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Abstract: An effective strategy to elucidate the signal transduction cascades activated by a transcription factor is to compare the 
transcriptional profiles of wild type and transcription factor knockout models. Many statistical tests have been proposed for analyz-
ing gene expression data, but most tests are based on pair-wise comparisons. Since the analysis of microarrays involves the testing of 
multiple hypotheses within one study, it is generally accepted that one should control for false positives by the false discovery rate 
(FDR).  However, it has been reported that this may be an inappropriate metric for comparing data across different experiments. Here 
we propose an approach that addresses the above mentioned problem by the simultaneous testing and integration of the three hypotheses 
(contrasts) using the cell means ANOVA model. These three contrasts test for the effect of a treatment in wild type, gene knockout, 
and globally over all experimental groups. We illustrate our approach on microarray experiments that focused on the identification of 
candidate target genes and biological processes governed by the fatty acid sensing transcription factor PPARα in liver. Compared to 
the often applied FDR based across experiment comparison, our approach identified a conservative but less noisy set of candidate genes 
with same sensitivity and specificity. However, our method had the advantage of properly adjusting for multiple testing while integrat-
ing data from two experiments, and was driven by biological inference. Taken together, in this study we present a simple, yet efficient 
strategy to compare differential expression of genes across experiments while controlling for multiple hypothesis testing.
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Introduction
Genome-wide transcriptional profiling, or transcrip-
tomics, is extensively used to study how cells respond 
to certain stimuli or to diagnose and predict clinical 
outcomes.1–4 Transcription factors (TFs) are the key 
effectors which control gene expression. From a 
 variety of research fields, including nutrition sciences, 
there is a major interest in characterizing the genes 
and networks that are controlled by transcription 
 factors. Advances in genome-wide expression profil-
ing methodologies and the availability of model sys-
tems offered new, powerful tools to address this.5–11

An effective strategy to elucidate the signal trans-
duction cascades activated by transcription factors is 
through transcriptional profiling. Transcription profil-
ing can be applied on gain- and loss-of-function TF 
mutants, and changes in global gene expression that 
are associated with the various phenotypes could then 
be used for a comprehensive understanding of TF 
function.6,7,11–13 To this end, transcription factor target 
genes have to be efficiently and accurately identified 
from the transcriptomics data set. It is important to 
realize that from a biological perspective, TF tar-
get genes are only those genes that do significantly 
respond upon treatment with a potent agonist or gain 
of function, in wild type but not mutant (knockout) 
models. However, from a statistical inference point 
of view the identification of biological relevant target 
genes from such 2 × 2 factorial experiments is less 
straight-forward.

It is generally accepted that statistical testing is 
required to reliable identify differentially expressed 
genes (reviewed in eg, Allison et al.14). Moreover, since 
the statistical analysis of microarrays involves the test-
ing of multiple hypotheses (genes) within one study, it 
is necessary to control for false  positives. A frequently 
used metric to quantify the level of confidence any 
particular gene is differentially expressed, that takes 
into account multiple testing, is the false discovery 
rate (FDR).14 Therefore in many studies a cutoff based 
on the FDR rather than P-value is used to select sig-
nificantly regulated genes within experiments, which 
subsequently are compared across experiments to 
identify transcription factor target genes. However, 
Higdon et al15 reported that the use of the FDR and 
its associated q-value may result in inconsistent and 
misleading interpretation of the comparisons across 
different experiments, especially when the effect sizes 

of the experiments vary dramatically, as for example 
is the case when comparing effects of potent agonists 
in wild type and TF knockout models.

Therefore, the purpose of the work described in the 
current paper is to present a strategy that optimally 
integrates and controls for multiple hypothesis test-
ing using data obtained from two biological systems 
that respond completely different to a  treatment. We 
outline our approach using one of our datasets on 
the mouse peroxisome proliferator-activated recep-
tor alpha (PPARα).16 PPARα is a TF belonging to 
the nuclear receptor superfamily, and is activated by 
a variety of compounds, including dietary fatty acids 
and their derivatives as well as synthetic agonists.17–19

Material and Methods
experimental data
We illustrate our approach (Fig. 1) on one of our pub-
licly available datasets (Gene Expression Omnibus 
(GEO) accession: GSE8295). This dataset was gener-
ated to identify PPARα target genes in mouse liver,16 
and was also used by Higdon et al15 to illustrate the 
inappropriateness of using the FDR as cut-off met-
ric when comparing two transcriptomics experiments 
with different effect sizes.

Briefly, pure bred wild type (129S1/SvImJ) 
and PPARα-null (129S4/SvJae-Pparatm1Gonz/J) 
mice20 were fed chow or chow supplemented with 
0.1% WY14643 (Chemsyn, Lenexa, KS) for 5 days 
(n = 4 mice per group). WY14643, ({4-Chloro-
6-[(2,3-dimethylphenyl)amino]-2-pyrimidinyl}-
sulfanyl)acetic acid (CAS: 50892-23-4), is a chemical 
that was developed by the pharmaceutical industry 
to lower serum cholesterol. It is not used in clinical 
applications, but it is rather used as prototype chemi-
cal to induce peroxisome proliferation. WY14643 
is a highly specific and potent agonist for PPARα 
and is therefore often used in studies on this nuclear 
receptor.21,22 On the sixth day, mice were anaesthe-
tized and livers were excised. Total RNA was pre-
pared using TRIzol reagent (Invitrogen, Carlsbad, 
CA) followed by purification using the RNeasy mini 
kit (Qiagen, Hilden, Germany). RNA integrity was 
checked by chip analysis (Agilent 2100 bioanalyzer, 
Agilent Technologies, Amsterdam, The Netherlands) 
according to the manufacturer’s instructions. RNA 
was judged as suitable for array hybridization only if 
samples exhibited intact bands corresponding to the 
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18S and 28S ribosomal RNA subunits, and displayed 
no chromosomal peaks or RNA degradation products, 
and had a RNA integrity number (RIN) above 8.0). 
The Affymetrix GeneChip RNA One cycle Amplifi-
cation Kit (Afffymetrix, Santa Clara, CA) was used to 
prepare labeled cRNA from 5 µg of total RNA, which 
subsequently was hybridized on Affymetrix Mouse 
Genome 430 2.0 plus arrays. The animal study was 
approved by the Local Committee for Care and Use 
of Laboratory Animals.

Cell means ANoVA model
The dataset on the identification of PPARα target 
genes in mouse liver has a 2 × 2 factorial design; 

that is factor ‘treatment’ has 2 levels (WY, Control), 
as has the factor ‘genotype’ (wild type, knockout). 
Analysis of variance (ANOVA) is commonly used for 
analyzing data from experiments with multiple cate-
gorical factors.23,24 To appropriately identify candidate 
PPARα target genes, we propose to perform and inte-
grate three comparisons using the cell means ANOVA 
model.25 For every probeset the model was defined as 
follows:

 Yijk = µij + εijk

where Yijk is the expression of a probeset at ith 
treatment (1 for WY, 2 for Control) in jth strain of 

Biological characterization

Candidate target genes

Contrast 1 and contrast 2 and

global contrast
Contrast 1 and global contrast

Obtain robust set of genes using cutoff FDR <  0.05
based on global contrast for all genes

UpDown

Select gene set X
based on biological
inference; that is
genes should only be
regulated in WT mice

x =

x

Global contrast
(contrast 1−contrast 2)

−

P < 0.05

Contrast 2
(KOtreated vs. KOcontrol)

Contrast 1
(WTtreated vs. WTcontrol)

Normalize array data and apply different contrasts
using the cell means ANOVA model

Gene null (−/−)Wild type (+/+)

(KO)(WT)

Treatment

Control

Figure 1. overview of our integrated strategy. 
notes: After normalization, transcriptome data are analyzed for differentially expressed probesets (genes) using three contrasts (comparisons): Contrast 1,  
representing probesets regulated by a specific treatment in wild type mice; Contrast 2, representing probesets regulated by the same treatment but in 
knockout mice, and global Contrast, representing genes differentially regulated by the treatment between the WT and Ko mice. Biologically irrelevant 
probesets, ie, probesets that are also regulated by the treatment in the Ko mice, are discarded, resulting in a set of probesets called X. To correct for multiple 
testing, FdR values of the probesets in X are calculated using the P-values obtained in global Contrast for all probesets. A robust set of putative target genes 
regulated by the knocked-out gene is obtained by selecting those probesets from X that fulfill a Global Contrast-based FDR cutoff, eg, FDR , 0.05. This set 
can subsequently be divided in up- and down-regulated genes.
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genotype (1 for WT, 2 for KO) and kth replication 
(n = 4), µij is the mean value of ith treatment and jth 
strain of each gene, and εijk is a random error term 
which follows normal distribution with mean = 0 and 
variance = σ2.

Formally, the definition of a contrast C is expressed 
below, using the notation µj for the jth treatment 
mean:

 C = c1µ1 + c2µ2 + … + cjµj + ...+ ckµk

where,  c c c cj k j
j

k

1
1

0+ + + + = =
=

∑ 

As stated before, from a biological perspec-
tive, candidate PPARα target genes are only those 
genes that do significantly respond upon treatment 
with the potent PPARα agonist WY14643 in wild 
type but not in PPARα knockout mice. Therefore 
three different contrasts (comparisons) from this 
2 × 2 factorial experiment were combined to infer 
the probesets that were significantly and PPARα-
dependently regulated. The different contrasts tested 
were (Table 1):

Contrast 1: H0: µ11 - µ21 = 0 versus H1: µ11 - µ21 ≠ 0, 
returning all probesets regulated in the wild type mice 
by the agonist WY;

Contrast 2: H0: µ12 - µ22 = 0 versus H1: µ12 - µ22 ≠ 0, 
returning all probesets regulated in the PPARα knock-
out mice by the agonist WY; and

Global Contrast: H0:(µ11 - µ21) - (µ12 - µ22) = 0 
versus H1: (µ11 - µ21) - (µ12 - µ22) ≠ 0, returning the 
overall differential expressed probesets in wild type 
versus knockout mice groups after treatment with 
WY compared to control.

The PPARα-dependently regulated probesets were 
then identified by extracting those probesets that 
were only significantly regulated in both Contrast 1 

and Global Contrast, and subsequently corrected for 
 multiple testing.

Implementation
All analyses were performed in R,26 using packages 
from the Bioconductor project.27 Probesets were rede-
fined according to Dai et al.28 In this study, probes 
were reorganized based on Entrez Gene database, 
build 36, version 2 (remapped CDF version 12). Our 
workflow was as follows (note that since we used a 
remappped chip definition file based on the Entrez 
Gene database, the terms probeset and gene are used 
interchangeably):

1. Expression estimates were obtained by GC-robust 
multiarray (GCRMA) normalization, using the 
empirical Bayes approach to adjust background.29

2. For each of the three above-mentioned contrasts, 
differentially expressed probesets (genes) were 
identified using linear models, as implemented in 
limma.30 For each contrast probesets were selected 
based on P , 0.05.

3. Probesets that were common only in Contrast 1 and 
the combined Global Contrast were identified. This 
set of probesets represented only transcription fac-
tor regulated genes, and was designated X.

4. Multiple testing was corrected for using a false dis-
covery rate method,31 based on the Global Contrast 
considering the output of all probesets. Probesets 
in X that satisfied the criterion FDR , 5% were 
considered to be transcription factor target genes.

An schematic overview of our implementation is 
also given in the Figure 1, and the R-code and other 
required files are available as supplemental material.

Validation
To validate our integrated approach, obtained results 
(Fig. 2) were compared to results from the across 
experiment comparison (Fig. 3) using two sets of 

Table 1. The contrasts defining the different hypotheses.

μij Levels contrast 1 
H0: μ11 - μ21 = 0

contrast 2 
H0: μ12 - μ22 = 0

Global contrast 
H0:(μ11 - μ21) - (μ12 - μ22) = 0

µ11 Wy, WT 1 0 1
µ12 Wy, Ko 0 1 -1
µ21 Con, WT -1 0 -1
µ22 Con, Ko 0 -1 1
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as cutoff. This cutoff value was chosen because for 
the identification of transcription factor target genes 
a high specificity is required (.80%) before con-
sidering its sensitivity.34 In addition, the biological 
features that were overrepresented in the lists of can-
didate PPARα target genes that were generated on 
the basis of both approaches were analyzed with the 
software tool Ontologizer,35 applying the ‘parent-
child-union’ (PCU) algorithm and using the biologi-
cal process ontology of Gene Ontology.

Results and Discussion
Identification of candidate  
PPARα target genes
The application of transcriptomics to compare the 
effects of specific agonists, such as WY14643, in 
wild type and PPARα knockout mice is a power-
ful approach to identify candidate PPARα target 
genes.12,13 However, when comparing across different 
experiments the use of FDR cutoff values may result 
in inconsistent and misleading interpretation of the 
data.15 In this study we propose a simple yet effec-
tive strategy that avoids comparing probesets across 
experiments based on FDR values while still con-
trolling for multiple testing. Testing three  different 

Contrast 2Contrast 1

Global contrast

size: 1540size: 5458

size: 4282

Down: 1107 Up: 1325

Numbers based
on P < 0.05

1259

3345

555

246

136

299
440

KO.WY-KO.ConWT.WY-WT.Con

(WT.WY-WT.Con) − (KO.WY-KO.Con)

Gene set X: 3345 genes, of which 2432 had FDR < 0.05
(based on FDR calculated on Global Contrast data taking
all 16392 genes into account)

Significant go
catgories

Candidiate PPARα target genes

X

28

Figure 2. Application of the integrated approach on PPARα dataset 
gSe8295. 
notes: expression estimates were calculated by gCRMA  normalization. 
Differentially expressed probesets were identified using three contrasts 
using P-value , 0.05. Contrast 1, representing probesets regulated by 
the specific PPARα agonist WY in wild type mice; Contrast 2, representing 
probesets regulated by Wy14643 in PPARα knockout mice, and global 
Contrast, representing probesets differentially regulated by Wy14643 
between the WT and PPARα Ko mice. Biologically irrelevant probesets, 
i.e. those 854 probesets that were regulated by Wy14643 in both WT 
and PPARα Ko mice, were discarded, resulting in a set of probesets 
called X of size 3345 that were only regulated in  Contrast 1 and global 
Contrast. To correct for multiple testing, FdR values  (Benjamini hochberg 
procedure) of the probesets in X were calculated based on the P-values 
for all probesets obtained in global Contrast. A robust set of candidate 
PPARα target genes was obtained by selecting those 2432 probesets 
from X that had global Contrast-based FdR value , 0.05. This set was 
divided in 1325 up- and 1107 down-regulated probesets.

well-established PPARα target genes obtained from a 
recent review (Table 1 from Rakhshandehroo et al32). 
These sets are available as supplemental material. The 
true positive rate (sensitivity) as function of the false 
positive rate (1-specificity) for different cutoff points 
was plotted for both the across experiment compari-
son and our integrated approach using the R-library 
ROCR.33 The partial area under the ROC curve was 
calculated using P = 0.2 (thus  1-specificity = 0.2) 

Contrast 2Contrast 1

size: 12size: 4324

Numbers based on FDR < 0.05

4314 10 2

KO.WY-KO.ConWT.WY-WT.Con

Figure 3. The FdR based across experiment comparison of PPARα 
dataset gSe8295. 
notes: expression estimates were calculated by gCRMA normalization. 
Differentially expressed probesets were identified in each contrast. Using 
a FdR value , 0.05 criterion, 4324 probesets were regulated in the wild 
type experiment (Contrast 1), whereas 12 genes were changed in the 
knockout experiment (Contrast 2). of these 12 genes, 10 were also 
regulated in the wild type experiment. Thus, when comparing across 
experiments with a FdR value cutoff level of 0.05, 4314 genes were 
considered PPARα target genes.
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hypotheses (contrasts) for each probeset allowed the 
robust identification of transcription factor target 
genes. Since only the interaction effects are of inter-
est for identifying candidate target genes, the cell 
means ANOVA model was used to infer this 2 × 2 
factorial design.

The number of probesets significantly regulated 
(P , 0.05) upon PPARα activation by WY14643 in 
wild type mice (= Contrast 1) equaled to 5458, 
whereas in PPARα -/- mice (Contrast 2) this number 
was only 1540 (Fig. 2).

Such a large difference was expected since the 
KO mice do not express any functional PPARα. The 
Global Contrast, incorporating expression informa-
tion for all probesets in all groups, identified 4282 
significantly regulated probesets (P , 0.05) (Fig. 2), 
representing genes that from an inferential  perspective 
are differentially regulated by WY between the two 
mouse strains. However, these included genes that 
for example were only regulated in the KO mice, or 
were regulated in wild type and, although to a lesser 
extent, still in KO mice. To filter out these ‘biologi-
cal irrelevant’ genes, only probesets that were com-
mon in Contrast 1 and Global Contrast were retained, 
resulting in a set of 3345 probesets, which was called 
set X. Thus, this set X contained only probesets that 
from a biological perspective fulfill the criterion of 
being candidate PPARα target genes. To correct for 
multiple testing, FDR values of the 3345 genes in X 
were calculated based on all 16392 genes in Global 
Contrast, since in this comparison statistical inference 
was simultaneously adjusted for both experiments in 
wild type and knockout mice. Finally, a robust set of 
PPARα target genes was obtained by selecting those 
2432 probesets from set X that fulfilled the criterion 
FDR , 0.05 (Fig. 2). Of these, 1325 probesets were 
induced and 1107 probesets were suppressed.

For comparison, we also generated a list of candi-
date PPARα target genes that were generated on the 
basis of directly comparing the wild type and knock-
out experiment using a FDR cutoff (Fig. 3). Note 
that this frequently used approach is criticized15 and 
that it is in essence identical to the analysis strategy 
published and interpreted by Rakhshandehroo et al16, 
except that these authors also employed a fold change 
cutoff. Using a FDR cutoff of 0.05, we identified 
4324 probesets that were regulated in the wild type 
experiment (Contrast 1), whereas 12 probesets were 

changed in the knockout experiment (Contrast 2). Of 
these 12 probesets, 10 were also regulated in the wild 
type experiment. Thus, the FDR based comparison of 
these two experiments identified 4314 probesets that 
should be considered PPARα target genes.

The number of FDR based selected probesets 
was about twice as large as the list of probesets 
obtained using our integrated approach (4314 versus 
2432 probesets). Comparison of these two sets of can-
didate genes revealed that almost all (i.e. 99%) of the 
probesets obtained by our integrated approach were 
also identified when using a FDR cutoff (Fig. 4). This 
indicates that while Global Contrast is more conser-
vative it will identify similar if not identical biologi-
cal features (see also section on validation).

It is important to realize that the results of statis-
tical hypothesis testing are never free of error. Two 
types of error are distinguished: type I error, i.e. 
rejecting the null hypothesis when it is in fact true, 
and type II error, i.e. not rejecting the null hypothesis 
when in fact the alternative hypothesis is true. In other 
words, occurrence of the former leads to inclusion of 
false positives whereas the latter leads to inclusion 
of false negatives. Consequently, we cannot exclude 
that the set of 1911 probesets that were discarded by 
Global Contrast contained false negatives that other-
wise would have been retained. However, especially 
within the context of genome-wide screening studies 

FDR-based
target genes

Global contrast-
based target genes

size: 2432size: 4314

Numbers based on FDR < 0.05

1911 2403 29

Figure 4. Venn diagram of the identified candidate PPARα target genes 
obtained by our integrated approach or the FdR based across experiment 
comparison of PPARα dataset gSe8295. 
note: Almost all (99%) of the candidate target genes identified by 
our proposed approach were also identified in the FDR based across 
experiment comparison.
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for candidate genes, we believe that limiting type I 
error is of primary concern, and that of type II error 
is of secondary importance. Thus, to err on the safe 
side we prefer to control for false positives rather than 
for false negatives. Moreover, the probesets that were 
discarded by Global Contrast were characterized by 
a relatively low effect size compared to the probe-
sets that were still included. The mean of the abso-
lute coefficients (log2 of the fold-change) of the 
excluded probesets was 0.36 (equaling to a mean fold 
change of 1.28), and was 0.87 (mean FC = 1.83) for 
the included probesets. Taken together, we showed 
that compared to the FDR based across experiment 
comparison our approach identified a conservative 
set of more robustly regulated candidate PPARα tar-
get genes. We believe this is advantageous because a 
clear overview of candidate genes and corresponding 
biological process normally is aimed for.

Validation
To compare the performance of our integrated 
approach with that of the FDR based across experi-
ments comparison, we first performed a sensitivity 
versus specificity analysis. To this end two benchmark 
sets of well-established PPARα target genes were 
selected from a review that summarized the latest 
literature on this topic.32 We created two benchmark 
sets; one set containing only 32 genes, and another set 
containing 189 genes. The smaller benchmark set con-
tained only genes that were demonstrated to be bona 

fide PPARα target genes in both human and mouse 
liver and that do contain a functional PPAR response 
element (PPRE) in the regulatory regions. The larger 
benchmark set contained all genes that were dem-
onstrated to be PPARα-dependently regulated in 
mouse liver but for which no functional PPRE has 
yet been identified. We next plotted the true positive 
rate (sensitivity) as function of the false positive rate 
(1-specificity) for different cutoff points for both our 
integrated approach and the across experiment com-
parison (Fig. 5).

Even though our approached identified a conser-
vative list of candidate genes, we observed that it 
performed very similar to the across experiment com-
parison in identifying known PPARα target genes, 
which was also reflected by almost identical partial 
area under the ROC curve (pAUC; P = 0.2) for both 
methods. Values were 0.129 and 0.121, respectively 
for the across experiment comparison and our inte-
grated approach when the smaller set of 32 PPARα 
target genes was used, whereas these numbers were 
0.128 and 0.124, respectively, for the larger set of 
189 putative PPARα target genes.

Next we detected and compared the biological fea-
tures that were overrepresented in the lists of candi-
date PPARα target genes that were either generated 
by our approach or the across experiment comparison. 
Enriched biological processes were identified by over-
representation analysis based on Gene  Ontology (GO) 
categories, which is a  generally accepted procedure to 
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Figure 5. Sensitivity versus specificity of our proposed method and the across experiment comparison. 
notes: The sensitivity versus specificity was analyzed using two benchmark lists of established PPARα target genes derived from literature. (panel A) RoC 
curve for both methods using a set of 32 benchmark genes that were demonstrated to be PPARα target genes in both human and mouse liver and that do 
contain a functional PPAR response element (PPRe) in the regulatory regions. (panel B) RoC curve for both methods using a set of 189 benchmark genes 
that were demonstrated to be PPARα-dependently regulated in mouse liver but for which no functional PPRE has been identified yet. Red lines: ROC curves 
of our integrated approach; Black lines: ROC curves of the across experiment comparison.
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achieve this.14 To this end the software tool Ontolo-
gizer was used,35 applying the ‘parent-child-union’ 
(PCU) algorithm. This algorithm takes the graph 
structure of GO into account, thereby reducing false-
positive and biologically misleading results.36 We ran 
the PCU algorithm on the biological process ontology 
of GO. Using the Benjamini-Hochberg correction for 
multiple testing and a cutoff of 0.05, 27 significantly 
enriched categories (out of 172 annotated categories) 
were returned in the list of 4314 putative PPARα tar-
get genes obtained by comparing the wild type and 
knockout experiment (Fig. 6A).

Similarly, using the same criteria 28 significantly 
enriched categories (out of 169 annotated categories) 
were scored in the list of 2432 genes generated by our 
integrated approach (Fig. 6B). Twenty-five identified 
enriched biological processes were identical in both 
sets of genes. As expected, many processes that were 
enriched have been functionally demonstrated to be 
controlled by PPARα, including cellular ketone meta-
bolic process, lipid metabolic process, cellular amino 
acid and derivative metabolic process, peroxisome 
organization, and mitochondrion organization.17,37,38 

Thus, despite the drastically reduced number of 
candidate PPARα target genes identified by our 
approach, GO enrichment analysis demonstrated a 
very similar functional characterization of these genes, 
again demonstrating the validity of our strategy.

conclusions
Taken together, in this study we present a simple, yet effi-
cient strategy to compare genes across experiments that 
controls for multiple testing and is able to properly detect 
differentially expressed genes. Compared to the conven-
tional used FDR based across experiment comparison, 
our approach is more conservative and less noisy. Our 
approach is in particular suitable to identify candidate tar-
get genes of a transcription factor or signaling route from 
functional  genomics experiments, but can be applied to 
any genomics experiment in which the effects of a treat-
ment are compared between two genotypes.
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Figure 6. Significantly enriched Gene Ontology categories found in the two lists of candidate PPARα target genes. 
notes: Enriched biological processes were identified in the two lists of candidate PPARα targets genes generated by the across experiment comparison 
(panel A), or our integrated approach (panel B). All significant probesets identified by the respective methodologies were used as input. The ‘parent-child-
union’ algorithm was applied followed by the Benjamini-hochberg correction for multiple testing to identify enriched go categories. In both lists the same 
underlying biology was identified. 
Abbreviations: NSP, name space (sub ontology); B, Biological process.
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