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Abstract: Missing heritability is still a challenge for Genome Wide Association Studies (GWAS). Gene-gene interactions may partially 
explain this residual genetic influence and contribute broadly to complex disease. To analyze the gene-gene interactions in case-control 
studies of complex disease, we propose a simple, non-parametric method that utilizes the F-statistic. This approach consists of three 
steps. First, we examine the joint distribution of a pair of SNPs in cases and controls separately. Second, an F-test is used to evaluate the 
ratio of dependence in cases to that of controls. Finally, results are adjusted for multiple tests. This method was used to evaluate gene-
gene interactions that are associated with risk of Type 2 Diabetes among African Americans in the Howard University Family Study. We 
identified 18 gene-gene interactions (P , 0.0001). Compared with the commonly-used logistical regression method, we demonstrate 
that the F-ratio test is an efficient approach to measuring gene-gene interactions, especially for studies with limited sample size.
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Introduction
Both genetic and environmental risk factors play 
critical roles in the development of human diseases. 
Understanding the etiology of complex diseases, such 
as Type 2 diabetes (T2D), is proving to be a chal-
lenging task.1–4 Partly responsible for this difficulty 
is the current inability to systematically account for 
genetic effects that manifest solely or partially in 
interaction with other genes.5 Many studies6–8 suggest 
that gene-gene interactions may play an important 
role in disease etiology. As such, the development 
of statistical tools to detect these genetic effects has 
received considerable attention. One of the most 
commonly-used methods for identifying gene-gene 
interactions is logistic regression, which models the 
relationship between genotypes and qualitative clini-
cal outcomes.9–15 Although convenient in application 
and efficient in inference when the model represents 
the true relationship in the population, there are a few 
limitations to this method that should be considered. 
First, a major challenge of parametric methods, like 
the logistic model, is the robustness and reliability of 
the modeling. It is known, for example,16,17 that when 
a given model does not represent the true relation-
ships in the population being evaluated, bias will be 
introduced. This is a serious issue in practice when 
researchers are not sure of the validity of the under-
lying parametric model. Model justification, except 
for very simple cases, is a daunting task, especially 
with multi- dimensional data. Second, the number of 
possible interaction terms grows exponentially with 
the addition of each main effect; logistic regression 
is limited with regards to interaction data involving 
many simultaneous factors.18,19 Third, parametric 
approaches have less power for detecting interactions 
than independent main effects, necessitating large 
sample sizes.20 Finally, interpreting the parameter 
estimates for interaction terms resulting from this 
type of analysis is not straightforward.21 In con-
trast, the non-parametric approach, although gener-
ally requiring larger sample sizes than parametric 
methods, are robust and reliable and have been suc-
cessfully used in genetic analysis. Non-parametric 
methods are generally more complicated in formu-
lation and computation than parametric methods, 
due to the non-parametric modeling of the data dis-
tribution. However, it is usually simpler to construct 
the test statistic and compute results for hypothesis 

testing using  non-parametric methods, as accurate 
asymptotic results can be applied  without concern 
over robustness. Here we present a non-parametric, 
model-free approach to detect gene-gene interactions 
in case-control studies. When both case and control 
SNP frequencies are in Hardy-Weinburg equilibrium 
(HWE), the test statistic is simplified to a standard 
F-distribution by asymptotic approximation; when the 
SNPs are not in HWE, the test  statistic approximates 
a non-centralized F-distribution. The corresponding 
P-value and its power under the alternative can  easily 
be computed via simulation. We demonstrate this 
method in an analysis of T2D in the Howard  University 
Family Study (HUFS).22

The Method
Let SNP1 and SNP2 be trait-related loci, with gen-
otypes represented by values of 0, 1, and 2. Let 
(x11, x21), ..., (x1n, x2n) be genotypes for SNP1 and 
SNP2 among cases, while (y11, y21), ..., (y1n, y2n) are 
the genotypes of SNPs among controls. To investi-
gate whether a SNP by SNP interaction influences the 
outcome of interest, we will determine whether a joint 
frequency of these SNPs differs by case status. Let H0 
be the hypothesis that the two SNPs are independent. 
Statistically, this can be tested by constructing two 
3 by 3 contingency tables. For the cases, the (i, j)-
cell is the count nij
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Under H0, both the case and control cell counts will 
be in Hardy-Weinberg equilibrium, thus χ1

2  and χ2
2  

will be asymptotically independent  chi-square distribu-
tion with degree of freedom three, so asymptotically,
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a F distribution with degree (3,3), and if H0 is true, 
this statistic will be close to 1; If H0 is not true, it will 
deviate significantly from 1. For relevant P-value for 
a specific level of a (typically, α = 0.05, 0.03, 0.02 or 
0.01), can be determined using an F3,3 table.

To quantify the magnitude of the interaction, we 
may define r = 2T/(1 + T ) − 1 as a measurement for 
this. Note −1 # r # 1, thus, r = 0 corresponds to no 
interaction, r = −1 is the maximum negative correla-
tion, and r = 1 is the maximum positive correlation.

Note that spurious interactions may occur as a 
result of SNPs being in linkage disequilibrium (LD) 
with each other. While LD could first be tested among 
controls, this step is not necessary with this method. 
In the absence of an interaction, LD should not differ 
between cases and controls and, as the test statistic is 
the ratio of cases to controls, LD should not affect the 
results.

Deviation from Hardy-Weinberg equilibrium 
is possible for reasons other then linkage to the 
trait. In this situation, χ1

2
 will be an asymptotically 

independent non-central chisquare distribution 
with 3 degree of freedom, with parameter of non-
centrality

 
n n p p

p
n

p p p
p p

ii i

ii

ij i j

i ji j
δ1

2 2

2
0

2 2

2
2

2
=

−
+

−

= <
∑ ∑( ) ( )

,

where pi is the frequency for SNP i (i = 0, 1, 2), and 
pij is the frequency of joint SNP type (i, j) (i, j = 0, 
1, 2) for the cases. Similarly, χ2

2 will be asymptoti-
cally independent non-central chisquare distribution 
with 3 degree of freedom, with parameter of non-
centrality
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where qi is the frequency for SNP i (i = 0, 1, 2), and qij 
is the frequency of joint SNP type (i, j) (i, j = 0, 1, 2) 
for the controls.

So asymptotically,

 T F n n= χ χ δ δ1
2

2
2

3 3 1 2/ ~ ( , ),

follows an F distribution with degrees of freedom (3,3) 
and non-centrality parameters nδ1 and nδ2. Under H0, 
pi = qi, pij = qij (i, j = 0, 1, 2), so δ1 = δ2, the ratio will be 
close to 1. If H0 is not true, typically δ1 . δ2, the ratio 
will tend to deviate from 1 significantly. For given 
data, n, and (δ2, δ2), the P-value of the observed ratio 
and the power of the level α test can be computed via 
simulation.

Specifically, under H0, for each given δ1 = δ2 = δ, 
the P-value of the observed statistic T is computed as 
below. Choose a large m (typically, m = 100, 000), for 
j = 1, ..., m, do the following:

i. Sample Xj,k and Yj,k independently from 
N ((nδ/3)1/2, 1), (k = 1, 2, 3). Let Zj = 
( )/( ), , , , , ,X X X Y Y Yj j j j j j1

2
2

2
3

2
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2
2
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3

2+ + + + , then Zj is a 
sample from F3,3(nδ, nδ).

ii. Let Vj = I(Zj . T ), here I(⋅) is the indicator function, 
ie, Vj takes value 1 if Zj . T, and 0 otherwise.

Then P (δ) = j
m

=∑ 1 Vj /m is the simulated P-value 
at δ of the observed T. Let Z(1) # Z(2) # … # Z(m) be 
the ordered values of the Zj’s. Let r = [(1 − α)m], the 
largest integer under (1 − α)m, the upper (1 − α)-th 
quantile of the F3,3(nδ, nδ) distribution at δ is simu-
lated as Q(1 − α, δ) = Z(r).

The P-value can be tabulated for a list of different 
δ’s, for example, for δ = 0.1, 0.2, …

Similarly, for given δ1 . δ2, the power of the level 
α test is simulated as below. For j = 1, …, m, do the 
following:

i. Sample Xj,k (k = 1, 2, 3) independently 
from N ((nδ1/3)1/2, 1), and Yj,k (k = 1, 2, 3) 
independently from N((nδ2/3)1/2, 1). Let 
Z X X X Y Y Yj j j j j j j( )/( ), , , , , ,1

2
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2+ + + + , then Zj is a 
sample from F3,3(nδ1, nδ2).

ii. Let Vj = I(Zj . Q(1 − α, δ2)), then P (δ1, δ2) = j
m

=∑ 1 
Vj/m is simulated power at (δ1, δ2). Here Q(1 − α, δ2) 
is computed before.

For given level of α, let F (1 − α) be the (1 − α)-th 
quantile, the rejection rule for H0 is

 T . F (1 − α)

and the power β(δ), when the true data is generated 
with δ . 0, is

	 β(δ) = Pδ(T . F (1 − α)).
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The power at a given level of a can be tabulated 
for a list of different (δ1, δ2)’s, and n’s for example, for 
(δ1, δ2) = (0.1, 0), (0.2, 0), …, (1, 0), and for n = 30, 
50, 100, 150, 200…

When one (or both) of the minor alleles for the 
SNP pair being tested has a small frequency, the rare 
homozygote SNP type will have extremely small 
frequency in the contingency table. In this case, the 
asymptotic approximation of the F-distribution for 
the T statistic is not justified. Let n0 be the smallest 
observed frequency in either the case and control con-
tingency Tables. As a rule of thumb, when n0 , 10, 
the sample size is not large enough for the asymptotic 
approximation to be valid. In this case, the ‘exact’ 
P-value (under the null) of the observed statistic T can 
be computed by the standard exact method.

Departures from Hardy-Weinberg equilibrium 
among controls was assessed by comparing the 
observed genotype frequencies to the expected fre-
quencies using the exact test. Odds ratio and 95% 
confidence intervals for single locus associations 
were obtained using unconditional logistic regres-
sion. As a basis for comparison, logistic regression 
models were also performed to evaluate the gene-
gene interactions. Models included each SNP indi-
vidually as well as a SNP × SNP  product term.

The FDR method was used to adjust for multiple 
testing,23 although, if all the tests are independent, a 
Bonferroni correction may also used.24

Analysis and the software used are written in SAS 
and can be provided upon request to chengu@mail.
nih.gov.

Data Analysis
We applied our method to T2D using the Howard Uni-
versity Family Study (HUFS) data.22 Briefly, the HUFS 
is a population based family study of African Ameri-
cans in the Washington, D.C. metropolitan area. The 
major objective of the HUFS was to enroll and examine 
a randomly-ascertained sample of  African  American 
families, along with a set of unrelated individuals, for 
the study of the genetic and environmental bases of 
common complex diseases including hypertension, 
obesity, diabetes and associated phenotypes. A total 
of 1082 unrelated individuals had both phenotype and 
genotype (Affymetrix 6.0) data. Of these, 221 indi-
viduals were classified as T2D (defined as fasting 
plasma glucose  concentration . 126 mg/dL, report 

of a doctor’s diagnosis of T2D, or report of current 
T2D treatment).

Based on previous publications,25,26 19 T2D candi-
date gene regions (Table 1) were selected for analysis. 
Of note, the issue of loci interaction is independent 
from consideration of main effect: loci that strongly 
interact may or may not be associated individually 
with the trait. Thus, the SNPs included in our  analysis 
were not first limited to those with a main effect 
on T2D. Of these, 608 SNPs passed quality control 
filters: call rate $ 95%, Minor Allele Frequency 
(MAF . 0.05), and Hardy-Weinberg Equilibrium 
(P-values of HWE . 0.01). After using window size 

Table 1. The list of candidate genes that were analyzed.

Genes Location no. of snps Order*
GCKR 2p23 4 1–4
BCL11A 2p16.1 9 5–13
IRS1 2q36 6 14–19
PPARG 3p25 15 20–34
WFS1 4p16.1 8 35–42
KLF14 7q32.3 1 43–43
TP53INP1 8q22 3 44–46
TCF7L2 10q25.3 30 47–76
KCNQ1 11p15.5 71 77–147
KCNJ11 11p15.1 3 148–150
CENTD2/ARAP1 11q13.4 3 151–153
MTNR1B 11q21 4 154–157
HMGA2 12q15 15 158–172
IGF1 12q23.2 8 173–180
HNF1A 12q24.2 3 181–183
ZFAND6 15q25.1 7 184–190
PRC1 15q26.1 6 191–196
FTO 16q12.2 78 197–274
HNF1B 17q21.3 24 275–298
note: *The order represents the position of the SNp in Figures 1 and 2.

Table 2. Significant results for single locus association of 
298 SNps in 19 genes.

snps Genes Odds  
ratio

95% 
c.I.

P-values

rs10956932 TP53INP1 1.62 1.27–2.05 0.00008
rs8053888 FTO 0.66 0.11–0.53 0.00025
rs12573128 TCF7L2 0.67 0.53–0.84 0.00070
rs231901 KCNQ1 0.49 0.21–0.75 0.00092
rs9806929 FTO 0.60 0.42–0.84 0.00284
rs11649763 KNF1B 0.44 0.25–0.77 0.00403
rs7069007 TCF7L2 1.56 1.13–2.15 0.00738
rs5742652 IGF1 2.08 1.19–3.62 0.00981
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also used to evaluate gene-gene interactions in the 
same data. To illutrate the overall similarity of these 
approaches, a heat map was created showing the sta-
tistical significance of the interaction term for each 
pair of SNPs evaluated using the F-ratio (Fig. 1) and 
logistic regression (Fig. 2) analyses. Similar patterns 
were observed with both of these methods; at the 
same level of statistical significance (P = 0.05), there 
was a concordance rate of 94.09% between the two 
methods. The generally lower P-values observed with 
logistic regression are presumed to represent the fact 
that logistic regression models are already adjusted 
for the main effect of each of the SNPs, while the 
F-ratio method is not. Displayed in Figure 3 is the 
power of the F-ratio method for a variety of δ val-
ues (a measure of the deviation from HWE between 
two SNPs), sample size, and α levels. At an α = 0.05, 

of 50 and R2 score $ 0.3 between two loci, 298 SNPs 
not in LD with each other were used for analysis 
(Table 1) in 19 candidate T2D gene regions.

For reference, logistic regression analysis of 
each of the loci without interaction was conducted 
(all results P , 0.01 are presented in Table 2). After 
correction for multiple tests, no SNP reached the 
 threshold for statistical significance (Bonferroni 
significant level P , 1.7 × 10−4). The threshold for 
statistical significance for the gene-gene interaction 
evaluated by the F-ratio method was set at P , 0.001 
(corresponding to an FDR q-value of 0.027); at 
this level of statistical significance, the dependence 
between the two loci among cases was over 141 times 
higher than among controls. 18 significant gene-gene 
interactions were discovered (the top 7 are presented 
in Table 3). For comparison, logistic regression was 

Table 3. Top results of gene-gene interactions from 298 SNps in 19 genes.

Locus (name of genes) Locus (name of genes) P-value
rs10519280 (ZFAND6) rs12149010 (FTO) 2.62 × 10−6

rs5742652 (IGF1) rs7205617 (FTO) 7.71 × 10−6

rs17130192 (TCF7L2) rs12425829 (HMGA2) 8.27 × 10−6

rs17130192 (TCF7L2) rs11111262 (IGF1) 8.57 × 10−6

rs17130192 (TCF7L2) rs17636091 (PRC1) 1.10 × 10−5

rs2272046 (HMGA2) rs17636091 (PRC1) 1.35 × 10−5

rs2272046 (HMGA2) rs6824720 (WFS1) 1.45 × 10−5

Figure 1. Gene-gene interactions among 298 SNps distributed in 19 genes using our simple F-ratio non-parametric method. 
note: Colors from dark blue to red represent P-value from 0.00 to 1.00.
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Figure 2. Gene-gene interactions among 298 SNps which distributed on 19 genes using logistic regression.
note: Colors from dark blue to red represent P-value from 0.00 to 1.00.
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indicate sample size: black (n = 30), red (n = 50), green (n = 100), purple (n = 150), and blue (n = 200).

a δ1 = 0.4, and a sample size of n = 100, the F-ratio 
method reaches 0.80 power. The strong power that 
can be achieved at this moderate value of δ with less 
than 200 individuals suggests the practicality of using 
this method when sample size is limited.

Discussion
We present a new method for evaluating gene-gene 
interactions that uses the F-ratio test. Using this 
method, 18 gene-gene interactions were found to 
influence risk of Type 2 diabetes among  African 
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Americans of the Howard University Family 
Study. As each of the genes investigated are can-
didate genes, their individual role in disease risk is 
 presumed. Identifying the specific mechanisms by 
which these genes would be expected to interact is 
beyond the scope of this work, but the top results 
suggest that some of the effect of genes involving 
in insulin sensitivity (such as ZFAND6, and IGF1)
is mediated through obesity (FTO)26,27 a reasonable 
hypothesis. In comparison with logistic regression, 
the F-ratio test was shown to be an efficient method 
with minimal potential bias and good power to detect 
moderate gene-gene interaction even in relatively 
small sample sizes.

An exhaustive investigation of all pairwise loci 
interactions search in genome-wide data is time 
consuming. Given 500,000 to 1,000,000 SNPs in 
5,000 individuals, computation time may be several 
weeks or even months.21 Although the F-ratio method 
does not decrease the number of tests, it significantly 
reduces CPU time per test from 0.04 (logistic regres-
sion) to 0.01 (F-ratio method) seconds in the same 
computing environments.

The results of gene-gene interaction analysis were 
corrected by using the FDR method. As SNPs in LD 
were excluded from the analysis in order to increase  
effciency, a Bonferroni correction could have been  
used28 [ correcting for [(# of locus)2 −	(# of locus)]/2 tests]. 
Using Bonferroni correction would be overly conserva-
tive; the existance of marginal effects negates the mul-
tiple testing cost.24

conclusion
The F-ratio test was used as a non-parametric method 
for comparing the relationship between trait-asso-
ciated loci in cases to that in controls. A different 
pattern of joint genotype frequencies in cases com-
pared to controls indicates an interaction between 
these loci that affects case status. This method rep-
resents a novel technique to identify the combina-
tion of polymorphisms associated with the risk of 
common complex diseases. This method overcomes 
some limitations of logistic regression modeling for 
detection and characterization of gene-gene interac-
tions. The F-ratio method performed well in Type 2 
Diabetes case- control data, identifying 18 gene-gene 
interactions. This F-ratio test is a useful statistical 
tool for the analysis of gene-gene interactions and 

 represents a  significant  contribution in the context 
of the  heritability that remains unexplained by single 
locus association studies.
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