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Abstract: In many applications that include direct human involvement such as control of prosthetic arms, athletic training, and studying 
muscle physiology, hand force is needed for control, modeling and monitoring purposes. The use of inexpensive and easily portable 
active electromyography (EMG) electrodes and position sensors would be advantageous in these applications compared to the use of 
force sensors which are often very expensive and require bulky frames. Among non-model-based estimation methods, Multilayer Per-
ceptron Artificial Neural Networks (MLPANN) has widely been used to estimate muscle force or joint torque from different anatomical 
features in humans or animals. This paper investigates the use of Radial Basis Function (RBF) ANN and MLPANN for force estimation 
and experimentally compares the performance of the two methodologies for the same human anatomy, ie, hand force estimation, under 
an ensemble of operational conditions. In this unified study, the EMG signal readings from upper-arm muscles involved in elbow joint 
movement and elbow angular position and velocity are utilized as inputs to the ANNs. In addition, the use of the elbow angular accelera-
tion signal as an input for the ANNs is also investigated.
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Introduction
In applications, such as control of prostheses,1,2 sports 
medicine3–5 or ergonomic design analysis,6 the mea-
surement of muscle or limb force is required. The use 
of force sensors for interface in normal operation is 
often impractical or inconvenient for direct measure-
ment of forces. Additionally, the high cost of com-
mercially available force/torque sensors makes the 
alternate method of force estimation from a group 
of muscles using electromyography (EMG) signals, 
which requires only comparatively inexpensive elec-
trodes, very attractive.7 The estimated force/torque 
can also be used for research in biomechanics and 
muscle physiology.8,9

The torque induced at each body joint is generated 
by muscle actuators driving the motion of that joint. 
The generated force in muscles is caused by two pro-
cesses; activation dynamics and muscle contraction 
dynamics.10 Muscle contraction dynamics include 
the mechanical properties of muscle tissues and ten-
dons, which are expressed as force-length and force-
velocity relations. The activation dynamics include 
the voluntary and non-voluntary excitation reflex sig-
nals and motor unit recruitment level in muscle. It is 
well-known that regardless of fatigue, the generated 
torque in each joint is dependent on muscle activa-
tion level (MAL) and joint angle when in a stationary 
position.11,12 When in motion, joint torque is also a 
function of joint angular velocity.13 Therefore, joint 
torque (and force) can be predicted using EMG sig-
nals, and joint angle and velocity measurements. In 
this work, it is assumed that the wrist and shoulder 
angles are fixed. Thus, hand force can be determined 
directly from elbow torque.

In the past, parametric and non-parametric model-
based approaches have been proposed for muscle force 
or human joint torque estimation using EMG signals. 
Parametric approaches have used the Hill muscle 
model,8,9,14 which takes muscle MAL as an input and 
outputs the generated muscle force based on mus-
cle length and contraction speed.13  Musculoskeletal 
kinematic models15 and inverse-dynamics models16 
have also been employed to derive joint torque. Non-
parametric model-based methods use polynomial 
functions,1,10,17 linear regression,18  Volterra-series,19 
Fast Orthogonal Search (FOS),9,20 Parallel Cascade21 
or ANNs.22–27 The advantage of non- parametric esti-
mation of the EMG-force relationship is that it does 

not require any knowledge about muscle and joint 
dynamics. Moreover, they often have the capability 
of accounting for nonlinearities in the EMG-force 
relationship.

Clancy and Hogan17 proposed the use of a third-
order polynomial to estimate the generated torque in 
the elbow joint under isometrica and quasi- isotonicb 
conditions. An off-line least squares method was 
employed to identify the polynomial coefficients. 
Misener and Morin used an exponential force/ velocity 
function in addition to a third-order polynomial model 
to estimate the elbow torque.10 The prediction was 
accurate within 10% for elbow flexion and extension 
under isotonicc conditions. Clancy et al. used a 15th-
order linear finite impulse response (FIR) model to 
map EMG to torque errors within 7.3% of maximum 
voluntary contraction during isometric contractions.18 
Xu et al.19 and Hashemi et al.21 employed second-
order Volterra series and parallel cascade methods to 
find the EMG-Force relation during isometric flex-
ion of the human elbow joint. Mobasser et al.20 used 
the FOS, a nonlinear identification method, to map 
EMG to force. They proposed that the FOS-based 
force observer would select its pre-determined basis 
functions from a pool of candidate functions con-
sisting of groupings of linear, cross and square root 
terms and sinusoidal functions. Later, Mountjoy et al. 
incorporated Hill-based muscle model as the can-
didate functions for more accurate force prediction 
and for estimating upper-arm muscle physiological 
parameters.9

The first use of ANN for EMG-based force 
estimation was reported by Sepulveda et al. where 
they proposed an MLPANN to estimate joint moments 
in human gait.22 The EMG signals from 16 leg mus-
cles were fed to the ANN to estimate joint moments 
of the hip, knee and ankle. Savelberg et al. employed 
MLPANN with a back propagation training method for 
the estimation of a cat leg dynamic tendon force using 
recorded EMG data and kinematic information (joints 
angle and velocity).23,25 The ANN could estimate non-

aAn operational condition involving muscular contractions against resistance 
without movement such that the length of the muscle does not change, ie, con-
stant joint angle.
bAn isometric condition with very low constant velocity movement.
cAn operational condition at which opposing muscles contract and there is con-
trolled movement. In other words, tension is constant while the lengths of the 
muscles change. In our case, a constant force is applied to joint while joint angle 
varies.
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trained data with the root mean square error (RMSE) 
of less than 15%, under dynamic contraction condi-
tions. Luh et al. utilized the EMG signals collected 
from the biceps and triceps, and elbow joint angle and 
velocity in an MLPANN to estimate the elbow joint 
torques under isokineticd contractions.24 In a hybrid 
approach, Wang et al.27 employed an MLPANN with 
two hidden layers to predict the MAL from the EMG 
signal recorded from the agonist and antagonist elbow 
muscles. The predicted MAL was then input to a Hill 
muscle model to calculate the generated muscle force. 
Finally, the estimated muscle force was employed in an 
elbow joint geometric model to predict the joint torque. 
Since the actual MAL was not available, an adjusted 
back-propagation method was used to train the ANN. 
The use of MLPANN, such as in the above, has been 
reported for force estimation on various anatomies of 
humans or animals under single or often dissimilar 
operational conditions.

Radial Basis Function ANN (RBFANN) has mostly 
been used for EMG signal classification.28,29 It has also 
been used along with acceleration and force data col-
lected during walking to replicate EMG signals from 
major lower limb muscles for gait analysis.30 RBFANN 
has also been used to identify changes in the truck 
muscle stiffness during a sudden load.31 To the authors 
best knowledge, RBFANN has been reported only for 
predicting muscle forces using evoked electromyo-
gram (EEMG) signals.32,33 In this work,e RBFANN 
will be employed in addition to the MLPANN archi-
tecture on the data collected from a single human 
anatomical feature, i.e. elbow joint. The performance 
of the two ANN architectures will be experimentally 
studied and compared on a 1-DOF exoskeletal robotic 
testbed under the same set of operational conditions, 
i.e. isometric, isotonic and light load.

Methods
In this paper two major architectures are utilized: 
MLPANN and RBFANN. These two ANNs are both 
known as universal approximators for nonlinear input-
output mapping, which are briefly introduced.35,36

dAn operational condition at which the speed of movement is usually controlled, 
e.g. constant speed, allowing maximal force to be exerted throughout the full 
range of movement.
eA preliminary version of this work appeared in [34].
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Figure 1. (A) MLPANN architecture; (B) rBFANN architecture.

Multilayer Perceptron ANN (MLPANN)
MLP network architecture mimics the structure of 
the neural networks in the human nervous system. It 
consists of an interconnection of multiple layers of 
neurons (Fig. 1A) and can have more than one hidden 
layer. In the MLP architecture (as shown in  Fig. 1A), 
all the outputs in each layer are connected to the inputs 
of neurons in the next layer. Moreover, each node has 
a bias input. The sigmoid function f (x) = 1/(1 + e−x) is 
often utilized as the activation function, which behaves 
like a smoothed step function. To train the network 
for the corresponding weight for each node, the back-
propagation method is used. In this method, the error 
measure for an input vector x is considered to be

 E = ||e|| = ||y – ŷ|| (1)

with y as the desired output, and ŷ as the output of the 
network, where ||⋅|| is the vector Euclidean norm and 
e is the output error. To train the network, the error 
measure E is minimized by employing an optimiza-
tion algorithm such as Gradient decent, Conjugate 
gradient, Quasi-Newton or Levenberg Marquardt 
(LM).37 The LM method is commonly used in situ-
ations involving function approximations with less 
than a hundred neuron weights where accuracy is 
paramount.37 The LM training method can be imple-
mented in the MATLAB Neural Network Toolbox 
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using the TRAINLM function. The training algorithm 
can be written as
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at the kth time iteration, where W is a vector of all 
network weights, G is the gradient vector of the net-
work errors and d is an adjustable scalar. When d is 
zero, the algorithm is Newton’s method, whereas for 
large d the algorithm becomes a gradient descent 
algorithm.

radial Basis Function ANN (rBFANN)
On the other hand, an RBF network is constructed 
of a summation of a number of exponentially decay-
ing localized nonlinear functions (e.g. Gaussian), 
approximating the input-output mapping glob-
ally (Fig. 1B). An RBF network has a single hid-
den layer, as opposed to an MLP network that can 
have more than one hidden layer. The output of an 
RBFANN with N nodes, as shown in Figure 1B, is 
expressed by
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where wi is the weight of the output layer for neuron i. 
f (⋅) is an RBF function that decreases (or increases) 
monotonically as the distance between the input x 
and centroid point µi increases. The parameter vector 
µi = (µi1, …, µiM) describes the centroid coordinates 
of the ith node of an RBF network, where M is the 
dimension of input x.

The Gaussian fg with constant σ described by

 f u eg
u( ) ( / )= − σ 2  (5)

is the most commonly used radially symmetric 
function. To train for the centroid and output weight 
for all nodes, that is

 w1, …, wN, µ1, …, µΝ (6)
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Figure 2. Schematics of the proposed ANN for hand force estimation. 
(A) Training phase; (B) Operation phase.

the error measure (1) is minimized by using an optimi-
zation method, such as the gradient descent method. 
The optimization is initiated with a random choice of 
parameters.

RBF is generally faster in the learning process and 
insensitive to the order of presentation of training data. 
As a drawback, the number of neurons in RBF, which 
is necessary to reach a desired accuracy, may be large.

Ann-based Hand Force Observers
Figure 2 illustrates the schematics of the MLPANN 
and RBFANN force observers. The inputs to the 
ANNs are the EMG signals recorded from the upper-
arm muscles (biceps brachii, triceps brachii, brachia-
lis, and brachioradialis) and the elbow joint angle and 
angular velocity. The network output is the estimated 
hand force. The neural networks are trained off-line 
using the network input data and measured force col-
lected under different conditions, as will be explained 
in Section 4 (Fig. 2A). The trained networks will then 
be used for force estimation for real-time applications. 
The use of elbow joint angular acceleration as an input 
to ANN will also be explained in Section 5.

One important parameter of choice is the number of 
nodes in each layer. By increasing this number, train-
ing performance improves at the cost of an increase in 

http://www.la-press.com


A comparative approach to hand force estimation using neural networks

Biomedical Engineering and Computational Biology Insights 2012:4 5

electromagnetic interference. The recorded raw 
EMG data is passed through a linear-envelope 
filter.38 The bias of the recorded EMG is detected 
by applying a moving average filter, and is removed 
from the original signal. The resulting signal is then 
rectified and passed through a second moving aver-
age filter with a size of 300. This produces 150 ms of 
delay in the final EMG signal. The filter length and 
the resulting delay are chosen to match the average 
delay between the collected EMG signal (or motor 
nerve excitations) and the force generated by the 
muscle.13

Experimental procedure
Electrode attachments
EMG signals are collected from the four muscles 
biceps, tricps, brachialis and brachioradialis. Due to 
the size of the biceps and triceps muscles multiple 
electrodes are placed at different locations for more 
accurate results. The subject’s shoulder and wrist are 
placed in the arm braces ensuring that the upper-arm 
is stabilized and the elbow joint axis coincides with 
the bar rotation axis. The shoulder is stabilized at 90° 
abduction, 15° horizontal adduction and neutral prona-
tion-supination. Subjects are asked to relax all muscles 
not directly involved in elbow flexion/extension.

EMG normalization
The level of EMG readings is dependent on skin 
impedance at the electrodes location, which may 
vary between experimental sessions. To compen-
sate for this variability, the EMG readings have to 
be normalized for each recording session and after 
electrode placement. A widely used EMG normaliza-
tion method is the Maximum Voluntary Contraction 
(MVC) method,13 in which the subject is asked to 
maximally contract the muscle under study. The cor-
responding EMG reading is used for normalization of 
EMG readings from that muscle. The MVC method 
was originally employed by mobasser, et al. for EMG 
normalization in the but did not produce satisfactory 
estimation results.20 In fact, using the MVC method 
raised concerns about whether or not subjects gener-
ated the true maximum force.13

As an alternative approach, at the beginning of each 
experiment, 6 Nm torque is applied by the robotic arm 
to the elbow joint in the flexion and extension direc-
tions, while the subject is asked to keep the elbow angle 

EMG electrode

Force sensor

Motor

Figure 3. The 1-DOF experimental setup (QArm1).

training time. On the other hand, increasing the number 
of nodes does not necessarily help the network gener-
alization; hence the network may not truly estimate the 
hand force. Tests will be conducted in Section 5 to find 
the number of nodes for both RBFANN and MLPANN 
resulting in the best achievable generalization for the 
networks for real-time applications with high accuracy.

Experimental Setup and Procedures
Experimental setup
Figure 3 shows the Queen’s University Arm (QArm1), 
used for the implementation and comparison of the 
two MLPANN and RBFANN based force observers. 
The apparatus is composed of a platform accommo-
dating a Maxon DC motor, a 4:1 cable-driven power 
transmission system, and an aluminum bar on which 
the subject’s arm is placed. In this design, the sub-
ject’s upper-arm is fixed in position with a brace and 
the wrist is placed in a second brace attached to a 
pivoting bar through an ATI Gamma 6-DOF force/
torque sensor. The axis of rotation of the bar pivot 
is aligned with the elbow’s axis of rotation. A high 
resolution encoder signal provides the motor shaft 
angle, which is proportional to the elbow angle. The 
resolution of elbow angle measurement is 1/4000 of a 
degree. The apparatus can apply up to 6.32 Nm con-
tinuous torque to the elbow joint, which is mapped to 
about 16 N at the wrist. The Quanser WinCon/Ven-
turcom RTX real-time control system is employed 
for data collection and control of the apparatus at the 
rate of 1 kHz.

To collect EMG signals from upper-arm muscles, 
active electrodes containing differential amplifiers 
are employed to cancel the effect of  environmental 
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at 0° flexion.f The average value of the recorded EMG 
is used for the normalization of the collected EMG 
data from the biceps and brachioradialis in flexion 
and from the lateral triceps in extension. This method 
has shown better results in comparison to the MVC 
method. In the case of operation outside a laboratory 
environment where QArm1 or any other manipulan-
dum is not available, the subject can be asked to hold 
a specific weight for EMG normalization.

Experiments
In each experiment, after normalization, the elbow 
joint kinematics and muscle EMG data are recorded 
under the following sequence of conditions: 

Light Load
No torque is applied to the elbow joint by the QArm1 
and the subject is asked to move her/his arm in a 
random pattern for 50 seconds. The only load that is 
sensed by the subject is the light inertia of QArm1.

Isotonic
QArm1 applies a constant torque to the subject’s elbow 
joint while the subject moves her/his arm in a random 
pattern. Equivalent wrist force level of 5 N and 10 N 
are applied at the joint both in flexion and extension 
directions for a total duration of 50 seconds.

Isometric
The subject performs a number of isometric flexion 
and extension tasks at the elbow position of 0° and 30° 
degrees, while QArm1 is held fixed by the subject’s 
free hand. The level of force applied by the subject is 
variable and arbitrary.

For this research, EMG data were collected from 
the right arm of two female and six male subjects 
with an average age of 27 and a standard deviation 
of 5 years. The subjects had no known neuromus-
cular deficits in their right shoulder, arm or hand. 
Informed consent was received from each subject 
and the experiment protocol was explained to each 
subject prior to the experiment. For each experiment 
type, subjects were tested in three sessions each. In 
each recording session, the above described experi-
ment was conducted four times and four sets of data 
were recorded. The three sessions were conducted at 

fThe zero angle refers to the posture at which the forearm is perpendicular to 
the upper-arm.

three different times to study the intra-session effect 
of variations in human subject physiology and EMG 
electrode placement. The outlier data that were mainly 
caused by faults in EMG readings, due to amplifier 
saturation or electrode detachment from skin, were 
excluded. Therefore, for each experiment type, up to a 
maximum of twelve data sets were collected and kept 
for the analysis of each subject performance. Sample 
data collected from subject F1 performing experiment 
type I is shown in Figure 4.

Experimental Results
Network settings
In MLPANN, a hyperbolic tangent sigmoid function and 
linear function were used as activation functions for hid-
den layers and output layer nodes, respectively. Before 
training network, the input and output data in each train-
ing set were normalized to [−1 1] to correspond to a 
[minimum maximum] range of the data. Moreover, the 
data from the validation sets were normalized by the 
[minimum maximum] range of the training set. Since the 
RBFANN activation function is Gaussian and does not 
saturate, the inputs of RBFANN were not normalized. 
To avoid overtraining,24 the collected data were down-
sampled by 10 for both the MPLANN and RBFANN.

To avoid networks from being trapped in local min-
ima in training processes, ten networks were trained 
for 1000 epochs with a very small target training goal 
(smaller than the lowest estimation error that the net-
works could meet). The best performing network was 
chosen and trained for an additional 1000 epochs. The 
codes were implemented in MATLAB on a 3GHz 
Pentium 4 CPU.

Evaluation criteria
To validate the trained networks, each network 
was evaluated against all data sets with the three 
 criteria, Relative Mean Square Error (RMSE), Cross-
 Correlation (CC) and Average Absolute Error (AAE) 
as formulated below
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where yi and ŷi are the measured and the estimated 
hand forces, respectively, and n is the number of 
samples. Cross-correlation is a measure of similarity 
between y and ŷ of the signals regardless of scaling. 
The closer the value is to 100, the higher the level 
of similarity between signals.23 In conditions such 
as light load in which measured force is very small, 
RMSE becomes very large, hence AAE serves as a 
better performance index than RMSE.

Number of nodes
Different number of nodes were examined for both 
types of networks. Two hidden layers were chosen 

for MLPANN since it is proven that a network type 
with two hidden layers can approximate any con-
tinuous function.35 The average RMSE for validation 
results for a different number of nodes in the first and 
second layers for subject M1 are shown in Figure 5. 
MLPANN with two hidden layers, 4 nodes in the first 
layer and 3 nodes in the second layer demonstrated 
the best generalization and the most consistent per-
formance. For RBFANN, as shown in Figure 6, 
although the training average RMSE is at its minima 
for a node number higher than 3, the average RMSE 
for validation which determines network generaliza-
tion is a minimum within the range of 30–50 nodes. 
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Figure 4. Sample data set recorded from subject F1 performing experiment type I. 
note: The EMG data are expressed in v/v since they are normalized.
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placed on the belly of the triceps brachii long head, 
lateral head and medial head, and two electrodes 
on the belly of the bicep brachii short head and 
long head. The locations follow the SENIAM39 rec-
ommendations, which are on the line between the 
 acromion and the fossa cubit at 1/3 from the fossa 
cubit for the biceps and at 50% on the line between 
the  acromion and the olecranon for the triceps. To 
combine the measured electrodes data and achieve 
the best overall EMG, the processed and normal-
ized EMG signals from electrodes corresponding 
to a specific muscle (e.g. Biceps) were averaged at 
each instance of time.

The ANNs provided better performance when 
averaged EMG from multiple electrodes were uti-
lized instead of a single electrode for biceps and tri-
ceps muscles. The validation results after training on 
full-length data for all subjects using single-electrode 
and multiple electrodes EMG data are displayed in 
Table 2. It can be observed that the use of multiple-
electrodes improved force estimation performance 
by 10%–70%, verifying the results reported in.40 
 Therefore, in this paper, multiple-electrode EMG 
data from the biceps and triceps muscles have been 
collected and input to ANNs.

Estimation results
The 12 data sets acquired from each subject across 
three sessions were used for training 12 networks. 
Each trained network was validated with the remain-
ing 11 data sets. The  network that provided the 
best validation and  generalization performance was 
recorded. Then the same procedure was conducted 
for the three segments of data corresponding to the 
three subtasks, light load, isotonic and isometric. 
Each subtask resulted in 12 networks out of which 
one was chosen for the best validation. The train-
ing and  validation RMSE, RMSE standard devia-
tion, AAE, CC and CC standard deviation results, 
averaged over all subjects, are presented in Table 3. 
The detailed training and validation RMSE, RMSE 
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Table 1. Average training time for MLPANN and rBFANN 
architectures.

MLpAnn RBFANN
With acceleration 52.26 sec 12.43 sec
Without acceleration 50.98 sec 8.89 sec

Therefore, 40 nodes are chosen for the RBFANN 
network.

The training elapsed time for the two network 
architectures, trained with full-length data collected 
from experiment type I, is shown in Table 1. The 
results indicate that training RBFANN is approxi-
mately 5–6 times faster than MLPANN. The inclusion 
of the acceleration signal in ANN inputs increases 
the training time, with a larger effect on RBFANN. 
For real-time operations, the online calculations of 
ANN output takes a fraction of a second since it 
only requires a forward pass of inputs through the 
network.

Multiple electrodes vs. single electrode
In this work, multiple electrodes were used on 
biceps and triceps muscles. Three electrodes were 
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standard deviation, AAE for each subject are also 
presented in Table 4 in Appendix A.g The right-hand 
columns represent the result for each subtask based 
on training with the corresponding subtask of the data 
for the particular task.

The validation results for the isometric condition 
for both networks trained with full-length data are 
significantly better than those obtained under iso-
tonic and light load conditions. This can also be seen 
for subject F1 in Figure 7. In the light load condition, 
since the measured forces are significantly smaller, 
the RMSE values are very large. Therefore, the AAE 
serves as a better performance measure. In general, 
looking at the RMSE and CC values, both networks 
are unable to provide accurate estimation of hand 
force in light load. This is because under the light 
load condition the recorded EMG signals are small 
and as such not rich enough for training. The trained 
network with task subset data performs better since 
they are trained for the specific condition for which 
they are validated. This performance improvement 
can be observed by comparing the sub-figures in the 
left and the corresponding right-hand columns in 
Figure 8.

Comparing the performance of the two ANN 
architectures, RBFANN provides a better estimation 
for each subtask or all three tasks after full-length 
data training. However, MLPANN performs better 
when training is done for a specified subtask such 
as isotonic and isometric tasks. Adding acceleration 
as an input to ANN improves the RMSE and CC in 
the light load condition after training with subtask 
data, as shown in Figure 8 for RBFANN. The fre-
quency domain analysis results in Figure 9 verify the 
above results. It can be observed that RBFANN and 
MLPANN have close performance in isotonic and 
isometric conditions, whereas RBFANN has supe-
rior performance after training with full-length data 

gDue to space limitations, the detailed results of CC and the standard deviation 
of CC for each subject is not included.

and when acceleration signal is used as an input in 
the light load condition.

The results pertaining to the best  performing archi-
tecture for each subject, trained with full-length and 
subtask data, are emphasized in Table 4. For the best 
performing network, validation for full-length data 
training was RMSE , 32% (CC . 86%), for iso-
metric training RMSE , 18% (CC . 91%), and 
for isotonic training RMSE , 26% (CC . 84%). 
For light load training, RMSE , 40%, AAE 
[the actual indicative in this case] , 1.6 N (CC . 76%).

It is observed that none of the examined architec-
tures is dominant in terms of performance.  Moreover, 
the networks provide better performance when 
trained with subtask data. Therefore, authors suggest 
a switching scheme that chooses the best network out 
of a bank of subtask-trained networks based on the 
current operating condition. The switching decision 
can be made by a neural network or a neurofuzzy 
classifier that detects isometric, isotonic and light 
load states in real-time.

Discussion
As stated in the Introduction section, MLPANN 
has been reported for joint torque estimation.22–26 
Although the anatomies or experimental conditions 
are different from ours, in most of the cases, a gen-
eral comparison of the networks in terms of meth-
odology, network structure and performance would 
better put our approach and results into perspective. 
Almost all methods, including ours, use feedforward 
networks with error backpropogation learning algo-
rithm due to their simplicity. Song et al.26 however, 
use recurrent MLPANN to account for dynamic 
situations. The above models relate the EMG and/or 
joint kinematics to the joint torque. The methods that 
use single hidden layer22,24 has reported a large num-
ber of nodes from 10 to 32 in their hidden layer, and 
also large number of epochs in the order of 60,000 
to reach RMSE% or AAE comparable to the results 
that we have reported. Two hidden layer networks 

Table 2. Average rMSE (standard deviation) of the validation results over 11 data sets for rBFANN network trained with 
full-length data for single-electrode and multiple-electrode EMG readings.

subj. F1 subj. F2 subj. M1 subj. M2 subj. M3 subj. M4 subj. M5 subj. M6
Single-electrode 16 (3) 20 (7) 21 (6) 31 (15) 62 (64) 17 (5) 40 (11) 35 (18)
Multiple-electrode 14 (4) 11 (4) 7 (1) 9 (4) 32 (11) 14 (3) 24 (4) 20 (7)
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Table 3. Average rMSE (standard deviation) [AAE] and CC averaged over all subjects using the full-length and subtask 
data.

Full-length data set used for training Only subtask data used for training
Full-length Isometric Isotonic Light load  

(LL)
LL +  
accel.

Isometric Isotonic LL LL +  
accel.

Verification average for RMSE (standard deviation) [AAE]
rBF 16 (8) [7] 12 (6) [11] 34 (29) [6] [3] [3] 14 (9) [12] 17 (6) [4] [1.2] [0.9]
MLP 26 (15) [10] 15 (11) [10] 111 (43) [11] [5] [5] 12 (8) [9] 13 (7) [4] [1.1] [0.9]
Verification average for cross correlation (standard deviation)
rBF 93 (4) 95 (3) 88 (6) 57 (18) 47 (18) 94 (3) 90 (4) 72 (9) 85 (6)
MLP 85 (8) 93 (4) 54 (27) 27 (20) 23 (20) 94 (4) 92 (5) 75 (7) 80 (12)

note: The results for the best performing architecture are shown in boldface.

Table 4. Experiment type I results. Average of rMSE (standard deviation) [AAE] for validation using the full-length and 
subtask data.

Full-length data used for training Only subtask data used for training
Full-length Isometric Isotonic Light load 

(LL) 
LL +  
accel.

Isometric Isotonic LL LL +  
accel.

Sub. F1
 rBF 14 (4) [4] 11 (4) [6] 17 (8) [3] [2] [2] 11 (4) [6] 13 (4) [3] [1.3] [0.9]
 MLP 32 (6) [6] 12 (3) [9] 65 (81) [7] [5] [4] 9 (2) [1] 8 (2) [2] [1.3] [1]
Sub. F2
 rBF 11 (4) [6] 11 (5) [12] 8 (2) [3] [1] [2] 19 (3) [16] 9 (2) [1] [1.3] [0.7]
 MLP 31 (5) [10] 7 (2) [10] 118 (27) [12] [7] [6] 7 (1) [10] 4 (1) [2] [0.8] [0.7]
Sub. M1
 rBF 7 (1) [7] 5 (2) [11] 22 (11) [6] [3] [3] 9 (6) [14] 26 (11) [4] [1] [0.6]
 MLP 17 (6) [10] 11 (6) [15] 89 (16) [9] [6] [3] 9 (7) [14] 28 (15) [5] [1] [0.7]
Sub. M2
 rBF 9 (4) [6] 5 (2) [8] 27 (19) [6] [5] [3] 3 (1) [7] 17 (5) [5] [1] [0.8]
 MLP 17 (2) [9] 4 (2) [8] 97 (23) [12] [5] [3] 5 (2) [8] 13 (10) [4] [0.8] [0.9]
Sub. M3
 rBF 32 (11) [7] 22 (9) [13] 51 (41) [6] [5] [4] 18 (10) [11] 27 (16) [4] [1.8] [1.6]
 MLP 55 (11) [10] 32 (11) [14] 102 (23) [9] [7] [8] 29 (16) [4] 15 (10) [3] [1.8] [1.8]
Sub. M4
 rBF 14 (3) [7] 11 (3) [11] 20 (8) [4] [3] [3] 7 (2) [9] 17 (7) [4] [1.4] [1.1]
 MLP 23 (5) [8] 9 (3) [10] 98 (3) [10] [2] [2] 7 (3) [9] 10 (5) [3] [1.4] [1.1]
Sub. M5
 rBF 24 (4) [8] 21 (3) [14] 28 (13) [6] [2] [1] 33 (17) [17] 15 (5) [4] [0.7] [0.4]
 MLP 29 (2) [9] 14 (4) [11] 106 (11) [10] [2] [7] 9 (2) [9] 9 (7) [3] [0.6] [0.5]
Sub. M6
 rBF 20 (7) [10] 13 (4) [15] 99 (15) [10] [4] [4] 15 (6) [16] 15 (5) [4] [1.3] [0.8]
 MLP 5 (31) [17] 34 (25) [5] 210 (71) [15] [8] [6] 17 (9) [19] 21 (6) [6] [0.8] [0.7]
Average of verification results
 rBF 16 (8) [7] 12 (6) [11] 34 (29) [6] [3] [3] 14 ([12] 17 (6) [4] [1.2] [0.9]
 MLP 26 (15) [10] 15 (11) [10] 111 (43) [11] [5] [5] 12 (8) [9] 13 (7) [4] [1.1] [0.9]

use in the order of or less than 10 nodes and require 
significantly lower number of epochs (about 1,000) 
for training to avoid over-fitting and under-fitting. In 
terms of inputs, Sepulveda et al. use only the EMG 
signals to predict joint torque. However, it has been 
established that joint dynamics is also dependent on 

joint angular position and velocity. In fact, Song et al. 
demonstrate torque prediction improvement by up 
to three folds under dynamic conditions when kine-
matic data incorporated. Recent research, including 
ours, has reported the use of joint kinematic data as 
well. Savelberg et al. has argued that under dynamic 
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Figure 8. MLPANN and rBFANN validation results for subject F1 after training on full-length data (left) and subtask data (right).
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Figure 7. MLPANN and rBFANN validation results for subject F1 after training on full-length data.
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conditions the relationship between EMG and force 
is history dependent.25 Therefore, they use an array of 
10 to 30 data points preceding the instant of interest; 
As such the input layer in their networks contain up 
to 40 nodes. They have also argued that the number 
of nodes and the length of the EMG array depend 
on the desired level of generalization, whether it is 
intra-session or inter-session.

To improve the quality and reliability of the 
results we have taken a few measures as discussed 
in below. MAL is a function of excitation signal 
firing rate and recruitment of muscle fibers. The 
measured EMG is an ensemble of the Motor Unit 

Action Potentials (MUAPs) under the electrode and 
is heavily dependent on the electrode configuration, 
placement and signal pre-conditioning. Therefore, 
the recorded EMG is not an accurate representation 
of MAL. This factor and the stochastic property of 
EMG signals affects the repeatability of force estima-
tion based on EMG data. The position of electrodes 
and the fidelity of the EMG/MAL relation play an 
important role in the accuracy of estimations based 
on ANN.24 This is caused by existing crosstalk read-
ings from adjacent muscles. Therefore, active sensor 
locations should be selected to minimize the cross-
talk effect.22 Towards this purpose, as reported in 
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 Section 5,  multiple electrodes were utilized to record 
EMG signals from the biceps and triceps muscles. 
The results showed an improvement between 10% 
and 70% in estimation accuracy.

To further improve the fidelity of the EMG/MAL 
relation, a whitening filter.41 was employed. However, 
since the filter amplifies the higher frequency compo-
nent of the EMG signals, no significant improvement 
in estimation performance was observed. The history 
of EMG data (up to 10 samples) was also employed as 
input to the networks, but the results were inconclu-
sive and no consistent improvement was observed.

Another significant issue is muscle fatigue which has 
not been taken into consideration as the experiments 
were all conducted under non-fatiguing conditions. In 
addition, in anisometric motion, artifacts, caused by 
the movement of muscle under the electrode are often 
a problem. Since part of the hand force in motion is 
generated by hand dynamics and the dynamics of the 
grasped object, the inclusion of acceleration in the 
ANN inputs improves the performance (especially in 
free motion) as it has been observed in the results pre-
sented in Section 5.

In terms of applications, although the use of ANN 
for force estimation does not provide any insight on the 
joint dynamic model, it is suitable for  applications that 
only require joint torque or hand force for monitoring 
purposes, such as in the analysis of athletes activities, 
and for the control of prosthetic arms.

Conclusion
This paper investigates the use of two artificial neu-
ral network architectures RBFANN and MLPANN for 
force estimation, and compares the performance of the 
two methodologies for human hand force estimation 
under an ensemble of operational conditions; isomet-
ric, isotonic and light load. A new EMG normaliza-
tion method was employed as an alternative approach 
for MVC. The trained ANNs were able to predict the 
highly nonlinear relation between the joint parameters 
(EMG, angle and velocity) and the hand generated 
force. Use of multiple-electrode EMG reading from 
major muscles improved force estimation accuracy.

It was observed that both networks provide bet-
ter performance when trained with subtask data. The 
experiments with three subtasks showed that the best 
performing architecture for each subject can  generalize 
intra-session force estimation to a maximum RMSE of 

40%, 26% and 18% for light load, isotonic and isometric 
conditions, respectively. Moreover, ANN is able to esti-
mate the full-length data to a maximum RMSE of 40%. 
The experiments also showed that the performance of 
neither MLPANN nor RBFANN was dominant for all 
operating conditions. The training and validation results 
for both architectures for the isometric condition were 
significantly better than those for isotonic and light 
load conditions. RBFANN provided better estimation 
performance in the light load condition and MLPANN 
in the isotonic condition. The performance in light load 
condition improved significantly by including joint 
angular acceleration in the network inputs.

As none of the examined architectures proved to 
be dominant in terms of performance across all sub-
tasks, a switching scheme that chooses the best RBF 
or MLP network out of a bank of subtask-trained net-
works can be considered as an attractive alternative 
for enhanced force prediction. An alternative solution 
can be to combine the MLP and RBF for an assemble 
network to predict the joint torque, which may result 
in improved estimation by utilizing different features 
of the two networks.
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