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Abstract: When a phylogenetic reconstruction does not result in one tree but in several, tree metrics permit finding out how far the 
reconstructed trees are from one another. They also permit to assess the accuracy of a reconstruction if a true tree is known. TreeCmp 
implements eight metrics that can be calculated in polynomial time for arbitrary (not only bifurcating) trees: four for unrooted (Match-
ing Split metric, which we have recently proposed, Robinson-Foulds, Path Difference, Quartet) and four for rooted trees (Matching 
Cluster, Robinson-Foulds cluster, Nodal Splitted and Triple). TreeCmp is the first implementation of Matching Split/Cluster metrics and 
the first efficient and convenient implementation of Nodal Splitted. It allows to compare relatively large trees. We provide an example 
of the application of TreeCmp to compare the accuracy of ten approaches to phylogenetic reconstruction with trees up to 5000 external 
nodes, using a measure of accuracy based on normalized similarity between trees.
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Introduction
Different methods used to reconstruct phylogenetic 
trees often do not find the same tree for the same input 
data. This is because of the differences in their opti-
mality criteria, in the way they search in the tree space 
(which is huge even for a relatively small number of 
taxa), and in their sensitivity to uncertainty in the 
input (usually nucleotide or protein sequences). Some 
methods (for example, maximum likelihood or maxi-
mum parsimony) often do not find one tree but a set 
of equally optimal trees, especially for a large number 
of external nodes (terminal nodes, leaves, often repre-
senting operational taxonomic units). Other methods, 
like Bayesian inference of trees, explicitly aim to find 
a set of trees: a sample from the posterior distribution 
of trees. Comparing the trees obtained using different 
methods or trees in a set obtained using one method 
requires a measure of distance between trees. Such 
measures (metrics for trees) are also useful when 
the accuracy of phylogenetic reconstruction meth-
ods is evaluated, in particular, when a new method 
is developed.1,2 Other uses for tree metrics include 
tree comparison in mining phylogenetic information 
databases.3

We have recently described some properties of 
a novel method for comparing unrooted phyloge-
netic trees, the Matching Split distance (MS).4 Here 
we describe TreeCmp, a first implementation of this 
new metric and of its rooted version, the Matching 
Cluster distance (MC). TreeCmp also implements 
six other popular metrics for trees that can be com-
puted in polynomial time: Robinson-Foulds (RF)5 
and a rooted version of RF based on clusters instead 
of splits (RC), Path Difference (PD),6 Nodal Splitted 
with norm L2 (NS),7 Triple (TT)8 and Quartet (QT)9 
metric. Other metrics, for example, metrics based 
on edit operations, such as nearest neighbour inter-
change (NNI), subtree-pruning-regrafting (SPR) 
and Tree-Bisection-Reconnection (TBR), were not 
implemented in TreeCmp mainly because their com-
putation is a non-deterministic polynomial-time hard 
(NP-hard) problem,10–12 so their application is limited 
to small trees (with less than 100 external nodes). 
It is generally believed (but it has not been proven) 
that NP-hard problems do not have polynomial time 
(ie, computationally effective) solutions. All met-
rics implemented in TreeCmp take into account only 

the topology of compared trees. Branch lengths are 
ignored.

In this paper we present the new tool and an exam-
ple of its application: we use TreeCmp to compare the 
accuracy of a set of popular reconstruction methods 
for unrooted trees with 250, 1250 and 5000 leaves.

Methods for Tree comparison 
Implemented in Treecmp
Since phylogenetic reconstructions sometimes do 
not allow to solve all multifurcations, TreeCmp 
implements distance measures for arbitrary (not 
only bifurcating) phylogenetic trees. Let UL and RL 
denote sets of all unrooted phylogenetic trees and 
all rooted phylogenetic trees over the set of leaves 
(species) L, respectively. All the distances imple-
mented in TreeCmp are metrics over the sets UL or 
RL. A function d: X × X→R+∪{0} is a metric over 
X if and only if the following conditions are met: (i) 
for each x,y∈X, d(x, y) = 0 if and only if x = y, (ii) for 
each x,y∈X, d(x, y) = d(y, x), (iii) the triangle inequal-
ity: for each x,y,z∈X, d(x, y) + d(y, z) $ d(x, z). We 
will now describe briefly each metric implemented in 
TreeCmp and compare the distances obtained using 
each metric using 5-leaf unrooted (Fig. 1) or 4-leaf 
rooted trees (Fig. 2) as an example.

Matching Split metric (MS)  
for unrooted trees
MS4 is based on comparing splits in two trees. A split 
A|B of a set L is an unordered pair (ie, A|B = B|A) of 
its subsets, such that L = A∪B and A∩B = ∅. Let 
min(A|B) = min{|A|, |B|}. To compare splits in two 
trees, MS finds a minimum-weight perfect matching 
in bipartite graphs whose vertices correspond to splits 
in these two trees and edges connect each split from 
one tree to a split in another tree. If the number of 
splits in the trees differs, the smaller set is extended 
by the missing number of “dummy” elements.

Because splits from the same tree are not linked 
in these graphs, these graphs are complete  bipartite. 
One can chose a set of edges so that no two edges 
share a common vertex (such a set is called a match-
ing) and so that every vertex is connected to another 
vertex (such a matching is called perfect). Many 
perfect matchings are possible for complete bipar-
tite graphs. The one with the smallest total cost 
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(sum of the weights associated with the edges) is 
 minimal. The weight associated by MS to each edge 
is a measure of dissimilarity between splits: hS(A|B, 
C|D) = min{|A⊕C|,|A⊕D|}, where X⊕Y = (X\Y)∪(Y\X) 
is a symmetric difference of the sets X and Y. For a  
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Figure 1. Computation of MS, RF, PD and QT distances for 5-leaf 
unrooted trees. 
notes: The first step in the computation of MS and RF for 2 trees (top) is 
the identification of splits. MS distance is the total cost of the minimal perfect 
matching between their splits (red edges show matches with minimal cost, 
ie, the number of leaf relocation; black edges are matches with higher cost). 
rF counts the number of different splits in both trees (each tree in the figure 
has 2 splits which are different from the splits in the other tree, so the total 
number of different splits is 4). PD distance is the square root of the sum 
of squared differences between the lengths of paths between leaves in two 
trees. QT distance is the number of different quartets induced by the trees.
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Computation of TT distance 
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Sum 3

dTT(T1,T2) = 3 

Figure 2. Computation of MC, rC, NS, and TT distances for rooted trees. 
notes: MC distance is the sum of the symmetric distances between 
matched clusters (red edges; other matchings between clusters, black 
edges, have larger distances). rC distance is the number of different 
 clusters (3) divided by 2. NS distance is squared root of the sum of squared 
values in the matrix which is the difference between the matrices which 
contain the number of edges in a tree in the path joining leaf i with the most 
recent common ancestor of leaves i and j for each pair i and j (the indices 
in the matrices in the figure correspond to leaves in the alphabetical order). 
The TT distance is the sum of different triples induced by each tree.

http://www.la-press.com


Bogdanowicz et al

478 Evolutionary Bioinformatics 2012:8

“dummy” element O, hS(A|B, O) = min{|A|,|B|}. The 
value hS(A|B, C|D) is equal to the minimal number 
of leaf relocations needed to transform one split into 
the other. For example (Fig. 1), hS(abc|de, acd|be) = 2, 
because 2 such relocations are needed: abc|de → 
ac|bde → acd|be. The cost hS(A|B, O) can be inter-
preted as a cost of leaving an element A|B unmatched. 
MS distance between two unrooted phylogenetic 
trees T1, T2 ∈ UL is the total cost of the minimal per-
fect matching between their splits. For unrooted trees 
in Figure 1, dMS(T1,T2) = 3. The method allows also 
obtaining a matching (“alignment”) between their 
splits (red edges in Fig.1).

Since the bipartite graphs for trees with n leaves 
can have at most 2(n - 3) vertices and the function 
hS takes integer values, their perfect minimal match-
ing can be found in time O(n2.5logn) using methods 
described elsewhere.13,14 Our implementation of MS 
uses another popular and effective algorithm,15 which 
performs very well in practical applications.16

Matching Cluster metric (MC)  
for rooted trees
To compare rooted trees, we define a metric similar 
to MS but which uses clusters instead of splits, the 
MC metric. A cluster associated with a vertex v in a 
rooted tree T with leaves L is a subset of leaves that 
are descendants of v. To measure the dissimilarity 
between clusters, MC uses function hC(A, B) = |A⊕C|. 
For a dummy element, O = ∅, hC(A, O) = |A|. For 
example, hC(cd,abc) = 3. For rooted trees in Figure 2, 
dMC(T1,T2) = 3.

MC inherits most of the features of MS, includ-
ing computational complexity. In particular, an 
“alignment” between clusters of compared trees 
can be obtained at the same time as the distance is 
computed.

robinson-Foulds metric (rF)  
for unrooted trees
The RF metric5 is equal to the number of different 
splits in compared trees (divided by 2). It can be for-
mulated in the same way as the MS metric, but replac-
ing the function hS with a simple function that returns 
1 for different splits, 0 for identical splits, and 0.5 for 
unpaired (the distance to the “dummy” element). For 
unrooted trees in Figure 1, dRF(T1,T1) = 2.

RF distance can be computed in O(n).17 The imple-
mentation of RF in TreeCmp is slightly slower. We 
have optimized the comparison of splits (which 
are stored in a table as bit sets) using a hashing 
technique.

robinson-Foulds metric based  
on clusters (rC) for rooted trees
Just as clusters can be matched instead of splits to for-
mulate MC instead of MS, the function that is used to 
compare splits in RF can be used to compare clusters 
and to create the RC metric, so RC distance between 
trees is equal to the number of different clusters divided 
by 2. For rooted trees in Figure 2 dRC(T1,T2) = 1.5. All 
implementations aspects are similar for RC and RF.

Path Difference metric (PD) for unrooted 
trees
Let eij(T) denote the number of edges in T∈Un in the 
path joining leaves i and j, and let e(T) be the associ-
ated n(n - 1)/2-element vector obtained by a fixed 
ordering of the pairs {i, j}. Then the PD metric6 
between trees T1, T2 ∈ UL is the square root of the 
sum of squared differences (eij(T1) - eij(T2)):

d T T e T e TPD 1 2 1 2 2
, .( ) = ( ) - ( )

For unrooted trees in Figure 1, dPD(T1,T2) = 141/2. 
The implementation of PD is based on calculation of 
distances between all pairs of leaves in time O(n2).

Nodal Splitted metric with norm L2  
(NS) for rooted trees
While PD can be used only for unrooted trees, a 
family of metrics based on a similar principle (NS 
metrics) can be created for rooted trees.7 Let lT(i,j), 
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l T

l l n
l l n

l n l n

T T

T T

T T

( ) =

( ) ( )
( ) ( )

( ) ( )

 0 1 2 1
2 1 0 2

1 2 0

, ,
, ,

, ,





   

















http://www.la-press.com


TreeCmp: comparison of trees in polynomial time

Evolutionary Bioinformatics 2012:8 479

To make a NS metric similar to PD, one can use 
norm L2 to compare such matrices, with proven prop-
erties and advantages.6 This is the norm we have 
implemented in TreeCmp. We thus define the NS dis-
tance between two trees T1, T2 ∈ RL as:

d T T l T l TNS 1 2 1 2 2
, .( ) = ( ) - ( )

For two rooted trees in Figure 2, dNS(T1,T2) = 71/2. 
The implementation of NS in TreeCmp has time com-
plexity O(n2).

Quartet metric (QT) for unrooted trees
The QT metric9 is based on comparing sets of quartets 
induced by two trees. A set of quartets induced by an 
unrooted tree is the set of the topologies of all 4- species 
subsets of its leaves consistent with its topology. QT 
distance between two trees T1, T2 ∈ UL is the number 
of different quartets in two respective sets. For two 
trees T1 and T2 presented in Figure 1, dQT(T1,T2) = 4.

For bifurcating trees, QT can be computed in time 
O(nlogn).18 For multifurcating trees, an algorithm with 
running time O(n2.688) has been recently  presented.19 
In TreeCmp we have modified and optimized the 
code form QuartetDist.20 The time complexity of this 
algorithm is O(n + |I||I’|min{id, id′}),20 where id and 
id’ are the degrees of internal nodes with the high-
est degree (disregarding edges to leaves) in two input 
trees (which may have multifurcations), and |I| and |I ′| 
are the counts of internal (non-leaf) nodes. Therefore, 
the complexity varies between O(n2) for strictly bifur-
cating trees and O(n3) in the worst case (eg, two dif-
ferent trees which both have internal nodes of degree 
n/2 linked to nodes which all connect to two leaves).

Triple metric (TT) for rooted trees
TT is similar to QT, but considers triples instead of 
quartets. A set of triples induced by a rooted tree is a 
set of the topologies of all 3-species rooted subtrees 
consistent with this tree. TT distance8 between two 
trees T1, T2 ∈ RL is the number of different triples in 
the respective sets. For two rooted trees T1 and T2 in 
Figure 2, dTT(T1,T2) = 3.

The implementation of TT in TreeCmp is based 
on two algorithms, both with time complexity O(n2). 
In the case of bifurcating trees, a well-known and 
relatively old algorithm is used.8 For non-bifurcating 

trees, TreeCmp is using a newer and much more com-
plicated algorithm.21

Topological accuracy measure based  
on normalized similarity between trees
In1 the topological accuracy (TA) is defined as the 
proportion of the splits in the true tree that are recov-
ered by a given phylogenetic reconstruction method. 
This measure of TA is based explicitly on RF. We 
have created a more general measure of topological 
accuracy according to a particular metric m (TAm), 
based on normalized tree similarity for a particular 
metric (NTSm).

Distances between random trees (for example, gen-
erated using the Yule method22) grow with the num-
ber of leaves for all metrics considered here (Table 1; 
the maximum distances in the space of trees also 
grow, but are less useful as scaling factors). To allow 
for comparison of distances for trees with different 
number of trees, NTSm compares the distance with 
the average distance between random trees dm rand,  
obtained using the same metric (Table 1):

NTS T T
d d T T

dm
m rand m

m rand
1 2

1 2,
,

.,

,
( ) =

- ( )

NTSm is 1 when distance between two trees is 0 
(both trees are the same), and is about 0 when the 
trees are as similar (according to a given metric) as 
two random trees on average. NTSm(T1,T2) , 0 when 
T1 and T2 are further apart than two random trees.

When one of the trees is a true tree (T*) and 
the other is reconstructed (Tr), NTSm is a measure 
of topological accuracy of the reconstruction: 
TAm = NTSm (T*,Tr). The model we have used to 
generate random trees (the Yule model) assumes 
instantaneous, strictly bifurcating speciation occur-
ring with the same probability for all lineages at any 
given time.22 Trees are constructed iteratively: start-
ing from four random taxa, new taxa (chosen ran-
domly) are added to a branch connected to a leaf.22 
As the size of trees goes to infinity, RF distance for 
two Yule random trees follows asymptotically the 
Poisson distribution, and the average value quickly 
tends to the number of non-trivial splits,6 so TARF 
is very close to the measure of proportion of true 
splits used in.1
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Using Metrics Implemented  
in TreeTmp to compare Trees
The comparison of phylogenetic trees is a difficult 
problem, and even very intuitive measures may lead 
to non-intuitive results. Consider three trees with five 
leaves presented in Figure 3. Which of the two trees 
T1 or T3 is the most similar to T2? According to the RF 
metric, both trees are equally similar to T2. However, 
all other metrics indicate that T1 and T2 are more simi-
lar than T2 and T3. The second answer is more intui-
tive, because removing leaf e makes trees T1 and T2 
identical, while there is no similar operation for trees 
T2 and T3.

MS can be regarded as a refinement of RF, so 
these two metrics are the easiest to compare. MS 
takes into account not only the identity of splits, but 
also more subtle similarities, so for any set of trees it 
gives a wider range of distance values, allowing for 
improved diversification. In comparison to RF, MS 
concentrates more on differences corresponding to 
edges deep inside the tree (when both parts of a split 
A|B have large cardinality) than on differences cor-
responding to edges closer to the leaves. Finally, MS 
allows for structural comparison of trees by returning 
an optimal matching between their splits.
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Figure 3. Distances between trees with 5 leaves and normalized tree 
similarities between “caterpillar trees” using different metrics. 
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RAxML 7.2.5), neighbour joining,29 and its faster 
variant Clearcut.30 JTT model31 (using 4 rate catego-
ries in the Γ distribution or the CAT approximation 
which estimates the rate for each site, see1 for details) 
or log-corrected distances were used to measure evo-
lutionary distances between sequences.

Different metrics for unrooted trees agree in gen-
eral on the ranking of 10 approaches to phyloge-
netic reconstructions compared here (Tables 2–5): 
the order is the same for positions 1–4 and 9–10. 
 However, the ordering of BIONJ, FastTree 2.0.0 
(no ML NNIs), FastME and Parsimony differs, with 
some interesting patters. First of all, all metrics 
agree that Parsimony has the worst accuracy among 
these 4 reconstruction methods for very large trees 
(5000 leaves). Secondly, MS, QT and PD (with the 
exception of 1250 leaves), but not RF, agree that 
BIONJ has the best accuracy among 4. Thirdly, and 
again with one exception (QT and 5000 leaves), 
3 metrics but RF agree that the accuracy of FastTree 
2.0.0 without ML NNIs is higher than the accuracy 
of FastME.

Another observation concerns the fact that accord-
ing to PD, the reconstructed trees are further away 
from the true tree relative to the average distance 
between random trees, than according to the other 
3 metrics. In other words, the values of average topo-
logical accuracy according to PD are, in general, 
much lower than for the other metrics, their range is 
37.92%–77.94% compared with 71.39%–90.46% for 
RF, 77.10%–92.41% for MS, and for 68.46%–95.89% 
(Tables 2–5). This measure also indicates that as the 

The fundamental advantage of MS over RF is that 
for large phylogenies, relocations of a bounded num-
ber of leaves cause small changes of MS distances 
(O(n), asymptotically small in comparison to Θ(n2) 
for maximal possible MS distance for n-leaf trees). In 
contrast, RF distance can increase from 0 to the maxi-
mal value for a given number of leaves after only one 
relocation of a single leaf (a1) in a “caterpillar” tree 
(Fig. 3). The normalized relative similarity between 
two such “caterpillar” trees varies hugely depending 
on which metric is used. For RF and PD, a large dis-
crepancy is observed (average NTSRF around 0% and 
NTSPD less than 0%). MS and QT suggest high simi-
larity (NTSMS and NTSQT over 90%, and increasing as 
the trees grow larger). The results given by MS and 
QT are more intuitive.

To investigate what effect different properties 
of metrics for unrooted trees can have for phyloge-
netic trees reconstructed using biological sequences, 
we have used 3 previously described data sets1 of 
simulated protein alignments (see1 for details; these 
data sets are available at http://microbesonline.
org/fasttree/#Sims). We have obtained the average 
topological accuracy (for 308 different sequence align-
ments with 250 sequences, 92 with 1250 sequences, 
and 7 with 5000 sequences) of 10 approaches to 
phylogenetic reconstruction: RAxML 723 with SPR, 
PhyML 324,25 with SPR or without, BIONJ26 with 
ML distances obtained using PROTDIST (part of 
PHYLIP27), FastTree 21 with Maximum Likelihood 
NNI to improve the tree or only minimum-evolution 
SPR (no ML NNIs), FastME 2,28 Parsimony (using 

Table 2. Average topological accuracy of tree reconstruction methods according to rF metric.

no. Method 250 leaves 1250 leaves 5000 leaves
dRF TARF dRF TARF dRF TARF

1 rAxML 7 (JTT+CAT, SPRs) 23.55 90.46% 145.03 88.37% 577.43 88.44%
2 PhyML 3.0 (JTT+Γ4, SPRs) 24.85 89.93% ND ND ND ND
3 FastTree 2.0.0 (JTT+CAT or JC+CAT) 32.28 86.92% 203.48 83.68% 786.00 84.27%
4 PhyML 3.0 (JTT+Γ4, no SPRs) 34.55 86.00% ND ND ND ND
5 FastME 2.06 (log-corrected distances, SPRs) 48.06 80.52% 264.09 78.82% 1148.00 77.03%
6 FastTree 2.0.0, no ML NNis 48.36 80.41% 270.71 78.29% 1168.14 76.62%
7 Parsimony (RAxML 7.2.5) 52.33 78.80% 268.85 78.44% 1429.43 71.39%
8 BiONJ (ML distances) 55.19 77.63% 328.57 73.65% 1343.43 73.11%
9 Neighbour joining (log-corrected distances) 59.23 76.00% 341.90 72.58% 1420.71 71.57%
10 Clearcut (log-corrected distances) 60.57 75.45% 346.08 72.24% 1423.43 71.51%

notes: The methods were sorted according to their average TA for 250 leaves; ND: not determined (because of the computational inefficiency of the 
reconstruction method).
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Table 3. Average topological accuracy of tree reconstruction methods according to PD metric.

no. Method 250 leaves 1250 leaves 5000 leaves
dPD TAPD dPD TAPD dPD TAPD

1 rAxML 7 (JTT+CAT, SPRs) 245.42 77.94% 1982.16 70.01% 10844.37 62.86%
2 PhyML 3.0 (JTT+Γ4, SPRs) 254.38 77.14% ND ND ND ND
3 FastTree 2.0.0 (JTT+CAT or JC+CAT) 303.92 72.68% 2603.88 60.60% 17695.31 39.39%
4 PhyML 3.0 (JTT+Γ4, no SPRs) 325.41 70.75% ND ND ND ND
5 BiONJ (ML distances) 438.70 60.57% 3326.51 49.66% 14568.16 50.10%
6 FastTree 2.0.0, no ML NNis 440.38 60.42% 3243.49 50.92% 14911.68 48.93%
7 FastME 2.06 (log-corrected distances, SPRs) 449.37 59.61% 3420.10 48.25% 15563.98 46.69%
8 Parsimony (RAxML 7.2.5) 452.24 59.35% 3284.08 50.30% 18126.62 37.92%
9 Neighbour joining (log-corrected distances) 483.03 56.59% 3749.12 43.27% 16207.15 44.49%
10 Clearcut (log-corrected distances) 541.15 51.36% 3927.25 40.57% 15842.29 45.74%

notes: The methods were sorted according to their average TA for 250 leaves; ND: not determined (because of the computational inefficiency of the 
reconstruction method).

Table 4. Average topological accuracy of tree reconstruction methods according to MS metric.

no. Method 250 leaves 1250 leaves 5000 leaves
dMS TAMS dMS TAMS dMS TAMS

1 rAxML 7 (JTT+CAT, SPRs) 222.98 92.41% 2256.15 90.02% 12410.00 89.53%
2 PhyML 3.0 (JTT+Γ4, SPRs) 234.31 92.03% ND ND ND ND
3 FastTree 2.0.0 (JTT+CAT or JC+CAT) 293.95 90.00% 3325.75 85.29% 19830.43 83.26%
4 PhyML 3.0 (JTT+Γ4, no SPRs) 313.62 89.33% ND ND ND ND
5 BiONJ (ML distances) 482.04 83.60% 4418.58 80.45% 20555.43 82.65%
6 FastTree 2.0.0, no ML NNis 499.15 83.02% 4402.59 80.53% 23219.14 80.40%
7 Parsimony (RAxML 7.2.5) 510.11 82.64% 4418.33 80.46% 27135.71 77.10%
8 FastME 2.06 (log-corrected distances, SPRs) 510.89 82.62% 4501.62 80.09% 23796.00 79.91%
9 Neighbour joining (log-corrected distances) 556.27 81.07% 5086.80 77.50% 25391.57 78.57%
10 Clearcut (log-corrected distances) 610.25 79.24% 5183.72 77.07% 25276.86 78.66%

notes: The methods were sorted according to their average TA for 250 leaves; ND: not determined (because of the computational inefficiency of the 
reconstruction method).

number of leaves increases, the topological accuracy 
of FastTree and Parsimony reconstructions is more 
affected than the accuracy of other methods.

The calculation of distances between random 
trees generated using the Yule process allows to 
compare the running time for distance calculation 
using TreeCmp (Fig. 4). Not surprisingly, the cal-
culation of distances was the fastest for RF, and the 
slowest for QT. PD could be computed faster than 
MS. The calculation of average TAm requires the 
comparison of true trees and trees reconstructed by 
a particular method for a particular alignment, so we 
could compare the running times for calculations of 
distances between random trees with the times for 
similar trees (Table 1). Computation time of MS in 
case of trees that share some splits can be  optimized 

considerably because the shared splits can be omitted 
from further computation.4 This results in reducing 
the size of the bipartite graph used for computing the 
minimum-weight prefect matching. In consequence, 
MS can be computed one order of magnitude faster 
for simulated trees with 5000 leaves than for ran-
dom trees.

Finally, it is easy to obtain normalized distances 
using normalized similarity for a given metric: δm = 
1 - NTSm. A normalized distance larger than one indi-
cates that two trees are more dissimilar than two ran-
dom trees with the same number of leaves according 
to a given metric. Such normalization provides more 
intuitive measures of tree similarity than the original 
metrics, measures that are stable as the number of 
leaves increases.
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Availability, system Requirements, 
User Interface, and comparison  
with Other software
We have created TreeCmp as a stand-alone applica-
tion in Java with a command line interface and a sys-
tem of hints built on base of Jakarta Commons CLI. 
The application is freely available at http://kaims.
pl/~dambo/treecmp/.

TreeCmp takes as input a file with N . 2 trees and 
allows for: sequential pairwise comparison (command 
line option: -s; the output is N - 1 distances between 
pairs of trees neighbouring in the list), sequential win-
dow comparison (-w ,window size S.; the output 
is distances between all trees in neighbouring non-
overlapping windows), all-to-all pairwise compari-
son (-m; the output is N(N - 1)/2 pairwise distances 
between trees), and one-to-all comparison (-r ,file 
with one reference tree.; each tree in the input file is 
compared to the reference tree).

In addition, TreeCmp allows for comparison of 
trees with different leaf sets (-P). Since all the imple-
mented metrics take as input two trees on the same set 
of leaves, trees on different leaf set are pruned to sub-
trees having the same set of leaves. Then the subtrees 
are compared using selected metrics.

We have also allowed for reporting of distances 
(-N) scaled by the average distance between two ran-
dom trees with the same number of leaves (see below 
for the discussion of these scaled metrics). After 
enabling this option two additional columns per each 
chosen metric appears in the output file (for two differ-
ent tree generation methods; the Yule model and the 

uniform model; see22 for review). The software uses 
pre-computed values of averages stored in 16 files 
(for 8 metrics and 2 random tree generation methods). 
The files contain also standard deviations and quan-
tiles, so they can be used to test the null hypothesis 
that the distance between two given trees in not larger 
than the average distance between random trees with 
the same number of leaves.6,32

Another feature implemented in TreeCmp is the 
generation of an “alignment” between trees (-A). 
A side effect of MS/MC metric computation is a per-
fect matching that illustrates best correspondence 
between edges (or nodes) in both trees. Because a per-
fect matching with minimal weight is not necessarily 
unique, this matching of similar splits (for MS) or 
clusters (for MC) is also not unique. However, iden-
tification of corresponding phylogenetic groups may 
be useful for the analysis of large phylogenies, so this 
method could be an alternative to or extension of soft-
ware tools for this purpose (eg, TreeJuxtaposer33).

TreeCmp has a very general input file parser based 
on PAL.34 The application simply searches for trees in 
the Newick format (a sequence of characters that begins 
with the left parenthesis and ends with the right paren-
thesis and a semicolon), so files created by commonly 
used phylogenetic packages (MrBayes, BEAST, PAUP, 
PHYLIP) are supported without any pre-processing.

Output files are tab separated text files (TSV). 
Such files can be easily read by various data analysis 
software packages (for example R, Microsoft Excel, 
OpenOffice.org). The content of an output can file 
consists of two sections. The first section  contains 

Table 5. Average topological accuracy of tree reconstruction methods according to QT metric.

no. Method 250 leaves 1250 leaves 5000 leaves
dQT TAQT dQT TAQT dQT TAQT

1 RAxML 7 (JTTCAT, SPRs) 4.352E06 95.89% 5.671E09 91.60% 1.752E12 89.90%
2 PhyML 3.0 (JTT Γ4, SPRs) 4.762E06 95.50% ND ND ND ND
3 FastTree 2.0.0 (JTTCAT or JCCAT) 8.162E06 92.29% 1.012E10 85.01% 2.872E12 83.44%
4 PhyML 3.0 (JTT Γ4, no SPRs) 8.863E06 91.63% ND ND ND ND
5 BiONJ (ML distances) 1.401E07 86.77% 1.300E10 80.74% 2.889E12 83.34%
6 Parsimony (RAxML 7.2.5) 1.567E07 85.21% 1.393E10 79.36% 5.469E12 68.46%
7 FastTree 2.0.0, no ML NNis 1.635E07 84.56% 1.458E10 78.39% 4.480E12 74.16%
8 FastME 2.06 (log-corrected distances, SPRs) 1.695E07 83.99% 1.506E10 77.68% 3.939E12 77.28%
9 Neighbour joining (log-corrected distances) 1.808E07 82.93% 1.639E10 75.71% 4.940E12 71.51%
10 Clearcut (log-corrected distances) 1.946E07 81.63% 1.641E10 75.69% 4.938E12 71.53%

notes: The methods were sorted according to their average TA for 250 leaves; ND: not determined (because of the computational inefficiency of the 
reconstruction method).
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distances using selected metrics. The second optional 
section (enabled using –I switch) contains some gen-
eral statistics for all rows in the first section (row aver-
age and standard deviation, minimal and  maximal 
values).

As far as we are aware, there is no other software 
which would allow computing the MC/MS distance 
or would conveniently implement the NS metric 
(the only other implementation7 is in pre-release and 
requires knowledge of Python). However, there are 
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several free tools for computing subsets of popular 
tree metrics. One such tool is COMPONENT 2.035 
which allows to compute RF, TT, and QT distances 
(and to perform many other operations on phyloge-
netic trees). Unfortunately, using COMPONENT 2.0 
we were unable to compare trees with more than 100 
leaves. Another tool, TOPD/FMTS,36 allows comput-
ing RF, PD, QT, and TT, but is considerably slower than 
TreeCmp. For example, comparison of two unrooted 
trees takes 2 min for 5000 leaves using RF metric (and 
,1 s with TreeCmp), .1 h for 1250 leaves using PD 
(,1 s with TreeCmp) and .20 h for 100 leaves using 
QT (,1 s with TreeCmp).  Comparison of rooted trees 
for 100 leaves using TT metric takes .30 min (,1 s 
with TreeCmp). All the tests have been performed on 
Intel Core i7 920 2.66 GHz with 12 GB RAM server 
under Ubuntu 10.10.

conclusions
We provide a tool, TreeCmp, that allows to efficiently 
compare relatively large (even up to 5000 leaves) arbi-
trary (possibly multifurcating) trees using four mea-
sures for unrooted and four measures for rooted trees. 
Other available software tools are much more limited: 
they often implement a small number of measures and 
are computationally inefficient (in particular, they 
do not allow comparing large trees). TreeCmp is the 
first implementation of the Matching Split metric and 
its rooted variant, the Matching Cluster metric. The 
computation of these two metrics permits to obtain 
the alignment of splits (or clusters) in two trees using 
TreeCmp. The tool also provides a modified, opti-
mized implementation of the Quartet metric adopted 
form,20 an efficient version of the Triple metric, a ver-
sion of the Robinson-Foulds metric, implemented 
using bit sets and hashing technique, together with 
its rooted variant based on clusters. Finally, TreeCmp 
provides an efficient implementation of the Path Dif-
ference and Nodal Splitted metrics. The software cal-
culates normalized distances between trees for all the 
metrics that have been implemented (for trees with 
4-1000 leaves). We believe that such normalized 
distances are more intuitive measures of dissimilar-
ity between trees. Since the tool is written in Java, 
TreeCmp is ready to run on a variety of operating 
systems without installation or compilation. We show 
that four metrics for unrooted trees implemented in 
TreeCmp may give different results when assessing 

the accuracy of phylogenetic reconstruction. When 
such a situation takes place, it is the results obtained 
with Robinson-Foulds metric that usually do not 
agree with the other three metrics (Matching Split, 
Path Difference and Quartet).

List of Abbreviations
MC, the Matching Cluster metric for rooted trees; 
MS, the Matching Split metric for unrooted trees; 
NNI, a metric based on nearest neighbour interchange 
 operations; NP-hard, a class of non-deterministic 
 polynomial-time hard problems; NS, the Nodal Split-
ted metric with norm L2 for rooted trees; NTSm, normal-
ized similarity between trees for a particular metric m; 
PD, the Path Difference metric for unrooted trees; 
QT, the Quartet Metric for unrooted trees; RC, the 
 Robinson-Foulds metric based on clusters for rooted 
trees; RF, the Robinson-Foulds metric for unrooted 
trees; SPR, a metric based on subtree prune and regraft 
 operations; TAm, Topological Accuracy of a tree recon-
struction according to metric m; TBR, a metric based 
on tree bisection and reconnection  operations; TT, the 
Triple Metric for rooted trees.
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supplementary Data
TreeCmp_v1.0-b291.zip
The file contains a compressed directory including 
the Java application (TreeCmp.jar in directory bin) 
with a configuration file (config.xml in the directory 

config), pre-computed data (in the directory data), 
source files (in the directory src), and the user manual 
(TreeCmp_manual.pdf) which provides examples on 
how the program can be used (with files in the direc-
tory examples as inputs).
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