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Abstract
Motivation: Triple-negative breast cancer (TNBC) is a heterogeneous breast cancer group, and identification of molecular subtypes 
is essential for understanding the biological characteristics and clinical behaviors of TNBC as well as for developing personalized 
treatments. Based on 3,247 gene expression profiles from 21 breast cancer data sets, we discovered six TNBC subtypes from 587 TNBC 
samples with unique gene expression patterns and ontologies. Cell line models representing each of the TNBC subtypes also displayed 
different sensitivities to targeted therapeutic agents. Classification of TNBC into subtypes will advance further genomic research and 
clinical applications.
Result: We developed a web-based subtyping tool TNBCtype for candidate TNBC samples using our gene expression meta data and 
classification methods. Given a gene expression data matrix, this tool will display for each candidate sample the predicted subtype, 
the corresponding correlation coefficient, and the permutation P-value. We offer a user-friendly web interface to predict the subtypes 
for new TNBC samples that may facilitate diagnostics, biomarker selection, drug discovery, and the more tailored treatment of breast 
cancer.
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Introduction
Triple-negative breast cancer (TNBC), characterized 
by a lack of estrogen receptor (ER), progesterone 
receptor (PR) and human epidermal growth factor 
receptor 2 (HER2) expression, has been a challeng-
ing breast cancer subtype for oncological therapy.1 
TNBC accounts for 10%–20% of all breast cancer 
cases and is diagnosed more frequently in younger 
individuals, those with BRCA1 mutations, and 
 African- American/Hispanic women.2 Chemotherapy 
is the only systematic treatment for TNBC, but TNBC 
patients with standard treatment have a higher rate of 
distant relapse and a poorer prognosis than patients 
with other breast cancer subtypes.3,4

There is significant overlap between TNBC and 
basal-like breast cancer, however, the evidence from 
immunohistochemical expression, molecular fea-
tures, and prognosis suggests that these two breast 
cancer subtypes are not equivalent.5,6 Although TNBC 
has been considered to be a unique breast cancer sub-
type, TNBCs display heterogeneous patterns in mor-
phological, genetic, immunophenotypic and clinical 
features.7–9 The survival curve of TNBC patients sup-
ports this phenomenon, in which the risk of distant 
recurrence of TNBCs rises sharply during the first one 
to three years after diagnosis, but drops dramatically 
thereafter and shows a pattern similar to other non-
TNBCs after five years.4 Thus, better understanding 
of the subtypes within TNBCs is necessary for devel-
oping personalized treatment for TNBC patients.

Genomic profiling can be a powerful tool to gain 
insight to complex diseases such as cancer. Using 
microarray gene expression data, Perou et al (2000) 
used intrinsic gene signatures to define five breast can-
cer subtypes.10 We recently collected 587 TNBC gene 
expression profiles from 3,247 breast cancer cases 
available in 21 publicly available data sets. Based on 
our gene expression meta dataset, six TNBC subtypes 
including two basal-like (BL1 and BL2) subtypes, an 
immunomodulatory (IM) subtype, a mesenchymal 
(M) subtype, a mesenchymal stem-like (MSL) subtype 
and a luminal androgen receptor (LAR) subtype, and 
the corresponding gene signatures were established.11

Based on these TNBC gene signatures, we were 
able to predict the subtypes of several breast cancer 
cell lines representing each of six TNBC subtypes. 
Cell lines modeling each of the subtypes differentially 
responded to chemotherapeutic and targeted agents. 

Cell lines from both the BL1 and BL2 subtypes were 
highly sensitive to cisplatin. M and MSL subtypes 
responded to NVP-BEZ235 (a PI3K/mTOR inhibi-
tor) and dasatinib (an Abl/Sarc inhibitor). The LAR 
cell lines were sensitive to bicalutamide (an AR 
antagonist). Our analysis and experiments were one 
of the first systematic transcriptomic profiling studies 
to identify TNBC subtypes, and the results are prom-
ising in terms of TNBC biomarker and drug target 
discovery. Herein we describe our recently developed 
web-based subtyping tool for classifying TNBC sam-
ples from any high-throughput gene expression plat-
form using subtype signatures based on our collected 
gene expression meta-data.

Methods and Implementation
To follow, we describe the analysis workflow and the 
data source we used for predicting breast cancer sub-
types. In addition, we illustrate the web interface for 
data loading and results delivery.

Data collection and TNBC identification
We collected 2,353 breast cancer gene expression 
profiles from 14 publicly available microarray data-
sets for the identification of TNBCs and the dis-
covery of subtypes. Another cohort of 894 breast 
cancer gene expression profiles from seven public 
data sets was used for the identification of TNBCs 
and subtype validation. All data sources are listed 
in Supplementary Table 1. The analysis workflow is 
displayed in Figure 1. All gene expression profiles 
were generated using Affymetrix platforms and RMA 
(Robust Multi-array Analysis) was used to normal-
ize each independent dataset. The three Affymetrix 
probes 205225_at, 208305_at and 216836_s_at were 
selected to represent ER, PR and HER2 gene expres-
sions respectively.12 In each dataset, the empirical dis-
tributions of ER, PR and HER2 were approximated 
using a two- components Gaussian mixture distribu-
tion where the parameters were estimated using the 
R optim function. Given the estimated distributions, 
the posterior probability of negative expression sta-
tus of ER, PR and HER2 can be calculated; a pos-
terior probability of 0.5 was chosen as the cutoff 
for a negative status. Principal component analysis 
was applied to remove outlier samples.13 Another 
five samples for each ER, PR and HER2 with posi-
tive status confirmed by IHC were treated as positive 
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Figure 1. Workflow for developing the TNBC subtype gene signature.
notes: After breast cancer gene expression data collection, three major procedures were performed to develop TNBC gene signature. First, TNBC 
identification by bimodal filtering on ER, PR and HER2 expression. Second, clustering analysis to develop TNBC subtypes. Finally, validation for TNBC 
subtypes and gene signature.

controls. Tumor samples having at least 10-fold 
reduction in expression were considered to have 
negative status. A total of 386 TNBC samples in the 
training set and 201 TNBC samples in the testing set 
passed the filtering criteria and were used for further  
analyses.

Based on K-means clustering analysis, we defined  
the six subtypes as follows: basal-like 1 (BL1),  
basal-like 2 (BL2), immunomodulatory (IM), mes-
enchymal (M), mesenchymal stem-like (MSL), lumi-
nal androgen receptor (LAR) characterized by the  
canonical pathways and differentially expressed genes.11
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TNBC subtype gene signature derivation
In this analysis, we selected for the genes that are 
relatively unique for each subtype. The 20% of genes 
with the highest and lowest expression levels in at 
least 50% of the samples in each of six subtypes were 
initially selected. The Kruskal-Wallis test was used to 
identify the genes showing significant difference in 
at least two subtypes for all selected genes. We chose 
Bonferroni adjusted P-value 0.05 as the threshold to 
declare significance. After the above two steps, we 
generated a gene signature for each TNBC subtype, 
consisting of 2,188 genes can be used for independent 
sample prediction.

TNBC subtype prediction
We computed six centroids for TNBC subtypes based 
on the six gene signatures and the training cohort with 
386 samples. For candidate TNBC samples especially 
those based on Affymetrix platforms, we first applied 
quantile normalization. Next, each gene was stan-
dardized by subtracting its sample mean (calculated 
across all testing samples) and dividing by its sample 
standard deviation. Using Spearman correlation, indi-
vidual candidate tumor or cell line samples were cor-
related with each of six centroids for subtypes. When 
determining statistical significance of the correlation 
coefficients, the number of genes within each of the 
six signatures (size effect) is different, therefore, to 
make the results comparable between the subtypes, we 
applied a permutation test to remove this size effect. 
Candidate samples were then assigned to the TNBC 
subtype with the highest correlation, and those that 
had low correlation (correlation coefficient , 0.1 or 
P-value . 0.05) or are similar between subtypes (dif-
ference of two largest correlation coefficients , 0.05) 
would be considered unclassified.

Impact of er positive samples  
for prediction and solution
For probe-based gene expression platforms, we 
highly recommend pre-processing and normaliza-
tion of the raw data for TNBC samples only. The 
distinctions between TNBC subtypes are relatively 
subtle compared to the dramatic difference between 
TNBC and ER-positive breast cancer samples at the 
transcriptome level. Thus, the presence of ER-positive 
samples with TNBC could affect TNBC gene expres-
sion normalization, and thus final prediction results. 

We performed a series of experiments to illustrate 
the impact of ER positive expression on subtype 
 prediction. We chose a dataset (GSE7904) from 
our initial training cohort that contains 43 breast 
 cancer microarray samples, in which 17 samples 
were identified as TNBC and matched reported IHC 
 status. Thus, the subtype membership assignments 
for these 17 samples based on clustering analysis of 
386 patients in the training cohort can be treated as a 
“gold standard”. First, we normalized the 17 TNBC 
samples alone and used TNBCtype to predict subtype 
memberships. As expected, the prediction results 
match the original subtype assignments (Fig. 2A). 
Second, we normalized all 43 samples (including 
the same 17 TNBC samples and other ER positive 
 samples) and performed predictions (Fig. 2B). The dif-
ferences between these two predictions were  striking: 
nine samples were classified as basal-like 1 (BL1) 
subtype in the second prediction procedure. This 
result demonstrates how TNBC sample predictions 
can be skewed toward basal-like samples if the TNBC 
test cohort was contaminated by ER positive  samples. 
This same analysis was also applied to another 
 dataset (GSE12276) from our initial testing cohort, 
which included 49 TNBC samples. This comparison 
is shown in Supplementary Figure 1 and the results 
are similar to those for GSE7904. Thus identification 
and removal of ER-positive samples from candidate 
cohort are necessary steps to ensure the accuracy of 
TNBC subtype prediction.

Given that the prediction results can be greatly 
impacted by ER-positive samples and that ER classi-
fication by IHC can miss 15.1%–21.8% of ER-driven 
cancers,14 we developed an ER-positive filter to 
remove potential false negative ER samples from a 
given test set. For the GES7904 dataset, we calcu-
lated the percentile of ER gene expression for each 
sample among all genes. This comparison indicates a 
dramatic difference of ER expression between TNBC 
samples (n = 17) and ER positive samples (n = 16) 
using percentile (Fig. 3). The above analysis suggests 
that filtering based on percentile of ER expression 
within each sample could be an effective approach 
to identify and remove ER-positive samples from 
unannotated data or samples that were falsely identi-
fied as negative by IHC. Therefore, we examined the 
distribution of percentiles of ER expression within our 
386 TNBC training cohort and found ER expression 
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Figure 2. er positive samples dramatically affect TNBC subtype prediction results. (A) prediction results for TNBC samples normalized without any er 
positive sample; (B) prediction results for the same TNBC samples normalized in the presence of er positive samples.
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in 96% of the samples was below 75 percentile of all 
genes (data not shown). Thus we have implemented a 
quality control step in TNBCtype program, to remove 
samples in which ER expression is greater than the 
75 percentile at transcriptome level.

Website of TNBCtype
To accelerate genomic research of TNBC to the com-
munity, we designed a user- friendly interface for 
TNBC subtype prediction, available at http://cbc.
mc.vanderbilt.edu/tnbc. Users can classify TNBC 
tumors or cell line samples by uploading a normalized 

(without standardization) gene expression data matrix 
and a valid email address. Input data matrix must 
consist of gene expression values in a .csv file with 
gene symbols as rows and sample IDs as  columns. 
Once the uploaded data matrix passes a data format 
check, an automatic email will be sent to the user 
for confirmation. In the event that a sample does 
not pass the ER-filter, the user will be notified to 
remove the possible ER-positive sample and redo the 
normalization procedures. The user will then receive 
another email when the analysis is complete and the 
results are ready to be retrieved.
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Result and Discussion
To demonstrate the functionality of the website, 
we have performed prediction on a test cohort with 
26 publicly available TNBC samples and the results 
are displayed in Figure 4. Six colors were selected to 
represent each of the six TNBC subtypes. The table 
on the left shows the predicted subtype assigned to 

each sample, the correlation with the corresponding 
subtype centroid, and the P-value from 1,000 per-
mutations. The color bars on the right show the same 
information as the table. The height of the bars indi-
cates the magnitude of the correlation coefficients. 
Users can also download the files containing all the 
correlation and P-values for the six subtypes.

One of the key implementations is permutation-
based P-values output instead of the asymptotic 
P-values for the correlation coefficients that are used 
to select the best- fit subtype for candidate sample. 
Here, permutation tests were used to account for 
length differences among the six gene signatures. 
Our unpublished preliminary analysis results sug-
gest that the current 2,188 combined gene signatures 
could be reduced to a new gene signature with sev-
eral hundreds of genes using multivariate classifica-
tion approaches, but the candidate samples should be 
compatible with our meta training data set in terms 
of Affymetrix platform and the scale of gene expres-
sion values. Although the current TNBC subtyping 
tool is relatively computationally intensive, it could 
be applicable to all high-throughput platforms includ-
ing RNA-seq data. Another characteristic of this sub-
typing tool is that very stringent criteria were used 
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Figure 4. Snapshot of TNBC prediction outcome.
notes: For illustration, a cohort with 26 publicly available TNBC samples was tested by TNBC type. Six colors were selected to represent each of the six 
TNBC subtypes. The table on the left shows the predicted subtype assigned to each sample, the correlation with the corresponding subtype centroid, and 
the P-value from 1,000 permutations. The color bars on the right show the same information as the table. The height of the bars indicates the magnitude 
of the correlation coefficients.
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to make the final prediction decision and to classify 
samples, but the users can also make their own judg-
ment from correlation coefficients and P-values.

conclusions
Our gene expression meta analysis of TNBC with large 
sample size demonstrates not only the heterogeneity 
of TNBC but that genomic data can be used for the 
guidance of possible treatments and the identification 
of patients for the design of clinical trials for TNBCs.11 
We developed the web-based TNBC subtyping tool for 
the research community. This software can be used by 
researchers to classify TNBC tumors into subtypes and 
provides the means to retrospectively analyze patient 
response to therapy. These retrospective studies will be 
critical to the design of future clinical trials that may 
eventually lead to biomarker discovery for patient 
selection. To ensure accurate subtype prediction, we 
implemented and ER-positive filter using percentile to 
remove all ER-positive samples, which can influence 
normalization and prediction results. In the future, inte-
grated genomic analysis including DNA copy number, 
somatic mutation, epigenetic, and microRNA data will 
further improve our gene expression-based tool and 
help find the key “driver” components in each subtype 
for the potential of novel drug discovery and for more 
personalized treatment options for TNBC patients.
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Figure s1. er positive samples dramatically affect TNBC subtype prediction results (A) prediction results for TNBC samples normalized without any er 
positive sample; (B) prediction results for the same TNBC samples normalized in the presence of er positive samples.

http://www.la-press.com


Chen et al

156 Cancer Informatics 2012:11

Table s1. The list of public gene expression data used to develop TNBC gene signature.

Data set source country no. of samples purpose
GSe5327 Geo Sweden 251 Training set
GSe7904 Geo USA 43 Training set
GSe2109 Geo USA 351 Training set
GSe7390 Geo europe 198 Training set
eTABM158 Array express USA 100 Training set
GSe2034 Geo Netherlands 286 Training set
GSe2990 Geo Sweden 189 Training set
GSe1456 Geo Sweden 159 Training set
GSe22513, GSe28821, GSe28796 Geo USA 112 Training set
GSe11121 Geo Germany 200 Training set
GSe2603 Geo USA 99 Training set
MDA133 MD Anderson Cancer Center USA 133 Training set
GSe5364 Geo Singapore 183 Training set
GSe1561 Geo Belgium 49 Training set
GSe5327 Geo Netherlands 58 Validation set
GSe5847 Geo USA 96 Validation set
GSe12276 Geo Netherlands 204 Validation set
GSe16446 Geo europe 120 Validation set
GSe18864 Geo USA 24 Validation set
GSe19615 Geo USA 115 Validation set
GSe20194 Geo USA 278 Validation set
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