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Abstract: Advances in technology and reduced costs are facilitating large-scale sequencing of genes and exomes as well as entire 
genomes. Recently, we described an approach based on haplotypes called SCARVA1 that enables the simultaneous analysis of the asso-
ciation between rare and common variants in disease etiology. Here, we describe an extension of SCARVA that evaluates individual 
markers instead of haplotypes. This modified method (SCARVAsnp) is implemented in four stages. First, all common variants in a 
pre-specified region (eg, gene) are evaluated individually. Second, a union procedure is used to combined all rare variants (RVs) in the 
index region, and the ratio of the log likelihood with one RV excluded to the log likelihood of a model with all the collapsed RVs is 
calculated. On the basis of previously-reported simulation studies,1 a likelihood ratio $1.3 is considered statistically significant. Third, 
the direction of the association of the removed RV is determined by evaluating the change in λ values with the inclusion and exclusion 
of that RV. Lastly, significant common and rare variants, along with covariates, are included in a final regression model to evaluate the 
association between the trait and variants in that region. We apply simulated and real data sets to show that the method is simple to 
use, computationally effcient, and that it can accurately identify both common and rare risk variants. This method overcomes several 
limitations of existing methods. For example, SCARVAsnp limits loss of statistical power by not including variants that are not associ-
ated with the trait of interest in the final model. Also, SCARVAsnp takes into consideration the direction of association by effectively 
modelling positively and negatively associated variants.
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Introduction
Biological and empirical evidence suggests that 
rare variants (RVs) may account for a significant 
proportion of the genetic component of several dis-
orders including common complex diseases.2 It is 
also believed that better insight into the role of RVs 
will directly inform our understanding of disease 
pathophysiology, and that if RVs display sufficiently 
high penetrance RVs may then have predictive value.3 
However, association analyses of RVs present many 
challenges, including  diminished power, potential 
biases, and the need for a large sample size. Several of 
the currently available rare variant analysis methods 
collapse or group RVs.4–7 While this approach may 
help alleviate the problem of small numbers, it may 
dilute or mask the direction of association by includ-
ing variants with no effect or that have an effect in a 
different direction. Recently, Lin and Tang2 proposed 
a general framework for detecting disease associa-
tions with rare variants in sequencing studies. They 
employed a score-type statistic (hereafter referred to 
as the SCORE-TEST). The SCORE-TEST is more 
powerful and efficient than other methods, but it 
could not completely resolve the problem of analyz-
ing variants with no effect. Additionally, this method 
could not simultaneously consider the combined effect 
of common variants (CVs) and RVs on a trait in a 
given genomic region. The Sequence Kernel Asso-
ciation Test (SKAT),8 in contrast, can simultaneously 
evaluate CVs and RVs. It is a score-based variance-
component test that employs a regression method 
to test for association of variants within a specified 
region. As with the SCORE-TEST, SKAT could not 
account for the direction of association of individual 
variants or exclude variants that are not associated 
with the trait of interest. As such, implementation of 
this method produces a single P-value for all variants 
in the region, making it uninformative regarding the 
specific variants or sets of variants within that region 
are responsible for observed associations. In this arti-
cle, we present a modified version of the SCARVA 
method, in which rare variants are analyzed for associ-
ation in the context of common variants that influence 
the trait of interest. The new method (SCARVAsnp), 
based on the analysis of individual markers instead of 
haplotypes, is applied to simulated and real datasets. 
Compared to existing methods, SCARVAsnp has the 

following advantages: (1) common variants are not 
ignored; (2) rare variants are sequentially removed 
from a collapsed rare variant term to maximize the 
sample size retained in the analysis and avoid biases 
associated with small numbers; (3) RVs with differ-
ent directions of association are collapsed separately; 
(4) RVs that are not associated with the index trait 
are not included in the final model; and (5) different 
modes of inheritance can be modeled. Although this 
method is not directly comparable to existing methods 
because of differences in definining the analytic unit 
(ie, the number and type of variants collapsed in the 
 analysis), results from analysis of the same regions 
using existing methods (SCORE-TEST and SKAT) 
are provided for context.

The Method
This method modifies and extends the previously-
described SCARVA technique, which is haplotyped-
based, for use with marker-level data in a given region 
(which could be defined by a gene, target sequence, 
window size, or pathway involving multiple genes). 
A variant is considered rare with a minor allele fre-
quency (MAF) , 5% and with an allele count $ 5 
(RVs with allele acounts , 5 are removed from the 
analysis). Common variants (CVs) are modeled sepa-
rately to determine the association of each with the 
phenotype. RVs, however, are combined using a union 
method, and the combined effect of all RVs are mod-
eled to overcome RV-associated diminished power. 
After eliminating variants of no effect, a final regres-
sion model is constructed with collapsed positively-
associated RVs, collapsed negatively-associated RVs, 
and covariates (including CVs).

Let Y = (y1, …, yn)′ be the quantitative trait out-
come of n unrelated individuals, with covariates 
X = (X1, …, Xn)′, where each Xi is a row vector of 
 covariates. H = (h1, …, hn) is the observed geno-
types for n individuals and hj = (hj1, …, hjk) is the 
genotype of the j-th individual at the k-th loci. 
Each variant is assumed to be biallelic. Suppose 
m of the k genotypes h hc

m
c

1 , ,  are common and l 
of them h hr

l
r

1 , ,  are rare (m + l = k). Each of the 
observed hi is one of the ( , , ) :h h Hc

m
c c

1  =  or one of 
( , , ) : ( , , )h h H i nr

l
r r

1 1 = = .
Let I be the indicator function. The saturated 

model would be
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where αj is the effect of j-th associated CV hj
c;λ  

is the accumulated effects of the associated RVs; 
β = (β1, … βk)′ is the effects of all the covariates, 
and the ∈i’s are i.i.d. with E(∈i) = 0 and Var(∈i) = σ2, 
which is unknown and is estimated. We model the 
effects of all the rare variants with a single param-
eter λ, instead of modeling each of the individual 
effects with the λj’s as suggested by others.9 To sim-
plify notations, let α = (α1, …, αm), θ = (µ, λ, α, β′)′, 
1n = (1, …, 1)′ of length n, 0n = (0, …, 0)′ of length 
n, In be the identity matrix of dimension n, Z = (1n, 
U, V, X), and ∈ = (∈1,…,∈n)′, where U = (u1, …, un)′, 
V = (vij)1#i#n;1#j#l, 1( , , )́ ,nX X X= ′ ′

 with

 u I h h i n v I h hi i j
r

ij i j
c

j

l

= =( ) =( ) = =
=

∑ 1
1

, , ( ). and

Then (1) is re-written as

 Y = Zθ + ∈, E(∈) = 0n, Var(∈) = σ2In. (2)

The proposed approach for the identification 
of CVs and RVs that are associated with the trait 
of interest uses the same basic technique as the 
SCARVA method.1 To fit the saturated model (2), 
the least squares estimate θ̂  of θ under model (2) 
is

 ( ) 1ˆ ˆˆ ˆ ˆ, , , ( )Z Z Z Yθ µ λ α β −′= =′ ′ ′ ′

and the estimated variance is

 
( )22

1

1 ˆˆ ˆ ˆ, ,
2

n

i i i
i

iy y y z
n

σ β
=

= − =
− ∑

where ( )1, , ,i i i iz u v X= ′  is the i-th row of Z, and vi is 
the i-th row of V. The algorithm contains the follow-
ing steps.

Step 1: Analysis of CVs
Here we test the significance of the coefficient αj 
(j = 1, ..., m) of each CV separately. Of note, the 
least squares estimate is equivalent to the maxi-
mum likelihood estimate under the normal model. 
Let φ(⋅) be the density function of the standard nor-
mal distribution, and l(θ) be the log-likelihood of 
the data under φ(⋅). The hypothesis that the j-th CV 
is not associated with the trait is represented by 
Hj: αj = 0. Let z U V X z zj n j j j n− − − −= ( ) = ( )′1 1, , , : , , ,, ,  
where V−j is V with the j-th column removed, and let 

ˆ ˆˆ ˆ ˆ( , , ) ( )θ µ λ α β− − − − − − − −= = ′ ′j j j j j j j jZ Z Z Y  be the least  
squares estimate of θ µ λ α β− −= ′j j( , , , )′  under 
Hj, where α−j is α with the j-th component 
removed, and the estimation of variance under Hj is 

( )22
, , ,1

ˆˆ ˆ ˆ(1/( 2)) ,
n

j i j i j i j i ji
n y y y zσ θ− − − − −=

= − − =∑ .
Let χ1

2 be the centered chi-squared distribution with 
1 degree of freedom. If Hj is true, then, approximately,

 
2 2 2

1
ˆ ˆˆ ˆ2( ( , ) ( , )) ~ .j jl lθ σ θ σ χ− −−

Given a significance level of δ, if

 
2 2 2

1
ˆ ˆˆ ˆ: 2( ( , ) ( , )) (1 ),j j jl lθ σ θ σ χ δ− −Λ = − > −

we reject Hj. When χ δ1
2

1( )−  is the ( )1−δ -th upper 
quantile of χ1

2, we accept Hj. After testing all the αj’s 
(j = 1, ..., m), remove all the non-significant components 
of α (the reduced term will still be denoted by α). Let 
Hc be the collection of all the significantly associated 
CVs, and let V and Z denote their counterparts with the 
corresponding columns removed.  Re-fit the model in 
equation (2) with the current Z to get a new estimate 
of 1ˆ( ( ) )Z Z Z Yθ θ −= ′ ′ . Linear regression models are 
used to evaluate CVs (MAF $ 0.05) within a given 
region. Those CVs with P , 0.05 after Bonferroni 
correction are added to the covariate matrix.

Step 2: genetic coding of RVs
RVs (those with MAF , 0.05 and observed minor 
allele counts $ 5) are coded as dominant and recessive 
variables. For each coding, collapsed RV parameters 
are made from the union of all RVs (ie, all recessively-
coded RVs are collapsed, all dominantly-coded RVs 
are collapsed, and the two codings are summed to cre-
ate a set of additively-coded RVs, then collapsed).
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Step 3: Analysis of RVs
Associated RVs can either be positively or nega-
tively associated with the trait; let R+ and R− denote 
collections of these two types of RVs. The associa-
tion of the positively- and negatively-associated RVs 
are modeled using different coefficients. First, we 
test the statistical significance of each RV hj

r and its 
effect based on the Z estimated in Step 2. Let ′H j  
be the hypothesis that hj

r is not associated with the 
outcome. Similarly, let Z−j = (1n, U−j, V, X), where 
U u u u I h h i nj j j n j i i k

r

k k j

l
− − − −

= ≠
= ( ) = = =∑, , ,

,
, , ( ) ( , , ).1

1
1


′  
 
Let 1ˆ ˆˆ ˆ ˆ( , , , ) ( )j j j j j j j jZ Z Z Yθ µ λ α β −

− − − − − − − −= = ′ ′  
be the least squares estimate of θ under ′H j .
The variance under ′H j  is estimated as 

2 2
, , ,1

ˆˆ (1/( 2)) ( ) ,
n

j i j i i j i ji
n y y y zσ θ− − − − −=

= − − =∑  (the  
same notation was used in Step 2). The hypothesis 

′H j  is not nested within the full model, hence we can-
not use the chi-square test (as in Step 2). Instead a 
version of the Bayesian information criterion (BIC)10 
is used. Let mj be the number of associated param-
eters under ′H j , using this criterion. The model under 

′H j
 is preferred if l m nj j j( , ) ( / ) log ( )

θ σ− − −2 2  is the 
largest among all j = 1, ..., l. Here mj is the same for 
all values of j, thus, we pick the RVs hj

r’s as associ-
ated for those j’s where l j j( , )

θ σ− −
2  is larger than the 

 others. Let 2 2ˆ ˆ| ( , ) ( , ) | ( 1, ) ,j j jl l j mδ θ σ θ σ− −= − =





and δ δ= ∑−
=m jj

m1
1 . We reject ′H j  if there is a big 

 relative increase in δj, ie, if

 

δ
δ

γj
− > .

Based on Yuan et al,1 the following values for γ: 
γ = 1.3, and 1.5 to represent significant and very sig-
nificant, respectively.

If hj
r is significant by the above method, and 

ˆ ˆ
jλ λ− <  then removing hj

r resulted in underestimate 
of the total effect; thus we can deduce h Rj

r ∈ + .
Thus, we can identify all the positively and nega-

tively associated rare variants. Now let U U U= ′+ −( , ) , 
with U u u u I h h Un i i j

r
h Rj

r
+ + + + −

∈ +
= = = =∑( , , ) ( ),1  as   

( , , ) ( ) ,u u u I h hn i i j
r

h Rj
r1

− − −
∈

= =∑ − as V as after Step 2, 
Z U V Xn= ( , , , )1 ′ , λ = (λ+, λ−) and θ be the corre-
sponding components for Z.

Briefly, first, run regression models of the com-
bined RVs. Second, a reduced model of the RV 
is implemented by removing one RV at a time and 

 noting the λ and log likelihood values for the reduced 
models. Then, calculate the λ difference and ratio of 
the likelihood of full model to that of the reduced 
model with one of the RV removed at a time. If the 
ratio of the log likelihood of the full to the reduced 
models is $1.31, the RV is considered to be associ-
ated with the trait. If the λ difference between the full 
and the reduced model is positive, the excluded RV is 
negatively- associated; otherwise the RV is positively-
associated.

Step 4: Combining associated RVs
Combine all positively-associated RVs into one 
group, with coefficient λ+, and H+, and λ− and H− for 
all the negatively-associated RVs. Hc is the set of all 
significantly-associated CVs. The final model is

y I h h I h h

I h h X

i i j
r

i j
r

h Hh H

j i j
c

i

j
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j
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= + = + =
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∑∑µ λ λ

α β
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∑ i

h H

i n
j
c c
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 (3)

Step 5: Final model
Fit the final linear regression model (3), and evaluate 
the positively- and negatively-associated RVs, along 
with the significantly-associated CVs. Let + : λ+ = 0; 
− : λ− = 0, and j : αj = 0 for h Hj

c c∈ .  Chi-squared test 
statistics can be used to find and report the P-values 
of the null hypotheses.

Type I error and power 
Let H0 : λ = αj = 0, (j = 1, ..., m) be the null hypothesis 
that there is no association of the variants. Let θ̂  be 
the MLE of θ under the full model, σ̂ 2  be the cor-
responding variance estimator. θ̂0 be the MLE of θ 
under H0, and σ̂2

0 be the corresponding variance esti-
mator. When H0 is true, we have, asymptotically,

 
2 2 2

0 0 0 1
ˆ ˆˆ ˆ: 2( ( , ) ( , )) ~ ,ml lθ σ θ σ χ +Λ = −

where χm+1
2

 is the chi-squared distribution with (m + 1) 
degrees of freedom. Thus, assuming the data is gen-
erated under H0, for a given significance level δ, the 
type I error is approximated by
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 γ γ δ χ δ δ= = ≥ − ≈+( ) ( ( )) .PH m0 0 1
2 1Λ

Thus, the test is asymptotically unbiased.
The power will depend on the magnitude of the 

effect size. Let 2 2 2 2
1 ˆ( )/mη λ α α σ= + + +

, and Λ0 
as given above. Assuming the data are generated not 
from H0, but from H1, then asymptotically,

 Λ0 1
2~ ,,χ ηm+

where χ ηm+1
2

,  is the chi-squared distribution with 
(m + 1) degrees of freedom (where m is number of 
associated CVs) and non-centrality parameter η. The 
power for a given δ at η is approximated by   
 

ρ ρ δ η χ δ
χ χ δη

= = −
≈ −

+

+ +

( , ) ( ( ))
( ( )).,

P
P

H m

m m

1 0 1
2

1
2

1
2

1
1

Λ $

$ 

For a given δ and η, ρ(δ, η) can be determined 
using a table of the non-central chi-squared  distribution. 
 Figure 1 gives the ρ(δ, η) values when η goes from 1 to 
20, δ = 0.05, 0.025 and 0.01, and m = 2, 4, 6, 8, and 10.

simulation study
We conducted a range of simulations based on a 
set of 4,000 observed quantitative traits, covariates, 
and corresponding alleles within a given region; 
for brevity, we present the results from one of these 
simulation exercises. Ten CVs and 10 RVs were 
simulated, with frequencies of (p; q) = (p1, ..., p10; 
q1, ..., q10) = (0.075, 0.115, 0.130, 0.060, 0.220, 0.085, 
0.105, 0.050, 0.015, 0.095; 0.008, 0.007, 0.006, 
0.005, 0.005, 0.008, 0.009, 0.007, 0.008, 0.009), 
where p1, … , 10 denote the frequencies of CVs1 to 10, 

and q1, … , 10 denote the frequencies of RVs1 to 10. For 
the RVs, let Hr = R+ ∪ R−, with R h h hr r r+ = { }2 3 10, ,  
(representing all positively-associated RVs) and 
effect sizes ( , , ) ( . , . , . ),λ λ λ2 3 10 0 42 0 52 0 62+ + + =  and with 
R h hr r− = { }5 8,  (representing all negatively-associated 
RVs) with effect sizes ( , ) ( . , . )λ λ5 8 0 53 0 49− − = − − . For 
the CVs, we define the collection of associated vari-
ants as H h hc c c= { }3 7, , with effects α3 = 0.45, and 
α7 = 0.50, thus αj = 0 (j ≠ 3, 7). Covariates are con-
tained in X = (x1, x2, x3) = (gender, age, Body Mass 
Index (BMI)), where gender has the value of 0 or 1 
with 0.5 probability of each, age (years) is uniformly 
distributed [10,70], and BMI values are uniformly 
distributed [12,42]. The effect sizes of covariates are 
β = (β, β2, β3) = (0.0167, 0.008, 0.120). Given the 
genotypes and covariates, the quantitative trait fol-
lows the normal N (1.5, 2) distribution.

Using SCARVAsnp, the joint analysis detected 
significant associations for two CVs (v3 and v7, 
P , 0.0001 for both), positively-associated RVs 
(u2, u3, u10, P , 0.0001) and negatively-associated 
RVs (u5, u8, P , 0.0001) as displayed in Table 1.

Data Analysis for DHs Application
We used the SCARVAsnp method to analyze the 
association of genotypes to plasma triglyceride (TG) 
in the Dallas Heart Study (DHS).11 In the DHS, 
 angtiopoietin-like (ANGPTL) genes 3, 4, and 5 were 
sequenced in 3551 participants. Multiple rare non-
synonymous (NS) sequence variants in these genes 
have been reported to be associated with lower plasma 
TG levels11 based on a Wilcoxon rank-sum test (with 
adjustments for age and gender). Using SCARVAsnp, 
the joint analysis detected significant associations were 
displayed in Table 2. For comparison, we analyzed the 
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Figure 1. Power (y-axis) and non-centrality parameters (X-axis) for different values of δ (from left to right, panels represent δ of 0.05, 0.025, and 0.01). 
note: The degrees of freedom (df) are indicated by the color of the lines.
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DHS data set using the recently  published SCORE-
TEST method2 as well as SKAT.8 We implemented the 
T5, Fp, VT, and Tmax variations of the SCORE-TEST for 
the analysis of the simulated and real datasets, but for 
brevity, we present only the results of the T5. The results 
of these analyses are displayed in Figure 2 (SCORE-
TEST) and Table 3.

Three CVs and 15 RVs in ANGPTL3 were  analyzed 
(Table 2). CV ANG3-008357 (MAF = 0.40) was associ-
ated with TG levels (P = 2.17 × 10−7 in the joint analysis). 
There were 3 RVs with ratio values $ 1.3: ANG3-
005308 and ANG3-005424 were negatively associ-
ated with TG (P = 2.86 × 10−7) and ANG3-004520 was 
positively associated with TG levels (P = 1.99 × 10−2). 
RVs ANG3-005308, ANG3-005424, and ANG3-
004520 also had the top scores (4.61, 2.73 and 2.10, 
 respectively) using the SCORE-TEST method, and 

variants in this gene were associated with TG using the 
SKAT method as well (P = 3.28 × 10−7).

Four CVs and 28 RVs were included in the analy-
sis of ANGPTL4 (Table 2). Two CVs (ANG4-010707 
and ANG4-009155) were associated with TG levels 
(P = 2.75 × 10−5 and 1.54 × 10−2, respectively). Five 
RVs (ANG4-006052, ANG4-009191, ANG4-001175, 
ANG4-010620, and ANG4-006175) had high ratio 
values (consistent with the top scores from SCORE-
TEST, Figure 2). All 5 RVs were negatively associ-
ated with TG levels (P-value = 1.00 × 10−20, Table 2). 
An association with this gene was also identified 
using the SKAT method (P = 3.78 × 10−23).

Four CVs and 30 RVs were included in the analy-
sis of ANGPTL5. No CVs were associated with TG 
levels. Four RVs (ANG5-014661, ANG5-011617, 
ANG5-022751, and ANG5-012530) were negatively 

Table 1. Association analysis of the simulated sequence data set using SCARVAsnp.

Type of variant sig. cVs/RVs single Joint analysis P-value
P/ratio β or λ (se)

v*(n = 10) v3 ,0.0001 0.46 (0.02) ,0.0001
v7 ,0.0001 0.47 (0.02) ,0.0001

u**(n = 10) Rare (+)
 u2 1.38
 u3 1.30
 u10 2.36 0.61 (0.04) ,0.0001
Rare (−)
 u5 1.92
 u8 1.69 −0.57 (0.05) ,0.0001

notes: Sig. CVs/RVs—statistically significant common and rare variants. *Total number of CVs analyzed; **total number of RVs analyzed. Rare 
(+): Positively-associated RVs. Rare (−): Negatively-associated RVs. β: regression coefficients for CVs. λ: regression coefficients for collapsed RV 
terms.
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Figure 2. The distribution of the ratio of the log likelihood values from SCARVAsnp (blue line), and the distribution of scores from SCoRe-TeST (red line) 
for rare variants in ANGPT4 in the dallas heart Study (dhS).
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Table 2. Results of the dhS sequence data for 3 lipid genes using SCARVAsnp.

Genes snps MAF sig. cVs/RVs P/ratio Joint model
ANGPTL3 ANg3-008357 0.40 Common 5.44 × 10−10 2.17 × 10−7

(v* = 3, u** = 15) ANg3-005424 0.01 Rare (−) 2.56
ANg3-005308 0.02 Rare (−) 5.21 2.86 × 10−7

ANg3-004520 0.01 Rare (+) 1.86 1.99 × 10−2

ANGPTL4 ANg4-010707 0.06 Common 1.50 × 10−7 2.75 × 10−5

(v = 4, u = 28) ANg4-009155 0.28 Common 5.09 × 10−3 1.54 × 10−2

ANg4-006052 0.03 Rare (−) 3.88
ANg4 009191 0.03 Rare (−) 4.44
ANg4-001175 0.04 Rare (−) 4.08
ANg4-010620 0.04 Rare (−) 3.98
ANg4-006175 0.04 Rare (−) 3.61 1.00 × 10−20

ANGPTL5 ANg5-014661 0.01 Rare (−) 1.69
(v = 4, u = 30) ANg5-011617 0.02 Rare (−) 2.67

ANg5-022751 0.02 Rare (−) 1.58
ANg5-012530 0.04 Rare (−) 1.32 2.20 × 10−4

ANg5-026244 0.01 Rare (+) 3.22
ANg5-012581 0.01 Rare (+) 2.59
ANg5-017106 0.03 Rare (+) 5.58 6.66 × 10−6

notes: *Total number of CVs analyzed; **total number of RVs analyzed. Rare (+): Positively-associated RVs. Rare (−): Negatively-associated RVs.
Abbreviations: DHS, Dallas Heart Study; Sig. CVs/RVs, statistically significant common and rare variants; P/ratio, P values for CVs or ratio values for RVs.

Table 3. Results of simulated and dhS data comparing SCARVAsnp, SCoRe-TeST, and SKAT.

Data sets Total # of snps scARVAsnp scORe-test (T5***) sKAT****
Simulated v* = 10 v3 , 0.0001 2.02 × 10−66

v7 , 0.0001
u** = 10 Rare (+) , 0.0001 0.000044

Rare (−) , 0.0001
ANGPTL3 v = 3 ANg3_008357 = 2.17 × 10−7 3.28 × 10−7

u = 15 Rare (+) = 1.99 × 10−2 0.008470
Rare (−) = 2.86 × 10−7

ANGPTL4 v = 4 ANg4_010707 = 2.75 × 10−5

ANg4_009155 = 1.54 × 10−2
3.78 × 10−23

u = 28 Rare (+) = N/A 0.000001
Rare (−) = 1.00 × 10−20

ANGPTL5 v = 4 P-value . 0.05 2.01 × 10−7

u = 30 Rare (+) = 6.66 × 10−6 0.015066
Rare (−) = 2.20 × 10−4

notes: *Total number of CVs analyzed; **total number of RVs analyzed; ***P-value for the set of RVs with MAF , 5%; ****P-value for the set of CVs and RVs.
Abbreviation: dhS, dallas heart Study.

associated (P = 2.24 × 10−4), and 3 RVs (ANG5-
026244, ANG5-012581, and ANG5-017106) were 
positively associated with TG levels (P = 6.66 × 10−6; 
Table 2). The 7 RVs also received the top scores using 
the SCORE-TEST method, and this gene was also 
associated with TG when the SKAT method was used 
(P = 2.01 × 10−7).

While all of these methods were identified an 
association between each of these genes and TG, 

there are notable differences in the inferences pos-
sible given the output given from each method. 
SCARVAsnp provides a separate P-value for the 
union of all  positively-associated RVs, the union 
of all  negatively-associated RVs, and for each CV 
(Table 3). In contrast, the SCORE-TEST provides 
one P-value for all RVs evaluated in the region, and 
SKAT produces a single P-value all CVs and RVs 
together.8 Thus, SCARVAsnp supports conclusions 
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about  associations at a finer level of detail than exist-
ing methods, and avoids the potential pitfalls of col-
lapsing variants that differ in their level of association 
(ie, including variants of no effect) or in the direction 
of that assocation.

Discussion
We have extended the haplotype-based simultaneous 
common and rare variant analysis (SCARVA) method 
to be used with marker-level data (SCARVAsnp). The 
method is easy to use and could be computationally 
efficient, as illustrated in the analysis of simulated and 
real datasets.

In general, RV analysis is challenged by a low number 
of observations with the relevant genotype, and the 
resulting decreased power to detect  associations. To 
solve this problem, grouping strategies have been 
used, which increase the number of observations 
with relevant genotypes and reduce the number of 
tests needed by evaluating collapsed markers simul-
taneously. It is known that not all RVs within a given 
region have an effect, grouping all RVs regardless of 
effect may produce an unsatisfactory signal-to-noise 
ratio. Incorporating information from prior studies or 
background population variation to grouping strate-
gies has been suggested.12 In practice, it is unlikely 
to find this information for a particular disease in a 
specific population, of significance given that rare 
variation is less shared across populations than is 
common variation.3,13 The present method is imple-
mented in three stages to deal with issues above. 
First, RVs are collapsed and the log-likelihood of a 
model with this collapsed term is compared to the 
log likelihood of a model with a collapsed term that 
excludes one of the RVs. After each of the RVs has 
been evaluated in this manner, the RVs for which the 
reduced model does not significantly differ from the 
full model are excluded from the analysis as having 
no effect. Secondly, RVs are grouped according to 
the direction of association, with separate groups for 
positively- and negatively-associated RVs. Thirdly, 
the group of positively-associated RVs, the group 
of negatively-associated RVs, associated CVs, and 
covariates are analyzed together in a joint analy-
sis. This strategy significantly reduces the number 
of tests, resulting in a large number of degrees of 
freedom. Our method identified the same RVs as 
were identified using the SCORE-TEST method for 

a simulated and a real data set, indicating that the 
method is as accurate as the SCORE-TEST method 
for RVs.

In our simulation, CVs (v3 and v7) explained 24% 
of the total variance, while positive and negative RVs 
explained only 6% of the total variance alone (com-
bined, CVs and RVs explained 29% of total variance). 
These findings suggest that the combined analysis of 
RVs and CVs may be important in explaining the 
so-called missing heritability from GWAS analyses. 
A benefit of SCARVAsnp for RV identification is 
that it treats CVs as covariates, acknowledging the 
potential contribution of both types of variation in the 
outcome. Future work will focus on the interaction 
between CVs and RVs at different levels of linkage 
disequilibrium.

conclusions
The modified SCARVA method (SCARVAsnp) com-
bines rare variants (RVs) for association analysis to 
avoid the problem of low number of observations 
with relevant genotypes. It eliminates variants with 
no effect within a given region, separately analyzes 
positively- and negatively-associated RVs, and allows 
the adjustment for common variants and covariates. 
SCARVAsnp was used to analyze simulated and well 
known data sets. In all cases, it identified the RVs that 
produced the highest scores in the SCORE-TEST, 
while eliminating the costly effect of analyzing mark-
ers with no clear association with the trait of inter-
est. Notably, and in contrast to the SCORE-TEST and 
SKAT, SCARVAsnp provides P-values for the union 
of all positively- and all negatively-associated RVs 
separately.
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