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Abstract: High-throughput ‘omics’ data analysis via bioinformatics is one key component of the systems biology approach. The systems 
approach is particularly well-suited for the study of the interactions between nutrition and physiological state with tissue metabolism 
and functions during key life stages of organisms such as the transition from pregnancy to lactation in mammals, ie, the peripartal 
period. In modern dairy cows with an unprecedented genetic potential for milk synthesis, the nature of the physiologic and metabolic 
adaptations during the peripartal period is multifaceted and involves key tissues such as liver, adipose, and mammary. In order to 
understand such adaptation, we have reviewed several works performed in our and other labs. In addition, we have used a novel 
bioinformatics approach, Dynamic Impact Approach (DIA), in combination with partly previously published data to help interpret 
longitudinal biological adaptations of bovine liver, adipose, and mammary tissue to lactation using transcriptomics datasets. Use of 
DIA with transcriptomic data from those tissues during normal physiological adaptations and in animals fed different levels of energy 
prepartum allowed visualization and integration of most-impacted metabolic pathways around the time of parturition. The DIA is a 
suitable tool for applying the integrative systems biology approach. The ultimate goal is to visualize the complexity of the systems at 
study and uncover key molecular players involved in the tissue’s adaptations to physiological state or nutrition.
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Background
Systems biology: The comeback  
of an “Old” concept in the ‘Omics’ age
The application of methods allowing for  integration 
of the individual components of an animal instead of 
the more reductionist approach is ideally suited for 
exploring the biological complexity of mammals. 
Modern systems biology is generally defined as 
an interdisciplinary field that concentrates on 
experimental and computational biology. From the 
experimental standpoint, systems biology concepts 
can and often are applied with a hypothesis or sets of 
hypotheses in mind, but also allow for a “discovery” 
type experimental approach (ie, without a spe-
cific hypothesis). Advancements in computational 
biology, genome sequencing, and high-throughput 
technologies in the last decade have provided the tools 
for approaching biological systems in an integrative 
fashion, ie, allow access to the functional capabilities 
of an individual organism en masse.

The origin of systems biology concepts can be 
traced to at least 1934 to Austrian biologist Ludwig 
von Bertalanffy who proposed the use of “general 
system theory” in biology as “a new approach to 
unity of science”.1 Cornish-Bowden and colleagues2,3 
make the point that there has been interest in and 
efforts to apply systems research since the middle 
of the 20th century. Despite the wide variety of 
definitions of the term ‘systems biology’, eg, “a new 
name for old-fashioned reductionist biology practiced 
on an ever-larger scale, with ever-larger and more 
expensive machines”,3 there is recognition that “a 
genuine systemic view is not incompatible with 
gathering huge quantities of experimental data”; 
rather, the issue lies on whether proper application 
of high-throughput technologies and bioinformatics 
will allow continued advances towards understanding 
systems.3

Several examples from the non-ruminant literature 
underscore the need to analyze biological systems as 
systems and not as mere collections of parts.2 Ideally, 
integrating mRNA and protein expression responses 
with the global set of protein–protein and protein–
DNA interactions will allow deducing underlying 
networks of genes/proteins. Several examples with 
model organisms underscore that genes/proteins act in 
concert with one another and with the environment.4,5 

It is likely that such associations also play an 
important role in modern high-producing ruminants, 
eg, help coordinate efficient use of nutrients for milk 
or beef production. As an example, in a recent study 
Barendse et al6 reported that a large fraction of the 
genetic variation linked to feed efficiency occurred 
in promoter and microRNA motif regions of the 
bovine genome. Those findings suggested that at least 
some of the genetic variation in efficiency of nutrient 
use between animals could be due to differences in 
the regulation of gene expression.

In dairy production, management practices during 
the dry period and early lactation can essentially 
determine the productivity of the animal throughout 
lactation, ie, the peripartal period (ie, last 3 weeks 
through the first 3 weeks around parturition) is where 
the highest incidence of infectious and metabolic 
disease takes place. As such, we have argued 
previously7,8 that application of systems biology 
concepts during this physiological state would 
be valuable to uncover the underlying links (eg, 
pathways and networks) within and between tissues 
(eg, adipose and liver; liver and mammary), and 
also to discover new emergent properties that may 
arise from examining the interactions between all 
components of a system.8 This integrative approach 
will provide the means to arrive at a holistic view of 
how the organism function.9

Bioinformatics in systems biology
Bioinformatics entails the use of computational 
resources to analyze large-scale datasets from genome, 
transcriptome, and metabolome studies.10 One of the 
goals of bioinformatics is to accelerate the discovery 
of novel biological information from large amounts of 
‘omics’ data. In terms of transcriptome data mining, 
the most widely-used approach is the so-called gene-
enrichment approach (also known as overrepresented 
approach or ORA).11 Although this approach has 
been widely-used in the data mining process of 
transcriptome datasets, as previously highlighted7,11 
and demonstrated recently,12 it has several limitations 
particularly associated with time-course experiments. 
In order to overcome the limitations associated 
with the ORA we have proposed a novel approach 
termed Dynamic Impact Approach (DIA).12 In the 
present review we will illustrate the capability of the 
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DIA to allow for a simultaneously analysis of high-
throughput data from multiple tissues in order to 
provide a more integrative analysis of the system.

Metabolic adaptations during late-
pregnancy and early lactation in dairy 
cows uncovered by transcriptomics
The transition from pregnancy into lactation in 
mammals (a.k.a., “transition period”), and particularly 
in dairy cattle, is characterized by metabolic 
adaptations in major organs (eg, mammary, liver, 
adipose) that allow the animal to adjust to the need of 
synthesizing milk for the neonate.13–15 During the same 
time-frame, the animal experiences a general decrease 
in food intake.14,16,17 In modern high-producing dairy 
cows the dramatic increase in milk production and 
the concomitant decrease in food intake is the cause 
of marked negative energy balance (NEB), ie, an 
imbalance between dietary energy intake and output.17

Major metabolic changes reflected in blood during 
this period include an increase in non-esterified fatty 
acids (NEFA) and ketone bodies (β-hydroxybutyrate or 
BHBA is the major one), and a decrease in cholesterol 
and phospholipids.18,19 Several blood parameters not 
directly related to metabolism also are affected during 
this time, eg, increased of positive acute phase proteins 
(eg, haptoglobin and ceruloplasmin) and decreased 
negative acute phase proteins (eg, albumin, retinol 
binding protein) indicating that animals experience 
inflammatory-like conditions.18

It has been estimated that the liver of transition 
cows up-takes more than a quarter of circulating 
NEFA.20 The NEFA are partly oxidized to generate 
ATP or re-esterified to triacylglycerol (TAG) and 
stored as lipid droplets or assembled into very-low 
density lipoprotein (VLDL) to be release in the blood 
stream.14,20 The excess energy from NEFA oxidation is 
released as ketone bodies into blood and used by other 
tissues such as mammary gland, muscle, or nervous 
system. The accumulation of TAG in liver does not 
typically compromise liver function until it reaches 
more than 20% of cellular volume (ie, moderate fatty 
liver). Deleterious consequences occur when TAG 
reaches more than 30% of cellular volume.21 The 
incidence of fatty liver is determined by the blood 
NEFA level, but also appears to be a consequence of 
the inflammatory-like condition post-partum.13,22

The ruminant animal absorbs negligible amounts 
of glucose from the fore-stomach due to extensive 
bacterial fermentation in the rumen, as such, 
gluconeogenesis in liver also is a crucial metabolic 
outcome.20 This is particularly important in modern 
high-producing dairy cows, considering that the 
mammary gland of a Holstein cow can produce up 
to 2 kg of lactose per day. The glucose used by the 
mammary gland and by other tissues in ruminants is 
produced almost exclusively by the liver.20

As underscored by the brief overview above, several 
tissues play a prominent role in allowing cows to adapt 
successfully to the onset of lactation. However, it is 
evident that adipose, liver, and mammary gland play a 
central role in regulating overall metabolism. Our group 
has been studying the dynamic adaptations of those 
tissues during the transition period in dairy cows using 
transcriptomics in combination with bioinformatics 
tools. In the following sections we describe the main 
findings from those studies using mainly the DIA and 
focusing on metabolic regulation.

Metabolic demands in key tissues 
unveiled from DiA analysis  
of the transcriptome
The conceptual development and validation of the DIA 
and an in-depth discussion of its use have been presented 
elsewhere.7,12,23 Therefore, in this manuscript we wish to 
present a brief overview of the findings using the DIA, 
particularly for the KEGG pathways, of the mammary 
gland from pregnancy to end of subsequent lactation, 
and novel outcomes using DIA from transcriptomics 
of bovine adipose and liver during the transition from 
pregnancy to lactation. To demonstrate the capability 
of the DIA for integrative system biology, we have 
provided an example of inter-tissue physiological 
coordination of mammary, liver, and adipose tissue 
during the transition period. In addition, we present also 
the results of the DIA analysis of liver transcriptomics 
data from pregnancy to lactation in cows fed different 
level of energy prepartum.

Mammary tissue: what transcriptomics  
reveals during increased metabolic  
demand
In order to investigate the adaptation of the mammary 
gland to lactation, we have performed a transcriptomics 
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analysis of the mammary tissue from one month prior 
parturition to 300 days in milk (ie, end of lactation) 
using a bovine specific microarray able to measure 
ca. 10,000 unique genes.23 The microarray analysis 
uncovered a tremendous transcriptome adaptation 
of the mammary tissue to lactation. For instance, 
compared to one month prior parturition we observed 
.4,000 DEG during maximal milk secretion.23 Those 
data indicated that mammary gland heavily relies on 
transcriptome change to initiate and maintain copious 
milk synthesis and secretion.

In Figure 1 are reported the direction of the 
impact of main KEGG pathway categories and sub-
categories related to ‘Metabolism’ and ‘Genetic 
information processing’ categories as calculated by 
the DIA12. The results clearly indicated that there was 
an overall induction of the metabolism in lactating 

bovine mammary but also an overall inhibition of 
the ‘Genetic information processing’. Except for 
‘Nucleotide metabolism’ all the other sub-categories 
of KEGG pathways were induced during lactation, 
with ‘Lipid metabolism’, ‘Glycan biosynthesis and 
metabolism’, and ‘Carbohydrate metabolism’ being 
the most induced. The overall inhibition of ‘Genetic 
information processing’ was mostly due to the 
decrease of ‘Translation’ and ‘Replication and repair’ 
(Fig. 1).

Overall the data indicated a large increase in 
metabolism by the bovine mammary during lactation, 
with a large increase in demand of glucose, lipid 
(mostly long-chain fatty acid), and AA.23 The DIA 
analysis supported most of the previous finding 
about metabolism of the bovine mammary during 
lactation, indicating the reliability of the DIA for 
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Figure 1. Metabolic adaptations of bovine mammary gland from end of pregnancy through end of subsequent lactation. 
notes: The data were analysed using the Dynamic impact Approach (DiA).12 The DiA results of the KeGG pathways analysis are reported. Shown are the 
direction of the impact12 for the main KeGG pathway categories and for several sub-categories related to ‘Metabolism’ and the sub-categories related to 
‘Genetic information processing’. Thresholds for the analysis were false discovery rate # 0.05 for the overall time effect, P-value # 0.05 for comparisons, 
and a coverage of at least 30% of annotated genes in the pathways represented on the microarray platform.
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functional analysis of microarray data. However, 
as above discussed and previously known,24,25 the 
mammary gland is highly dependent and influenced 
by the biology of other organs, particularly liver and 
adipose.

Adipose tissue: transcriptomics adaptations 
during the peripartal period
The biological role of liver and mammary in the 
coordination of lactation in dairy cows has been 
known for a long-time.25 Until a decade ago adipose 
tissue was considered as a mere passive energy 
storage organ in the body, with some additional 
corollary functions such as providing cushion and 
thermoregulation. Currently, due to the rapid rise of 
obesity-related studies, adipose tissue appears to have 
an important degree of cross-talk with other tissues 
through the release of endocrine molecules,26,27 and 
it appears to be very sensitive to energy status of the 
whole organism.27

Temporal transcriptomics analyses of bovine 
adipose tissue during transition from pregnancy into 
lactation are scant. In a recent study, transcriptomics 
was applied to adipose tissue in first lactation 
Holstein cows during the transition period.28 The 
study highlighted the importance of several specific 
genes but did not provide functional analysis using 
a systems approach. We recently performed such 
analysis from the beginning of pregnancy through 
early lactation in multiparous cows fed diets designed 
to meet (∼100% of net energy requirements) or exceed 
(∼150%, ie, energy-overfed) energy requirements 
during the entire dry period.29 Overall, more than 
3,000 genes were significantly affected (False 
discovery rate [FDR] # 0.05) by time × energy 
status. In order to uncover the biological adaptations 
of adipose tissue in cows fed an energy-sufficient 
diet we performed KEGG pathway analysis using the 
DIA of the 956 differentially expressed genes (DEG; 
FDR # 0.05 for the interaction and P-value between 
comparisons # 0.01) affected by stage of lactation 
in the control group. The results (not shown) clearly 
indicated a general and large decrease of metabolism 
after parturition in the adipose tissue, with all the 
metabolic-related pathway sub-categories being 
inhibited at 14 vs. −14 days relative to parturition (d) 
with the exception of ‘Energy metabolism’ which was 
induced, mostly due to an induction of ‘Oxidative 

phosphorylation’. The most-inhibited pathway sub-
categories were ‘Lipid metabolism’, “Metabolism of 
other amino acids’ and ‘Xenobiotic biodegradation 
and metabolism’ (data not shown).

In Figure 2 are reported the most-impacted KEGG 
pathways among the ones within the ‘Metabolism’ 
category plus a few additional ones from other 
categories at two weeks post-partum relative to two 
weeks pre-partum. Within the ‘Lipid metabolism’ 
KEGG pathway sub-category all the most-inhibited 
pathways were related to the synthesis of lipid 
(Fig. 2); however, ‘Fatty acid metabolism’, a category 
which encompasses the catabolism of fatty acids, also 
was inhibited although with an overall lower impact 
compared to the pathways related to the synthesis of 
lipid. All the major pathways related to ‘Carbohydrate 
metabolism’ and ‘Amino acid metabolism’ were 
inhibited.

Overall, the data clearly showed a marked and 
general reduction of the metabolic activity of the 
adipose tissue after parturition, particularly for the 
synthesis of lipid. This makes sense considering that 
around parturition there is a large physiological change 
in order to initiate milk production. As indicated above, 
those changes include the reduction of food intake,16 
the increase in energy demands for milk synthesis, the 
presence of energy-consuming inflammatory-like 
conditions,18,22,30 and the large decrease in plasma 
insulin associated with sever NEB.30,31 The decrease 
of plasma insulin also is accompanied by greater 
insulin insensitivity in all tissues with exception 
of the mammary gland.32 The reduction of plasma 
insulin on the one hand and the decrease of insulin 
sensitivity on the other hand are the major causes of 
adipose tissue lipolysis, leading to release of NEFA 
into the circulation with a concomitant inhibition of 
TAG synthesis.33 Overall, data from DIA analysis 
support the decrease of lipid synthesis, particularly 
TAG synthesis,33 as well the reduction of glucose32 
and AA utilization in adipose tissue in early lactation. 
This adaptation of the adipose tissue might allow for 
more nutrients to be available for mammary gland.

Liver tissue: transcriptomics adaptations during 
the peripartal period
The metabolic rate of liver in dairy cows nearly dou-
bles after parturition,34 a response closely associated 
with adjustments in lipid and glucose metabolism.34 
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Catabolism of fatty acids, through mitochondrial 
and peroxisomal oxidation, and esterification of fatty 
acids into TAG are enhanced after parturition. The 
TAG accumulate in the cytosol as lipid droplets or 
are packaged into lipoproteins to be exported into the 
blood.20 The rate of gluconeogenesis also increases 
dramatically after parturition,34 primarily to be 
exported to the mammary gland rather than stored as 
glycogen.20

We have used bovine liver transcriptomics data 
from two months prior parturition to forty-nine 
days into lactation to assess functional adaptations. 

The original statistical analysis19 uncovered a modest 
degree of transcriptome adaptations during the 
transition from pregnancy into lactation. The data, 
however, allowed proposing a qualitative model of 
physiological adaptation of liver also considering the 
adipose and mammary tissue.19

The same data (ie, control group) plus data 
from another set of animals fed different levels of 
energy prepartum35 were combined and re-analyzed 
statistically using a more powerful statistical 
approach.36 The new analysis uncovered 4,970 DEG 
with FDR # 0.05 for time × treatment interaction. 
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Figure 2. Metabolic adaptations of adipose tissue from end of pregnancy through early lactation. 
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A DIA analysis was performed using data from the 
control group considering the postpartum time points 
relative to two weeks prior to parturition. The overall 
view of the KEGG pathway ‘Metabolism’ category 
and main sub- categories are reported in Figure 3. The 
DIA analysis revealed an overall, although modest, 

increase in metabolism during the first four weeks 
post-partum, with a drop just after parturition. The 
increase in metabolism was mostly due to ‘Amino 
acid metabolism’ and ‘Carbohydrate metabolism’ 
with an overall inhibition of ‘Metabolism of cofactors 
and vitamins’ (Fig. 3).
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The DIA analysis of the pathways in the ‘Carbohy-
drate metabolism’, ‘Lipid metabolism’, and ‘Amino 
acid metabolism’ sub-categories uncovered an over-
all increase of gluconeogenesis and propionate 
utilization (Fig. 3). Interestingly, the microarray data 
suggested that the utilization of propionate increased 
suddenly after parturition and remained high for the 
first month postpartum. Those data are supported by 
previous findings.20,34 None of the pathways related 
to lipid metabolism were increased after parturition. 
Previous data showed an increase in hepatic lipid 
metabolism, particularly an increase in fatty acid 
oxidation.20 Thus, our findings from DIA were appar-
ently unexpected.

Interestingly, it has previously been proposed 
based on several lines of evidence that the main 
factors driving the increase in fatty acid oxidation in 
liver during the transition period are:20 (1) the increase 
in NEFA availability (ie, NEFA concentration in 
the blood); and (2) activity of carnitine palmitoyl 
transferase 1 (CPT-1), the rate-limiting enzyme for 
the entry of fatty acids into the mitochondria for 
oxidation after parturition. The latter was evidenced 
by an increase in CPT-1 activity37 and expression19 
early postpartum. Our data support the previous 
proposal because they suggest that liver does not 
increase its ability to metabolize the fatty acids 
through greater expression of metabolic pathways; 
rather, the greater utilization of fatty acids is likely 
due to an increase in substrate and/or change in 
expression of few “key” molecules, such as CPT-1. 
Interestingly, our data also indicated a lack of 
induction of ketogenesis at the gene expression level 
(ie, the pathways was not impacted in the first month 
after parturition). The increase in ketogenesis after 
parturition is very important;20 therefore, the lack of 
induction of this pathway at the transcriptional level 
might indicate that ketone body production, as fatty 
acid catabolism, is mostly driven by concentration of 
substrates.

The metabolism of AA by liver postpartum has 
been discussed in detail previously.38,39 The liver of 
lactating bovine actively absorbs large amounts of AA 
and essentially determines their availability for other 
organs such as mammary gland.39 Results from the DIA 
analysis (Fig. 3) suggested that the AA metabolism-
related pathways were the most-impacted in liver 
during the transition from pregnancy into lactation, 

particularly at the end of the first month of lactation. 
The increase in AA metabolism was mostly due to 
increase in ‘Cysteine and methionine metabolism’ 
and ‘Alanine, aspartate and glutamate metabolism’ 
(Fig. 3). Methionine is an essential AA, particularly 
limiting for milk synthesis.40 The surge in ‘Alanine, 
aspartate and glutamate metabolism’ observed with 
the DIA was mostly due to the increase expression of 
genes involved in utilization of aspartate for provision 
of TCA intermediates (ie, fumarate and oxaloacetate) 
and the formation of glutamine from glutamate. 
The biological significance of greater glutamine 
metabolism in liver is not readily apparent. Overall, 
the data indicated that most AA in the liver are used 
for production of TCA intermediates, ie, as energy 
sources likely to spare glucose for milk synthesis.

The DIA indicated an overall slight increase 
of ‘Oxidative phosphorylation’ despite an overall 
inhibition of energy production (the inhibition was 
mostly due to the ‘Sulfur metabolism’ pathway) 
coupled with a large increase in the protein synthesis 
machinery (ie, ‘Ribosome’) (Fig. 3). The increase in 
ATP production is probably also due to the greater 
need of protein synthesis. A substantial increase in 
bovine hepatic protein synthesis post-partum was 
reported previously.41 The increase in ‘Ribosome’ was 
not accompanied by an increase of “mTOR signaling 
pathway”, which is known to be the master regulatory 
of protein synthesis in non-ruminants.42 The data 
indicated that the liver had an increased capacity for 
protein synthesis overall, which might be important 
(among others) for the immune activity of the organ 
after parturition.13,22

Peroxisome proliferator-activated receptor alpha 
(PPARα) is a nuclear receptor highly-expressed in liver, 
with pivotal roles in controlling fatty acid metabolism 
at least in non-ruminant.43 Some recent data suggested 
that this nuclear receptor regulates lipid metabolism 
in ruminants as well.44 The importance of PPARα in 
dairy cow liver was inferred by up-regulation of its 
expression during early lactation19 and by the increase 
in expression of several target genes in neonatal calves 
treated with a specific PPARα agonist.45 Analysis of 
the liver microarray data around parturition using DIA 
uncovered an overall activation, although modest, of 
the ‘PPAR signaling’ pathway during the first two 
weeks postpartum (Fig. 3), which supports a role of 
PPAR in early lactation.
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Overall, the data suggested that, from a metabolic 
point of view, the control of glucose metabolism, 
protein synthesis, production of energy, and amino 
acid metabolism are strongly regulated at the 
transcriptomics level; however, the liver transcriptome 
seems to respond modestly to the surge of NEFA, with 
only few key factors for fatty acid catabolism (not 
overall pathways) exhibiting changes in expression.

integrative coordination of the transcriptome 
during the transition period
As alluded above in the introduction, the era of the 
reductionist approach in science experienced a setback 
with the advent of the “modern” systems biology 
approach.7 The understanding of the physiological 
or pathological adaptations of the animal to a change 
in physiological state requires an integrative view of 
metabolism. In addition, the use of a single time point 
is reductive and insufficient to capture the dynamism 
of the biological adaptations; thus, implementation of 
time-course experiments should be undertaken in a 
more routine basis. The DIA approach12 is well-suited 
for data mining in time-course studies involving 
multiple treatments. Comparisons can be performed 
between any dataset and the validity of such 
comparisons is more powerful if the same technology 
and the same statistical approach are used.

To illustrate the dynamics of tissue coordination 
during the transition period, we have compared the 
results from microarray experiments of mammary 
tissue, adipose tissue, and liver during the adaptation 
from pregnancy through early lactation. The microar-
ray data were the same as used above for mammary 
gland, adipose, and liver.19,23,29 All datasets were 
analysed statistically using the same approach as 
described previously.23 Statistical results used for the 
analysis were from −14 days relative to parturition 
in liver and adipose or −15 days in mammary tissue. 
For simplicity we defined this prepartal time point as 
“−15 d” for all tissues.

In Figure 4 is reported the number of DEG in 
mammary tissue, liver, and adipose tissues from 
2 weeks prior parturition up to 60 days in milk. 
From the figure it is evident that the mammary gland 
experienced the larger transcriptomics change from 
pregnancy to lactation (between ca. 3,000 and ca. 5,000 
DEG out of ca. 10,000 unique genes in the microarray 
platform; ie, 30%–50% of the transcriptome) 

compared with liver (between ca. 800 and ca. 1,400; 
the platform used for liver had only ca. 7,000 unique 
genes, ie, 11%–20% of the transcriptome) and adipose 
(between ca. 100 and ca. 900 out of 10,000 unique 
genes; ie, 1%–9% of the transcriptome) with also 
most of the DEG being down-regulated in mammary. 
As discussed above, those data emphasized the larger 
dependence of the lactating mammary gland from the 
transcriptome compared to other tissues.

In Figure 5 are reported the direction of the impact as 
calculated by the DIA of overall ‘Metabolism’ KEGG 
category of pathways, the three main sub-categories of 
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pathways related to metabolism and most interesting 
associated pathways. From a metabolic point of view, 
these data suggest that during early lactation the 
mammary gland has dominance over other tissues 
(Fig. 5) and, as such, these findings support well-
established knowledge.46 The DIA also estimated that 
liver experiences a decrease in overall metabolism 
after the first month of lactation when peak milk yield 
is attained.23 In terms of coordinating adaptations to 
lactation, the data suggest that the metabolic importance 
of liver is more pronounced during the first month 
of lactation, which often coincides with the nadir of 
NEB.16,19 This in turn highlights that liver is critical 
during the period of extensive lipid mobilization due 
to NEB. However, the large prevalence of diseases in 
dairy cows during the first month of lactation13 also 
requires an “active” liver in order to participate in the 
immune response.18

The overview of ‘Metabolism’ KEGG pathway 
sub-categories (Fig. 5) clearly suggested that 
mammary gland experiences a large increase in lipid 
metabolism with a concomitant decrease of the same 

pathways in the adipose tissue, while in liver lipid 
metabolism remains quite stable with a slight decrease 
as lactation progresses. Specifically, synthesis of fatty 
acids and lipid was prevalent in mammary while 
strongly decreased in adipose (Fig. 5). Carbohydrate 
metabolism also was more prevalent in mammary 
(due mostly to ‘Galactose metabolism’) with an 
important role in liver and a considerable decrease 
in adipose (Fig. 5). The visualization of selected 
pathways related to carbohydrate metabolism (Fig. 5) 
revealed an increase in hepatic production of glucose 
via gluconeogenesis and use of lactate as energy 
source (eg, pyruvate metabolism, particularly in 
early lactation, Figure 5; KEGG pathway details are 
not shown). Those data are consistent with previous 
findings.14,20,34

Interestingly, the TCA cycle was induced during 
early lactation particularly in mammary gland but 
also in liver (Fig. 5). The increase of TCA cycle 
activity, together with an increase in ‘Oxidative 
phosphorylation’ (see above and previous data23), was 
indicative of an overall increase in energy production 
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in both organs, with an apparent greater effect in 
mammary tissue. In liver and adipose tissue, glucose 
utilization is spared for the synthesis of lactose in 
mammary, eg, fatty acids in liver can provide a large 
amount of energy through oxidation (see above) 
but this metabolic pathway is not relevant for the 
lactating mammary gland.47,48 One common source 
of energy in both organs is the AA. From our data, 
AA metabolism appeared to be more important in 
liver compared to other tissues (Fig. 5). The liver 
has a greater degree of utilization of methionine and 
cysteine (as discussed above); whereas, the mammary 
gland appears to spare methionine, probably for 
the synthesis of milk proteins. In mammary gland, 
methionine is considered a limiting AA.40 The overall 
increase in AA metabolism by liver indicates a more 
predominant role of this tissue in utilization of AA. 
However, the present data do not allow speculating 
about differences in the degree of utilization of AA as 
energy sources in liver relative to mammary.

The large increase in the ‘Ribosome’ pathway was 
suggestive of an overall increase in protein synthe-
sis in liver and adipose relative to mammary (Fig. 5). 
Previous studies have reported increases in protein 
synthesis in liver after parturition,41 while protein 
synthesis in adipose tissue during early lactation has 
been shown not to differ compared to pre-partum in 
rats49 and also ruminants (cited in33). The decrease of 
the protein synthesis machinery in mammary tissue 
during lactation is a novel finding, which has been 
discussed previously.50 We propose that this “unex-
pected” pattern is important to enhance translation 
of milk protein coding genes or genes coding for 
enzymes involved in milk synthesis over non-secreted 
or non-milk synthesis-related proteins;50 thus, the 
decrease of protein synthesis machinery indicated a 
remarkable change in functional specialization of the 
tissue. In this sense, the increase of the protein syn-
thesis machinery in liver and adipose might be due 
to the acquisition and/or intensification of additional 
functions (namely for liver) with fairly specific tasks 
or a decrease in specialization of the tissue (namely 
for adipose). It also is possible that the change in 
physiological state in adipose tissue leads to enhanced 
translation of fewer mRNA, particularly in light of 
the observed decreases in expression of many genes29 
(see above). If this is the case, we can expect instead 
an increase in specialization of the tissue.

Overall, the data suggest that at the onset of 
lactation the mammary gland becomes the prevalent 
metabolic tissue with a marked increase in anabolic 
activity. The liver appears to experience a slight 
increase in metabolism, particularly associated 
with carbohydrate (eg, gluconeogenesis) and 
AA. As reported previously14,20,34 this increase is 
likely devoted to respond to the mammary gland’s 
demands. Interestingly, our data showed that there 
is a concomitant and substantial decrease of adipose 
tissue metabolism, suggesting that the adipose tissue 
reduces its metabolism as a way to decrease energetic 
burden and spare resources for the mammary gland. 
The interaction between these three tissues is not 
only indirect (ie, through coordinated changes in 
metabolism) but as shown for liver and adipose 
tissue51 also direct.

Transcriptomics during transition: effect 
of nutrition analyzed by DiA
We have discussed previously the transcriptome 
adaptations in adipose tissue and liver in dairy cows 
consuming different levels of energy pre-partum.7 
Briefly, the microarray data from adipose clearly 
showed that the effect of overfeeding energy prepartum 
is a transient one, ie, the greatest number of DEG were 
observed at two-weeks before parturition when cows 
were still consuming control or excess energy. Those 
data were analyzed via ORA and DIA and the most 
relevant pathways were discussed.7 All those pathways 
were related to lipid metabolism with DIA revealing 
‘PPAR signaling’ as one of the most-impacted and 
indicating that overfeeding energy relative to energy-
sufficient diets resulted in greater lipid synthesis, and 
this was likely regulated through PPARγ.

The analysis of liver was performed assembling 
and re-analyzing microarray data from two previous 
studies.19,35 The assemblage and the use of a more 
powerful statistical analysis clearly reveal a larger 
transcriptomics adaptation of liver experience either 
restricted or high energy prepartum compared to 
cows fed control diet (Fig. 6). It appears that the 
liver transcriptome is quite insensitive to the change 
of physiological phase but highly sensitive to the 
change in dietary energy; this might be interpreted as 
a “stress-associated” response.

A k-means clustering analysis in association with 
ORA was previously performed in order to capture 
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co-regulated functions.7 We observed very few 
enriched functions in the resulting clusters, with 
protein synthesis being one of the most coordinated.7 
In this manuscript we present results of DIA analysis 
of the same dataset in liver to provide an integrative 
visualization of the metabolic adaptations to prepartum 
level of dietary energy.

The DIA results of main categories of KEGG 
pathways are shown in Figure 7. The data clearly 
indicated that energy restriction prepartum had the 
strongest impact on all main categories of pathways, 
followed by high energy prepartum. The most impacted 
pathways were related to ‘Metabolism’ and ‘Genetic 
Information Processing’. When the direction of the 
impact results were considered it appeared clear that 
dynamics of metabolism were not affected overall by 
prepartum diet. The only exception being the evident 
reduction of metabolism the day after parturition in 
cows overfed energy prepartum.

From this point of view it appears that KEGG 
sub-categories ‘Carbohydrate metabolism’, ‘Lipid 
metabolism’, ‘Amino acid metabolism’, and ‘Energy 
metabolism’ were inhibited overall early post-partum 
(Supplemental file 1). When pathways within those 
sub-categories were investigated (Fig. 8), ‘Fatty 
acid metabolism’ and ‘Synthesis and degradation of 
ketone bodies’ were among the most inhibited and 
potentially regulated by PPARα, as suggested by the 
‘PPAR signaling’ pathway.

Interestingly, ‘Fatty acid metabolism’ as well as 
‘PPAR signaling’ were reduced already two weeks 
prior to parturition in the overfed cows prepartum 
and the pathway was slowly induced afterwards com-
pared to the other groups. In addition, the prepar-
tum energy-restricted cows experienced an apparent 
inhibition of fatty acid metabolism, but this inhibi-
tion was only transient with a quick recovery after 
parturition. The overall result was a slightly higher 
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lipid metabolism among the three groups during the 
first month of lactation (Fig. 8). The pattern of ‘PPAR 
signaling’ was similar to ‘Fatty acid metabolism’ 
(Fig. 8). The cows overfed energy prepartum had a 
more pronounced increase in ketone body metabo-
lism after parturition, suggesting a greater degree 
of ketogenesis relative to the other groups (Fig. 8). 
Those data are  supported by the greater blood BHBA 
in the overfed vs. underfed cows.35

Another interesting revelation by the DIA analysis 
was the apparent greater increase in production of 
cholesterol in overfed cows, both before and after 
parturition (see ‘Steroid biosynthesis’ pathway 
in Figure 8), a response that we have confirmed 
in recent studies from our laboratory (Graugnard 
et al, Khan et al, unpublished results). The overfed 
cows had a greater accumulation of lipid in liver 
compared to the underfed cows.35 Cholesterol is an 
important substrate for the formation of lipoproteins 
in liver, with a potential, but unresolved, role in the 
regulation of VLDL synthesis and secretion.52 From 
this point of view a greater need for cholesterol 
synthesis in overfed cows might be associated with 
the greater blood NEFA, particularly post-partum,35 
some of which is re-esterified into TAG and stored 
or repacked with lipoproteins. Because the amount 
of NEFA prepartum was similar regardless of 
diet,35 this mechanism does not explain the greater 

steroid synthesis prepartum. In addition, it has been 
observed that fatty liver in dairy cows is associated 
with a decrease in liver cholesterol.53 Therefore, 
those additional observations leave unexplained the 
apparently greater steroidogenesis in overfed cows.

Remarkably, the ‘Energy metabolism’ sub-category 
suggested that the energy production in both underfed 
and overfed animals prepartum was lower compared 
to control during the transition from pregnancy to 
lactation (Fig. 8). However, this pattern was mostly 
due to the ‘Sulfur metabolism’ pathway (data not 
shown); but the evaluation of ‘Oxidative phospho-
rylation’, the most important pathway in this sub-
category, revealed an increase in energy production 
in liver of underfed cows. This also is supported by 
the increase in the ‘TCA cycle’ pathway (Fig. 8). The 
‘Glycolysis/Gluconeogenesis’ pathway appeared to 
be more activated in both underfed and overfed ani-
mals compared to the control group from prepartum 
through two weeks postpartum (Fig. 8). The detailed 
visualization of the pathways (data not shown) indi-
cated a greater utilization of lactate in the underfed 
group and likely for gluconeogenesis, while the over-
fed cows appeared to have used more glucose and 
less lactate as energy sources. This is in agreement 
with previous observations of a large decrease in % 
liver glycogen in cows experiencing substantial lipid 
accumulation.53
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What appeared quite evident from Figure 8 was 
the greater increase during the transition period 
in ‘Ribosome’ KEGG pathway in both underfed 
and overfed cows relative to control, with a greater 
increase in the former. Those results were unexpected 
and we have no explanation of their likely biological 
meaning. Few studies regarding the relationship 
between energy in the diet and protein synthesis in 
the liver are available in the scientific literature. For 
instance, in lactating rats the restriction of energy or 

protein decreased the absolute protein synthesis rate in 
both liver and, in greater amount, mammary gland.54 
In obese humans the reduction of dietary energy 
caused an overall reduction of protein synthesis.55 
Chronic high dietary energy also failed to increase 
protein synthesis.56 Based on those previous findings 
we conclude that the large increase in ribosome is a 
novel finding that requires further investigation.

Overall, use of the DIA indicated that lipid 
metabolism in liver was highly sensitive to level of 
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energy prepartum and PPAR signaling playing an 
important role in regulating it. The large increase in 
ribosome and, thus, the protein synthesis machinery due 
to overfeeding and underfeeding remains a puzzling 
discovery that should be studied in more detailed in the 
future. We are tempted to speculate that if such large 
increase in ribosome was translated into an overall 
greater protein synthesis it would have a dramatic 
effect on energy utilization for protein synthesis 
and, as such, could have placed an additional toll on 
the organ during this important physiological stage. 
What is clear from the analysis is that the postpartum 
responses represent a carryover effect due to chronic 
under or overfeeding during the dry period.

Perspectives
The breadth of knowledge that has been acquired 
on ruminant metabolism over the last half a century 
has allowed us to form a clearer picture of the key 
biochemical pathways, their “main” control points, and 
their response to nutrition in different tissues of the ani-
mal. The advent of genome-enabled technologies was a 
breakthrough, and groups across the world have already 
invested substantial amounts of resources in genome 
sequencing, annotation, and functional genomics (eg, 
transcriptomics), particularly in bovine. Availability of 
bioinformatics tools also has accelerated the interpreta-
tion of data from large-scale datasets. The development 
of the DIA was an attempt to provide a tool for analysis 
of time-course experiments in an integrative fashion. 
This tool has proven valuable for generating biologi-
cally-meaningful data from time-course transcriptomics 
experiments and has shown the capability for integra-
tive analysis; thus, it is a suitable platform for systems 
biology. The development of web-accessible resources 
of integrated data related to dairy cattle nutrition and 
physiology will be of value to comparative biologists.
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