharma and 
Chauhan13 identified a total of 261 lipid genes from 
the genome of Arabidopsis, Brassica, soybean and 
castor. Complete or near complete genome sequences 
have been reported for several algae.6 Yet, lack of 
adequate knowledge regarding the structure-function 
of lipid biogenesis genes in an evolutionary context 
is a major impediment in engineering metabolic path-
ways of algae for over-production of fuel precursors.14 
Various experimental techniques like insertional 
mutagenesis and targeted gene disruption have been 
employed to analyze gene function in a few algae. 
However, many of these approaches are tedious, 
time-consuming, fiscally prohibitive and limited by 
a number of biological constraints.15 As an alterna-
tive, phylogenomics is now increasingly used to gain 
insights into metabolic pathways at the molecular 
level by comparative genomics and co-evolutionary 
analyses of related gene.16 Therefore the present work 
was designed to identify the genes involved in lipid 
metabolic pathway from the genomes of microalgae 
(including Chlamydomonas reinhardtii, Volvox 
carteri, Ostreococcus lucimarinus, Ostreococcus 
tauri and Cyanidioschyzon merolae) using sequence 
similarity search with Arabidopsis thaliana homologs. 
In addition phylogenomics protocols have been 
employed to study the structure-function relation-
ship of the encoded proteins and to gain much needed 
insights into their phylogenetic evolution. We hope 
that the present study contributes to the biochemical 
and molecular information needed for augmentation 
of lipid synthesis in microalgae.

Materials and Methods
gene retrieval and annotation
An initial set of lipid genes was obtained from the 
Arabidopsis thaliana lipid gene database (http://www.
plantbiology.msu.edu/lipids/genesurvey/index.html) 
to construct a query protein set. The Arabidopsis 
lipid gene database is a convenient and reliable 
source of genes covering all the major biochemical 
events responsible for biosynthesis and catabolism of 
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plant lipids.17 Subsequently, each protein in the query 
dataset was used to identify homologs in microalgae 
by subjecting it to BLASTp18 search with e-value 
inclusion threshold set to 0.001 against microalgal 
genome databases provided by Joint Genome 
Institute. These include Cyanidioschyzon merolae 
http://merolae.biol.s.u-tokyo.ac.jp/), Chlamydomonas 
reinhardtii (http://genome.jgi-psf.org/chlamy/chlamy.
info.html), Volvox carteri (http://www.phytozome.
net/volvox.php), Ostreococcus lucimarinus (http://
genome.jgi-psf.org/Ost9901_3/Ost9901_3.home.
html), Ostreococcus tauri (http://genome.jgi-psf.org/
Ostta4/Ostta4.home.html). Based on multiple align-
ments and/or the presence of conserved motif patterns, 
some initial sequences “hits” were then discarded. 
Functional descriptions of genes or gene products were 
performed by annotation of Cluster of Orthologous 
groups (COGs) using KOGnitor program,19 the latter 
being a widely used tool in the field of computational 
genomics for detecting candidate set of orthologs in 
prokaryotes and eukaryotes.19 In addition, assignment 
of Gene Ontology (GO) terms describing biological 
processes and molecular function was annotated by 
the GO browser and annotation tool AmiGO.20 The 
Gene Ontology is currently the pre-eminent approach 
for functional annotation of homologous genes and 
protein sequences in multiple organisms.20

Metabolic pathway study
Metabolic pathways were subsequently analyzed 
using the KEGG pathway database,21 an extensively 
employed biochemical pathway database to analyze 
lipid pathways in diverse organisms.22 To enrich the 
pathway annotation, sequences were submitted to 
the KEGG Automatic Annotation Server (KAAS) to 
identify the orthologous gene groups.23 KAAS annotates 
every submitted sequence with a KEGG ortholog (KO) 
identifier that allows identification of orthologous and 
paralogous relationships between the genes of interest. 
Further, a set of six reference pathway maps, namely 
fatty acid biosynthesis, fatty acid metabolism, fatty acid 
elongation, glycerolipid metabolism, glycerophospho-
lipid metabolism and pathway map for biosynthesis 
of unsaturated fatty acids, were downloaded from the 
KEGG database. This dataset contains a complete bio-
chemical description of the pathways related to the lipid 
metabolism observed in different organisms. They were 
used as templates for comprehensive examination of 

the lipid biosynthetic genomic repertoire of microalgae 
by correlating genes in the genome with gene products 
(enzymes), in accordance with their respective Enzyme 
Commission (EC) number.

Prediction of subcellular localization
Three different protein targeting prediction programs 
were used to determine the putative subcellular 
localization of the candidate proteins: TargetP,24 
ChloroP25 and WolfPsort.26 Each program is based on 
different terminology and predictions. The location 
assignment of TargetP is based on the presence of any 
of the N-terminal presequences: chloroplast transit 
peptides (cTP), mitochondrial targeting peptide 
(mTP) or secretory pathway signal peptide (SP). The 
ChloroP server predicts the presence of chloroplast 
transit peptides (cTP) in protein sequences and the 
location of potential cTP cleavage sites. WolfPsort 
is an extension of the PSORT II program for protein 
subcellular localization prediction. It classifies 
protein into more than 10 location sites, including 
dual localization such as proteins which shuttle 
between the cytosol and nucleus. The sensitivity and 
specificity of this program has been experimentally 
verified to be 70%.

Physico-chemical characterization  
and secondary structure prediction
Physico-chemical properties like length, molecular 
weight, isoelectric point (pI), total number of positive 
and negative residues, Instability Index,27 Aliphatic 
Index28 and Grand Average hydropathy (GRAVY)29 
were computed using the Expasy’s ProtParam server.30 
GOR IV server31 was employed for the prediction 
of secondary structural features like alpha helices, 
extended strands and random coils in terms of per-
centage in the protein sequences.

calculation of the gc content
The GC content of the predicted genes was determined 
using Genscan web server.32

Motif identification
Protein sequence motifs for each gene family were iden-
tified using the MEME program.33 The analyses param-
eters were set as follows: number of repetitions-zero 
or one per sequence; maximum number of motifs—1; 
minimum and maximum width—6 and 50, respectively. 
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The motif profile for each gene family is  presented 
schematically. Domain arrangements along sequences 
were predicted using InterProscan34 to determine 
 protein homolog relationships among species.

Exon-intron structure and phylogenetic 
analyses
The exon-intron structural patterns of the lipid 
biosynthetic genes were analyzed using the gene 
prediction algorithm of Genscan.32 To construct 
the phylogenetic tree, amino acid sequences were 
aligned using the ClustalX program implemented 
in BioEdit35 (v 7.1.3) with default settings and then 
manually refined by trimming of poorly conserved 
N and C termini. ClustalX36 has been demonstrated 
to be a user-friendly tool for providing good, 
biologically accurate alignments within a reasonable 
time limit. Many options are provided such as the 
realignment of selected sequences or blocks of 
conserved residues and the possibility of building 
up difficult alignments, making ClustalX an ideal 
tool for working interactively on alignments.36 
Subsequently, sequence alignment of genes predicted 
to be in similar families were used as an input file for 
the MEGA 4 software.37 Phylogenetic tree was built 
via the neighbor-joining (NJ) method with evaluation 
of 1000 rounds of bootstrapping test, followed by 
identification of sub-tree.

Results and Discussion
comparative genomic analyses of lipid 
genes in microalgal species
Interest in microalgae as a potential feedstock for 
biofuel production and other valuable biomaterials is 
rooted in the ability of microalgae to rapidly accu-
mulate significant amounts of neutral lipids.38 Under 
optimal conditions, microalgae synthesize fatty acids 
used primarily for esterification into polar glycerol-
based membrane lipids like glycosylglycerides and 
phosphoglycerides, whereas under stress conditions, 
many microalgae tend to accumulate storage lipids 
called triacylglycerol (TAGs).16 Although global fatty 
acid biosynthetic mechanisms are known in higher 
plants,39 pathways responsible for lipid accumulation 
in microalgae are not well studied. Hence, in order 
to bridge our existing knowledge gap regarding algal 
lipid metabolism, comparative metabolic pathway 

analyses have been performed across five microalgal 
genomes, using homologous plant genes as reference 
with an objective of functional characterization of 
predicted genes. EC numbers, Cluster of Orthologous 
Groups (COGs), protein domain family and GO terms 
were determined for the respective candidate genes. 
The above in silico approach has been reviewed 
recently to be reliable enough for accurate function 
prediction of uncharacterized proteins encoded by 
genes in a genome.40

In the present study, using the Arabidopsis 
annotation data as the BLAST input query set, a total 
of 398 orthologous genes present in A. thaliana, 
C. reinhardtii, V. carteri, O. lucimarinus, O. tauri 
and C. merolae genomes were identified. The above 
approach to identify candidate genes involved 
in biosynthesis and accumulation of storage oil 
has been successfully demonstrated in plants by 
Sharma and Chauhan.13 These 398 genes clustered 
into 40 gene families and includes 142, 56, 59, 47, 
41 and 53 genes from A. thaliana, C. reinhardtii, 
V. carteri, O. lucimarinus, O. tauri and C. merolae 
genomes, respectively (Table 1). The identified 
genes are involved in the synthesis of phospholipids, 
glycerolipid and storage lipids like TAG. We further 
divided the predicted genes into categories like 
gene-coding enzymes involved in biosynthesis 
and catabolism of fatty acid, TAG and membrane 
lipid. The comprehensive list of candidate genes 
along with experimental evidence of the respective 
enzyme action influencing lipid accumulation is 
presented in Table 1.41–74 Approximately 47% of 
the predicted gene products found in the present 
study were previously annotated as ‘predicted’, 
‘probable’, ‘putative uncharacterized’ and ‘similar’ 
or ‘hypothetical’ proteins (Table 1). The annotation 
of these sequences has been improved and a role in 
lipid biosynthetic process was assigned to each of 
them by similarity search with homologous plant 
genes, annotation of Gene Ontology, and through 
identification of conserved domains or motifs. 
Furthermore, on comparison to the previous report 
on lipid gene identification in C. merolae genome by 
Sato and Moriyama,75 the present study has identified 
20 additional genes involved in lipid biosynthesis.

To investigate metabolic processes responsible for 
the synthesis of microalgal biofuel precursors, KO 
identifiers were assigned to the predicted 398 genes 
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representing 36 unique EC numbers, which were 
subsequently used to study metabolic pathway 
maps available in KEGG pathway database. KEGG 
is considered one of the most important bioinfor-
matics resources for understanding higher-order 
functional meaning and the utilities of the organism 
from its genome information. It hosts information 
on the majority of well-known metabolic pathways, 
including lipid pathways for several organisms such 
as higher plants, bacteria and algae. Recently, it has 
been used successfully by Rismani-Yazdi et al14 to 
identify pathways and the underlying gene responsible 
for production of biofuel precursors in Dunaliella 
tertiolecta, a potential microalgal biofuel feedstock. 
Using the above approach, a total of 79 lipid genes 
including 22 from A. thaliana, 21 from C. merolae, 
10 from C. reinhardtii, 10 from O. lucimarinus and 
8 each from V. carteri and O. tauri were recognized 
that were not earlier indexed in KEGG metabolic 
pathway database (Table 1).

The global synthesis pathway of TAG begins 
with the basic fatty acid precursors, acetyl-CoA, and 
continues through fatty acid biosynthesis, complex 
lipid assembly and saturated fatty acid modification 
until TAG bodies are finally formed.76 A simplified 
overview of TAG biosynthetic pathway in microalgae 
is shown as Figure 1. Comparative analyses with the 
genomes of C. reinhardtii, V. carteri, O. lucimarinus, 
O. tauri, C. merolae and A. thaliana indicates that 
the majority of genes involved in lipid production 
are orthologous among these species. Additionally, 
the extensive amino acid sequence conservation 
(more than 60% pair-wise sequence identity) among 
the genes involved in lipid biosynthesis provides 
indications of functional equivalence between 
Arabidopsis and microalgal genes. Thus, the present 
results demonstrate that the underlying fatty acid and 
TAG biosynthesis process are directly analogous to 
those reported in higher plants.16 It may further be 
noted that although algae predominantly share similar 
lipid biosynthetic pathways with higher plants, the 
present in silico analyses revealed that the sizes of 
the gene families responsible for lipid biosynthesis 
in microalgae are smaller than Arabidopsis. Certain 
specific pathways were also observed to be absent 
in microalgae, including the fatty acid biosynthesis 
termination mechanism by FAT homologs in 
C. merolae. The above computational analyses find 

support from the previous experimental reports on the 
algal lipid metabolism.75

Furthermore, our results conclusively indicate 
that enzymes that are responsible for higher lipid 
accumulation in plants and other eukaryotes, 
either through over-expression or gene knock-
out strategies, are present not only in oleaginous 
algal species (C. reinhardtii) but also in other algal 
species, notably O. tauri and C. merolae (Fig. 2). 
Comparison of the number of genes in each step of 
lipid metabolic pathway suggests that the green algae 
C. reinhardtii and V. carteri have an expanded array of 
genes involved in TAG biosynthesis and catabolism, 
including fatty acid thioesterase, long chain acyl-CoA 
synthase, acyl-CoA oxidase, desaturase, glycerol-
3-phosphate acyltransferase, and diacylglycerol 
acyltransferase. Additionally, the proportion of these 
gene copy numbers appear to be correlated with the 
genome complexity of the organisms under study 
(Fig. 2).

Prediction of subcellular location
The prediction of subcellular localization of proteins 
is essential to elucidate the spatial organization of 
proteins according to their function and to refine 
our knowledge of cellular metabolism.77 Thus, 
prediction of subcellular location provides valuable 
information about the function of proteins as well 
as the interconnectivity of biological processes.78 
In the present study, subcellular location of lipid 
biosynthetic proteins by tools such as TargetP, 
ChloroP and WolfPsort showed different locations 
using several unique algorithms. The objective of 
using more than one analytical tool was to improve the 
specificity of the prediction, as various studies have 
shown that combined results from several prediction 
programs are advantageous to rule out false positives 
and false negatives.78 The available localization 
prediction tools show different strengths and no 
tool is clearly and globally optimal.77 Moreover, it 
is known that some localizations are badly predicted 
by all the algorithms, especially in the case of 
proteins exhibiting dual targeting to plastids and 
mitochondria, which could be a phenomenon more 
common than previously thought.79 This analyses 
showed that majority of the predicted proteins are 
located in four compartments: plastids (31%), 
mitochondria (26%), cytoplasmic (28%) and nucleus 
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(6%) (Fig. S1 and Table S1). The above results are 
consistent with the experimental observations that 
de novo synthesis of fatty acids occurs primarily 
in the plastid and/or mitochondria.5 About 19% 
of the proteins revealed the presence of both the 
mitochondrial target peptide and chloroplast transit 
peptide in the sequences. Recent reports have shown 
an unexpectedly high frequency of dual targeting of 
proteins to both the mitochondria and chloroplast, 
hence making it difficult to predict the correct location 
of these proteins within a cell.80,81 Furthermore, 
approximately 3% of the predicted proteins were 
located in more than one compartment ie, nucleus 
and cytoplasm, which were the same highly paired 
compartments as identified in Arabidopsis82 and 
sugarcane83 proteome, suggesting that there is a 
significant amount of interactions between these two 
organelles.

Hyunjong et al84 have reported that targeting a 
particular enzyme to several compartments simulta-
neously in the same plant will augment its produc-
tion when compared to its individual compartments 
in the same plant. Hence the predicted localization 
information would certainly aid in targeting the lipid 
biosynthetic enzymes to enhance oil accumulation in 
microalgae.

Physico-chemical characterization  
and secondary structure prediction
Various physico-chemical parameters were computed 
using Expasy’s ProtParam tool (Fig. 3 and Table S2). 
Molecular weight was observed between the ranges of 
1116.818–299171.0 for all lipid biosynthetic proteins 
in microalgae. The majority of the predicted proteins 
were found to have a pI greater than 7, indicating that 
proteins involved in lipid biosynthesis are generally 
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Figure 1. Schematic overview of Triacylglyceride (TAg) biosynthetic pathway in microalgae. 
notes: Free fatty acids and TAg are synthesised in the chloroplast and endoplasmic reticulum respectively. The vital enzymes reported by various 
experimental studies to be involved in accelerated lipid accumulation are marked with an asterisk.
Abbreviations: Acc, Acetyl-coA carboxylase; MAT, Malonyl-coA-AcP transacylase; KAS, 3-ketoacyl-AcP synthase; KAr, 3-ketoacyl-AcP reductase; 
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basic in nature. However, the deduced sequences for 
genes such as acetyl-CoA carboxylase, acetyl-CoA 
acetyltransferase, glycerol kinase, ethanolamine kinase 
and phosphoethanolamine cytidyl transferase were 
determined to be acidic. These values of isoelectric 
point (overall charge) will be useful for developing 
a buffer system for purification of the enzymes by an 
isoelectric focusing method. Instability Index analyses 
reveals the presence of certain dipeptides occurring at 
significantly different frequencies between stable and 
unstable proteins. Proteins with an instability index 
less than 40 are predicted to be stable while those with 
a value greater than 40 are assumed to be unstable. 
In the present study the high occurrence frequency 
of unstable proteins may be explained in the context 
of the recent work of Cao,85 who observed such a 
phenomenon in many plants and microorganisms 
due to the possible inherent feedback mechanism 
that regulates the optimal level of accumulation of 
cellular metabolites. The aliphatic index refers to 
the relative volume of a protein that is occupied by 
aliphatic side chains (eg, alanine, isoleucine, leucine 

and valine) and contributes to the increased thermal 
stability observed for globular proteins. Aliphatic 
index for the screened proteins ranged from 70.24 
to 119.16. The very high aliphatic index for all 
sequences indicated that their structures are more 
stable over a wide range of temperature. The GRAVY 
index indicates the solubility of the protein. The lipid 
biosynthetic proteins which showed large negative 
values indicated that these proteins are relatively 
more hydrophobic when compared to proteins with 
less negative values.

The secondary structure of the microalgal pro-
teins involved in lipid metabolism were analyzed by 
submitting the amino acid sequence to the GOR IV 
program, which has been experimentally cross vali-
dated to have a mean accuracy of 64.4% for the three 
state prediction.32 The secondary structure indicates 
whether a given amino acid lies in a helix, strand or a 
coil. Secondary structure features of the proteins are 
represented in Table S3. The results revealed that ran-
dom coil to be predominant followed by alpha helices 
and extended strands in the majority of sequences.

Diacylglycerol acyltransferase

Glycerol-3-phosphate acyltransferase

Lysophosphatidic acid acyltransferase

Triacylglycerol lipase
– A.thaliana

– C.reinhardtii

– V.carteri

– O.tauri

– C.merolae

– O.lucimarinus

Glycerol-3-phosphate dehydrogenase

Acyl coA oxidase

Fatty acid desaturase

Acyl coA synthase

Fatty acid thioesterase

Acetyl CoA carboxylase

0 5 10 15 20 25 30 4035

Fatty acid synthase

Figure 2. number of gene homologues in the TAg biosynthetic pathway in A. thaliana, C. reinhardtii, V. carteri, O. lucimarinus, O. tauri and C. merolae. 
notes: For each reaction, coloured squares denotes the number of homologous genes in A. thaliana (blue), C. reinhardtii (yellow), V. carteri (pink),  
O. lucimarinus (green), O. tauri (purple) and C. merolae (light blue).
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gc-content analyses
The variations in the guanine (G) and cytosine (C) 
content observed between species is one of the central 
issues in evolutionary bioinformatics. The average 
GC-content of the lipid biosynthetic genes, as calculated 
by the Genscan server, was 39.89%, 63.35%, 56.92%, 
59.88%, 59.04% and 55.57% for A. thaliana, 
C. reinhardtii, V. carteri, O. lucimarinus O. tauri and 
C. merolae respectively. The GC values lie close to 
the calculated GC-content of the whole genome of 
the respective organisms under study.86–89 However, a 
slightly higher GC-content for the gene sequences was 
observed in contrast to the background GC-content for 
the entire genome of all the studied species. Among 
the microalgae, the highest GC-content was observed 
in C. reinhardtii. The GC-content of C. reinhardtii 
is also experimentally reported to be higher than 
that of the multicellular organisms.90 Comparative 
analyses of the GC-content of the individual genes 
revealed minor variations among the microalgal 

genomes (Fig. 4 and Table S4). The above finding 
is in congruence with the earlier report stating that 
eukaryotic genomes vary less in their GC content.91 
Furthermore, GC-content analyses indicated that the 
genes with high GC-content were also identified to 
be stable by ProtParam server as compared to genes 
having low GC-content. This may apparently be 
due to the fact that GC pair is bound by 3 hydrogen 
bonds (H-bonds), compared to 2 H-bonds in AT, 
thus contributing to the greater stability of the gene 
products. In addition, analyses of individual predicted 
genes in O. lucimarinus and O. tauri revealed more or 
less similar GC-content in both the subspecies.

Motif and domain architecture
A motif is a sequence pattern found conserved in a 
group of related protein or gene sequences.34 An exhaus-
tive search of the protein motifs using the MEME 
program identified 36 core  conserved sequences in 
the lipid biosynthetic genes of microalgae predicted 
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Figure 3. Distribution of various physico-chemical characteristics of putative proteins encoded by lipid genes in A. thaliana, C. reinhardtii, V. carteri,  
O. lucimarinus, O. tauri and C. merolae. 
note: The individual physico-chemical values for each protein as calculated by ProtParam server is provided in Supplementary Table 2.
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in the present study (Fig. 5). The overall height of 
each stack indicates the sequence conservation at 
that position, whereas the height of symbols within 
each stack reflects the relative frequency of the 
corresponding amino acid (Fig. 5). The sequence logos 
showed that majority of the predicted motifs are basi-
cally composed of hydrophobic and polar uncharged 
residues. It is likely that these conserved residues 
are critical for the catalytic activity of the enzymes 
and may be involved in substrate binding, direct 
catalysis, and maintenance of the protein structure. 
In addition to motif analyses, a detailed comparison 
of the domain architectures of the gene products at 
the whole genome level is given in Figure 5. Results 
indicate that the majority of domains observed in 
genes involved in lipid biosynthesis are present in all 
microalgal species under study. Therefore, the critical 
amino acid residues present in the conserved motif 
and domain of the lipid genes will certainly act as 
a framework for better understanding their structure-
function relationship.

Exon-intron structure and phylogenetic 
analyses
In order to gain insights into the evolution of the 
lipid biosynthetic genes, we analyzed exon-intron 
structure patterns of the predicted gene homologs 
(Table S5). The results revealed that the exon-intron 
spilt pattern of C. reinhardtii and V. carteri genes 
were homologous to that of Arabidopsis, although 

insertion, deletion and intron-size variations were 
common. Likewise, conservation with respect to 
exon-intron number and size were observed between 
O. lucimarinus and O. tauri. The C. merolae genome 
is remarkable for its paucity of introns88 and in our 
study we also could not detect its presence in any of 
the predicted genes. O. lucimarinus and O. tauri genes 
contained fewer introns as compared to C. reinhardtii, 
V. carteri and A. thaliana and our present results 
confirms the previous report that C. reinhardtii 
lipid biosynthetic genes contain a higher number 
of introns.92 A phylogenetic tree was constructed to 
evaluate the evolutionary relationship among the 
predicted genes (Fig. 6). The phylogenetic tree showed 
that in the majority of predicted genes with similar 
functions and sharing similar intron-exon structure, 
conserved motif patterns were clustered together in 
the tree because of their common ancestry and in 
accordance with our expectations. In most of the gene 
families, it was observed that the protein sequence 
of the two sub-species O. lucimarinus and O. tauri 
(Prasinophytes) were present as sister clades and 
that it falls within the green algal cluster comprising 
of C. reinhardtii, V. Carteri (Chlorophytes) and 
A. thaliana (Streptophytes). The Chlorophytes and 
Streptophytes lineages are a part of the green plant 
lineage (Viridiplantae).93 Further, the phylogenetic 
analyses suggest that protein homologs of C. merolae 
(Rhodophytes) seem to diverge from the root of the 
green lineage. Overall, we found that components 
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Figure 5. conserved domain architectures and sequence logo plots of lipid biosynthetic genes using interProscan and MEME programs, respectively. 
notes: The overall height of each stack indicated the sequence conservation at that position, whereas the height of symbols within each stack reflects the 
relative frequency of the corresponding amino acid. The amino acids are colour coded as: A, c, F, i, L, V, W and M (Blue-Most hydrophobic); n, Q, S and 
T (green-Polar, non-charged and non-aliphatic residues); D and E (Magenta-Acidic); K and r (red-Positively charge).
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of lipid biosynthetic pathway are remarkably well 
conserved, particularly among the Viridiplantae 
lineage.

conclusion
Identification of genes responsible for oil accumu-
lation is a pre-requisite to targeting microalgae for 
enhanced yields of biofuel precursors using meta-
bolic engineering. A comprehensive computational 
analyses of the predicted genes of microalgae 
against Arabidopsis was performed through gene 
annotation, subcellular localization, physico-chem-
ical characterization, exon-intron pattern, motif/
domain organization and phylogenomics stud-
ies. The results revealed that although each of the 
algal species maintains the basic genomic repertoire 
required for lipid biosynthesis, they possess addi-
tional lineage-specific gene groups. Additionally, 
the extensive sequence and structure conservation of 
the putative genes indicates functional equivalence 
between  microalgae and Arabidopsis. Phylogenetic 

analyses demonstrated that genes of lipid biosynthetic 
pathway from  Prasinophytes, Chlorophytes, Strepto-
phytes and  Rhodophytes were clustered according to 
their conserved motif pattern, exon-intron structure 
and functional equivalence. The in-depth broad inves-
tigation of each individual gene and their encoded 
products across the microalgal genome will certainly 
facilitate metabolic engineering of microalga for bio-
fuel production.
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Figure s1. Classification of microalgal lipid biosynthetic proteins on the basis of subcellular localization using TargetP, ChloroP and WolfPsort prediction tools.

Table s1. Subcellular localisation prediction of proteins encoded by lipid biosynthetic genes in A. thaliana, C. reinhardtii, 
V. carteri, O.lucimarinus, O. tauri and C. merolae, using TargetP, chloroP and WolfPsort programs.

Table s2. Various physico-chemical characters exhibited by putative proteins encoded by genes involved in lipid metabo-
lism in A. thaliana, C. reinhardtii, V. carteri, O. lucimarinus, O. tauri and C. merolae, as calculated by ProtParam server.

Table s3. The calculated secondary structures of the proteins encoded by lipid biosynthetic genes, using gOr iV 
program.

Table s4. gc-content values of lipid biosynthetic genes as calculated by genscan web server.

Table s5. Exon-intron coordinates of lipid biosynthetic genes in A .thaliana, C. reinhardtii, V. carteri, O. lucimarinus, O. tauri 
and C. merolae.
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