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Abstract: Caspofungin is the first member of the echinocandin class of antifungals to receive an indication for the use in infants, 
children, and adolescents from the United States Food and Drug Administration. Daily doses of 50 mg/m2 result in pharmacokinetic 
parameters that are similar to those observed in adults. Although fewer data are available, the response rates in pediatric patients who 
received caspofungin either as treatment or empiric therapy in clinical trials are similar to those reported in adults. In addition, caspo-
fungin appears to be generally safe and well tolerated in this population. This represents a significant step forward in the treatment of 
invasive fungal infections within this population, as caspofungin is associated with few clinically significant drug-interactions and 
toxicities compared to other antifungals, such as the azoles and amphotericin B.

Keywords: caspofungin, echinocandins, pediatrics, neonates, candidiasis, aspergillosis, invasive fungal infections

http://dx.doi.org/10.4137/CMPed.S8016
http://www.la-press.com
http://www.la-press.com
http://www.la-press.com
http://www.la-press.com/clinical-medicine-insights-pediatrics-journal-j78
mailto:wiederholdn@uthscsa.edu


wiederhold and Herrera

20 Clinical Medicine insights: Pediatrics 2012:6

Introduction
Invasive fungal infections are a growing complication 
in preterm neonates and immunocompromised pedi-
atric patients. In the adult population, the incidence 
and treatment of these infections have been well docu-
mented and treatment guidelines are available for many 
invasive mycoses.1 However, this has not been the case 
in the pediatric area where there are currently no treat-
ment guidelines that specifically address this popula-
tion with regards to invasive fungal infections.2 Indeed, 
most therapeutic recommendations for pediatric 
patients are extrapolated from clinical trials conducted 
in adults.3 In addition, there is a wide variation in the 
diagnostic methods used to establish the presence of 
invasive fungal infections in pediatric patients. Blood 
cultures are considered the gold standard for diagnosis 
of candidiasis, but have low sensitivity and are sub-
ject to delays in reporting.4 Delays in the diagnosis of 
these infections may result in long-term consequences 
as early detection and initiation of appropriate antifun-
gal therapy contribute to the successful management 
of invasive mycoses. Indeed, neurodevelopmental out-
comes have been related to the initiation of antifungal 
therapy in pediatric patients as improved outcomes 
have been observed when treatment was started early.4–6 
The response to antifungal therapy in children can vary 
depending on the age of patients. In preterm neonates, 
responses to treatment and favorable outcomes may be 
hindered by both impaired neutrophil chemotaxis and 
bactericidal activity, while children undergoing high 
dose chemotherapy can have variable T-cell recovery 
depending on their age.7

In the United States Candida species are the fourth 
most common cause of nosocomial bloodstream 
infections and are associated with significant 
mortality.8,9 Compared to hospitalized adults, children 
have a higher incidence of nosocomial candidemia, 
but an overall lower mortality rate.10 However, these 
infections in pediatric patients are associated with 
significant increases in both the length of stay as well 
as per patient hospital charges compared to adults.10 
The most commonly isolated pathogen in both children 
and adults is Candida albicans. In pediatric patients, 
especially those less than 2 years of age, this is followed 
by C. parapsilosis. As they become older and move 
into adolescence the causative agents of candidiasis 
change, and the incidence of infections caused by 
C. glabrata increases and this species becomes the 

second most commonly isolated pathogen.10,11 Highly 
immunocompromised pediatric patients are at risk 
for invasive aspergillosis, including those receiving 
chemotherapy for hematologic malignancies, patients 
receiving high doses of corticosteroids, neutropenic 
patients, and recipients of hematopoietic stem cell 
transplants. Currently, very little is known about the 
incidence of other invasive fungal such as mucormycosis 
and cryptococcosis within this population.11

In the United States fewer medications are approved 
by the Food and Drug Administration (FDA) for 
use in children than in adults. Due to the difficulty 
in conducting pediatric clinic trials and the lack of 
return on investment, most medications lack sufficient 
pediatric pharmacokinetic/pharmacodynamic data 
as well as safety and efficacy studies. To encourage 
manufacturers to undertake clinical studies, the FDA 
has granted a 6-month market exclusivity to the first 
company that conducts the required clinical studies and 
obtains approval for the pediatric indication. A provision 
in the law allows if the disease and the effect of the drug 
are similar in adults and pediatric patients, the pediatric 
effectiveness can be extrapolated from “adequate and 
well-controlled studies in adults” with supplementation 
of other information (pharmacokinetic data) obtained 
in pediatric patients.12 Also, a study in each age group 
may not be needed if data from one group can be 
extrapolated to another. These provisions allow for 
faster time to approval. In the United States antifungals 
that have a pediatric indication for the treatment 
of invasive fungal infections include the azoles 
fluconazole and voriconazole, and the pyrimidine 
5-flucytosine. Other agents that are frequently used 
in this population include the polyene amphotericin B 
deoxycholate and the lipid formulations of this agent. 
These antifungals are often associated with significant 
toxicities and drug-interactions due to non-specific 
interactions with mammalian cell membranes and 
cytochrome P450 enzymes. The echinocandins, which 
include anidulafungin, caspofungin, and micafungin, 
have been a welcome addition to the antifungal 
armamentarium. Currently, caspofungin is the only 
enchinocandin with a pediatric indication in the United 
States. The purpose of this review is to discuss the 
pharmacology and spectrum of activity caspofungin 
as well as the pharmacokinetics, clinical efficacy, 
and safety profile of this echinocandin in pediatric 
patients.
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pharmacology
Mechanism of action
The fungal cell wall of Candida and Aspergillus 
species are composed of mannoproteins on the 
exterior surface, β-glucans, and chitin, which serves 
as an anchor to the cell membrane. The polysaccharide 
(1,3)-β-D-glucan, which is synthesized by the 
glucan synthase complex anchored to the cell 
membrane, is found in abundance within the cell 
wall and helps to provide shape and integrity. 
The echinocandins non-competitively inhibit the 
synthesis of these polymers leading to osmotic 
instability and eventually cell lysis.13,14 Inhibition of 
the glucan synthase complex is an attractive target 
due to the lack of homologous enzymes in human 
cells, thus affording a high degree of selectivity for 
fungi with few toxicities and clinically relevant drug 
interactions that are associated with amphotericin B 
formulations and the azoles. As the glucan synthase 
complex is located at the growing apical tips and 
branch points of hyphae in Aspergillus species, 
exposure to caspofungin results in the inhibition 
of (1,3)-β-D-glucan synthesis at these sites.13,15,16 
Morphologically, this leads to swollen apical tips 
and abnormally branched, stubby hyphae.

Spectrum of activity
Caspofungin, like each member of this class, is a rela-
tively broad-spectrum antifungal agent with activity 
against Candida species, Aspergillus, and mycelial 
forms of endemic fungi.17–25 Caspofungin has also 
been shown to maintain activity against azole- resistant 
Candida isolates.26 However, concerns regarding the 
development of co-resistance between the azoles 
and the echinocandins in C. glabrata isolates have 
arisen.27,28 Reduced in vitro potency has been reported 
for each member of this class against Candida parap-
silosis and Candida guillermondii. However, there 
are notable holes in the spectrum of activity of the 
echinocandins, and this includes Cryptococcus spe-
cies, Fusarium species, and the causative agents of 
mucormycosis (eg, Rhizopus, Rhizomucor, Mucor-
ales, and Cunninghamella).

Mechanism of resistance
Numerous case reports have been published describ-
ing clinical failures with the echinocandins that are 
associated with elevated MIC values in patients 

with invasive infections caused by C. albicans, 
C. glabrata, C. parapsilosis, C. tropicalis, and 
C. krusei.29–35 This rise in echinocandin MIC values 
has been linked to mutations in the FKS1 and FKS2 
genes, which encode portions of the β-glucan syn-
thase enzyme,32,33 and this is consistent with in vitro 
studies that have also reported reduced echinocan-
din activity with point mutations in these genes.36,37 
In C. albicans and C. glabrata the majority of the 
mutations reported resulted in an amino acid change 
from serine at positions 645 and 663, respectively, of 
the glucan synthase enzyme.36,38 In C. parapsilosis 
a naturally occurring amino acid change is pres-
ent within the glucan synthase enzyme, which 
explains the reduced potency of this class of anti-
fungal against this Candida species.39 Many of the 
case reports of caspofungin clinical failures have 
described progressive increases in MIC values for 
each echinocandin after an extended period therapy 
in patients with multiple comorbidities.29,34 Thus, 
mutations in FKS1 and FKS2 appear to confer resis-
tance for each echinocandin and are not specific for 
a particular member of this class. It is unknown if 
other mechanisms that have been reported to cause 
reduced echinocandin in vitro activity, such as over-
expression of the Golgi protein Sbe2p involved in 
cell wall component transport,40 upregulation of the 
cell wall integrity pathway,41 or increases in chi-
tin concentrations in the cell wall,42 may also be of 
clinical significance as mutations in FKS1 and FKS2 
have not always been reported with elevated echi-
nocandin MICs.29,30 Despite increases in the number 
of case reports of echinocandin clinical failure asso-
ciated with elevations in MIC values, surveillance 
studies have not revealed a significant change in the 
activity of the echinocandins against Candida spe-
cies, and the incidence of clinical failure associated 
with microbiological resistance is very low.43–46

Pharmacodynamics
The echinocandins demonstrate concentration depen-
dent activity. Against Candida species, this activity 
is fungicidal in vitro, and time-kill studies against 
different species have reported a .3 log10 reduction 
in colony-forming units per mL from the starting 
inoculum following exposure to the echinocandins.47 
 However, this has not been consistently demonstrated 
in all studies as static activity has been reported 
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against some Candida clinical isolates.48 In the pres-
ence of serum or albumin the activity of the echi-
nocandins is reduced, and this reduction in potency 
has been demonstrated using different in vitro assays, 
including microbroth susceptibility testing, the XTT 
colorimetric viability assay, and time-kill studies.49–51 
This is likely due to the high protein binding of these 
agents leading to a reduction in the free fraction that 
is able to inhibit (1,3)-β-D-glucan synthase activity.52 
Animal studies have also reported concentration-
 dependent activity for the echinocandins against 
infections caused by Candida and Aspergillus species. 
In a murine model of disseminated candidiasis caused 
by C. glabrata, the pharmacokinetic/pharmacody-
namics (PK/PD) parameter most closely associated 
with reductions in tissue fungal burden for caspo-
fungin was the area under the concentration curve 
to minimum inhibitory concentration (AUC/MIC) 
ratio, followed closely by peak to MIC (Cmax/MIC) 
ratio.53 Concentration-dependent activity has also 
been observed with caspofungin in a murine model 
of invasive pulmonary aspergillosis where the Cmax/
MEC ratio was associated with significant reductions 
in pulmonary fungal burden.54

pharmacokinetics
The pharmacokinetic profile of caspofungin in chil-
dren and adolescents has been extensively  evaluated. 
This was accomplished using a staged approach 
with the first study evaluating the pharmacokinetics 
and safety of this echinocandin in children and ado-
lescents 2 through 17 years of age.55 In this multi-
center, open-label, sequential-dose escalation study, 
39 clinically stable pediatric patients with a history of 
underlying hematological or solid-organ malignancy, 
hematopoietic stem cell transplantation, or aplastic 
anemia received caspofungin with the primary goal 
of identifying a dosing regimen that yielded plasma 
concentrations similar to those observed in adults. 
The pharmacokinetic values measured in children and 
adolescents were then compared to those obtained in 
adult patients with mucosal candidiasis at doses of 50 
or 70 mg/day.56–58 Initially, patients were enrolled into 
a weight based (1 mg/kg/day) regimen, and weight 
based strategies are currently used for micafungin 
and anidulafungin in pediatric patients.59 However, 
the overall caspofungin exposure with the weight-
based strategy, as measured by the area under the 

 concentration curve from 0 to 24 hours (AUC0–24), 
was found to be substantially lower than that obtained 
in adults at a daily dose of 50 mg (56.3 µg × hr/mL 
 versus 103 µg × hr/mL). Based of this finding, the 
study was amended to evaluate dosing based on body 
surface area (BSA) at doses of 50 and 70 mg/m2/day up 
to a maximum of 70 mg/day. In children the AUC0–24 
obtained with multiple 50 mg/m2 doses was similar 
to that observed in adults. However, the plasma con-
centration of caspofungin obtained 1 hour after the 
end of the infusion (C1 hr) was higher in children 
compared to adults while he trough level obtained 
24 hours after the dose (C24  hr) was lower. These find-
ings were explained by the faster rate of decline in 
the plasma concentration-time profile in children as 
evident by the shorter β-phase half-life (8.2 hours) 
compared to adults (13 hours). In adolescents, each of 
the pharmacokinetic parameters (AUC0–24, C1 hr, C24 hr, 
and β-phase half-life) was similar to those in adults 
who received doses of 50 mg/day. Most of the adoles-
cent patients (6 of 8) received the maximum dose of 
70 mg/day and all received doses of .50 mg/day.

Following this study in children and adolescents, 
a second study was conducted to assess the pharma-
cokinetics of caspofungin in infants and toddlers.60 In 
this multicenter, open-label study, infants and toddlers 
between the ages of 3 and 24 months with leukemia, 
lymphoma or other cancers, bone marrow or periph-
eral stem cell transplantation, high-dose chemother-
apy, or aplastic anemia were eligible if they were 
neutropenic (absolute neutrophil count , 500/mm3) 
and had at least one fever . 38 °C. Nine patients were 
enrolled and each received caspofungin at a dose of 
50 mg/m2/day. The pharmacokinetic parameters mea-
sured in these younger patients were then compared 
to those obtained in older children (2–11 years) and 
adolescents (12–17 years) who received doses of 
50 mg/m2/day from the trial described above,55 as 
well as adults with mucosal candidiasis who received 
caspofungin at doses of 50 or 70 mg/day.56,57,61 
Following multiple doses, the plasma concentration 
profile of caspofungin in infants/toddlers was similar 
to that observed in children and adolescents. Similar 
to what was observed in children age 2–11 years, 
higher C1 hr plasma concentrations were measured 
in these younger children (17.21 µg/mL) compared 
to adults (9.39 µg/mL) while the C24 hr concentra-
tion (1.64 µg/mL) was lower (2.01 µg/mL), although 
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this difference was not  statistically significant. These 
observations of higher C1 hr and lower C24 hr concen-
trations are consistent with the shorter β-phase half-
life observed in these younger patients (8.80 hours). 
Interestingly, the AUC0–24 was statistically higher in 
infants/toddlers (130.39 µg × hr/mL) than in adults 
(103.38 µg × hr/mL). The exact reason for the dif-
ferences in C1 hr, C24 hr, and β-phase half-life pharma-
cokinetic  parameters observed between children and 
adults in these two studies is unclear. The authors 
speculated that these differences may be due to 
changes in  expression levels of uptake transporters 
during the course of developmental maturity, such as 
the OATP1B1 transporter that may be involved in the 
hepatic uptake of caspofungin,62 as well as differences 
in physiological factors such as blood flow rates and 
organ sizes that may change caspofungin clearance 
with age. However, it is unlikely that these differences 
are clinically significant as the steady-state exposures 
of caspofungin (ie, AUC0–24) are similar among the 
different age groups. The pharmacokinetic parameters 
found in children and adolescents from these two stud-
ies, as well as those from adults are shown in Table 1.

It should be noted that in these two pharmacoki-
netic studies in infants/toddlers and children and 
adolescents a loading dose was not administered. 
However, the administration of a loading dose of 
70 mg/m2 on the first day of therapy is recommended 
in the package insert.63 In the clinical trials that evalu-
ated the efficacy of caspofungin for the treatment of 
invasive fungal infections or as empiric therapy in 
the setting of febrile neutropenia children and ado-
lescents did receive a loading dose followed by daily 

maintenance therapy.64,65 Although these published 
studies did not report plasma concentration data, the 
pharmacokinetic parameters from these studies were 
reviewed by the US FDA when approval of caspo-
fungin was sought in pediatric patients.66 As also 
shown in Table 1, each of the three pharmacokinetic 
parameters was elevated in children and adolescents 
who received a loading dose of this echinocandin. 
The reasons for this remain unclear as the adminis-
tration of a loading dose should not influence plasma 
concentrations once steady-state is achieved. It was 
noted that this difference in steady-state pharmacoki-
netic parameters between pediatric patients who did 
and did not received loading doses of caspofungin 
was not expected to be clinically important as the 
rates of adverse events reported in the studies that 
used a loading dose in pediatric patients were similar 
to those previously observed in adults.64–66

Following the completion of these studies in 
which plasma concentrations of caspofungin were 
measured in pediatric patients, a retrospective review 
was conducted to determine if there was a correlation 
between treatment outcomes and pharmacokinetic 
parameters.67 In this study, the pooled clinical response 
data from the 125 pediatric patients who were enrolled 
in the two phase I studies and two efficacy trials were 
evaluated in relation to caspofungin pharmacokinetic 
parameters and the incidence of adverse effects.55,60,65,68 
This included 32 patients with invasive candidiasis, 
10 with invasive aspergillosis, and 82 who received 
empiric therapy in the setting of febrile neutropenia. 
The effects of patient characteristics and con current 
medications on caspofungin pharmacokinetics 

Table 1. Pharmacokinetic parameters (arithmetic mean ± standard deviation) of caspofungin in patients 3 months–17 years 
of age and adults. 

Age group 3–23 mos. 2–11 yrs. 12–17 yrs. Adults
Daily caspofungin doses of 50 mg/m2 (without a loading dose)
C1 hr (µg/mL) 17.6 ± 3.9 16.1 ± 4.2 14.0 ± 6.9 8.7 ± 2.1
C24  hr (µg/mL) 1.7 ± 0.7 1.7 ± 0.8 2.4 ± 1.0 1.7 ± 0.7
AUC0–24 hr (µg × hr/mL) 131.2 ± 17.7 120.0 ± 33.4 124.9 ± 50.4 87.3 ± 30.0
Half-life (hrs) 8.8 ± 2.1 8.2 ± 2.4 11.2 ± 1.7 –
Cl (mL/min) 3.2 ± 0.4 6.4 ± 2.6 12.6 ± 5.5 –
70 mg/m2 loading dose on day 1 followed by daily doses of 50 mg/m2

C1 hr (µg/mL) 24.1 18.2 ± 5.9 16.9 ± 7.2 8.7 ± 2.1
C24 hr (µg/mL) 4.4 3.0 ± 2.1 3.6 ± 1.1 1.7 ± 0.7
AUC0–24 hr (µg × hr/mL) 223.5 165.8 ± 59.1 168.7 ± 49.5 87.3 ± 30.0
notes: Children and adolescents received daily doses of 50 mg/m2 or 70 mg/m2 loading dose and a maintenance dose of 50 mg/m2. Adults received  
50 mg/day following a single loading dose of 70 mg.
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were also evaluated. Of the three pharmacokinetic 
parameters that were evaluated (AUC0–24, C1 hr, and 
C24 hr), none were found to be significantly associated 
with clinical outcome. In addition, when the in vitro 
activity of caspofungin against the isolates collected 
from these patients was included in this analysis, 
none of the three pharmacokinetic/pharmacodynamic 
parameters (AUC0–24/MIC, C1 hr/MIC, and C24 hr/MIC) 
was found to be a significant factor for predicting 
clinical or microbiological response. Interestingly, 
new onset fever and neutropenia were associated 
with moderate decreases in caspofungin exposure 
(25% reduction in AUC0–24) and trough levels (35.9% 
reduction in C24 hr) compared to patients with persistent 
fever and neutropenia. Greater pharmacokinetic 
variability also appeared higher in those who weighed 
less compared to heavier patients. Three medications 
were associated with statistically significant reductions 
in caspofungin pharmacokinetic parameters in these 
patients: dexamethasone and vancomycin, which 
reduced caspofungin trough levels, and acyclovir, which 
was found to result in decreased C1 hr concentrations. 
The reduced concentrations associated with 
dexamethasone use are consistent with the changes in 
caspofungin levels observed in adults who are receiving 
concomitant inducers of drug clearance. There were no 
associations between pharmacokinetic parameters and 
clinical adverse effects, and only ALT . 2.5 times the 
baseline value and caspofungin C24 hr concentrations 
was found to be statistically significant.

The pharmacokinetics of caspofungin have also 
been evaluated in neonates and infants. In this small 
study, patients less than three months of age who 
were receiving an intravenous amphotericin B for-
mulation for invasive candidiasis were enrolled to 
receive either a single dose (n = 6) or multiple doses 
(n = 12) of caspofungin at 25 mg/m2.69 Peak (C1 hr) and 

trough (C24 hr) plasma concentrations were then mea-
sured either on day 1 or day 4 of therapy. Thirteen of 
the eighteen patients enrolled had a gestational age 
of ,36 weeks. The levels that were achieved were 
then compared to those previously measured in 
adults,56,57,61,70 as well as children and adolescents.55,60 
The peak concentrations of caspofungin in neonates 
and infants were similar to those achieved in adults 
with esophageal candidiasis both on day 1 and day 4, 
but were moderately higher than those observed in 
adults with invasive candidiasis (Table 2). In contrast, 
trough concentrations in this young population were 
elevated compared to adults who received caspo-
fungin for either indication. Compared to children 
and adolescents, caspofungin peak concentrations 
were lower in neonates and infants, while trough 
concentrations were somewhat increased. It should 
be noted though that the dose used in neonates and 
infants (25 mg/m2) was half that used in children and 
adolescents (50 mg/m2). These results are consistent 
with the reduced clearance in neonates and infants 
relative to older pediatric patients, and that clearance 
of this echinocandin may increase from infancy to 
childhood. Although a high rate of clinical and labo-
ratory adverse events was observed in this study, this 
was expected due to the nature of this population, 
and none of these adverse effects was considered by 
the investigators to be due to caspofungin. Interest-
ingly, a reduction in hemoglobin was the most com-
mon laboratory adverse event. However, no patients 
discontinued caspofungin due to this or any other 
laboratory adverse events.

Drug Interactions
One of the main advantages of the echinocandins, 
including caspofungin, is the drug interaction pro-
file. As each echinocandin is neither a substrate nor 

Table 2. Day 4 peak (C1 hr) and trough (C24 hr) concentrations of caspofungin in neonates and infants compared to children 
and adolescents, and adults who received doses of 50 mg/day for esophageal candidiasis or a 70 mg loading dose followed 
by 50 mg daily doses for invasive candidiasis.

neonates/infants  
25 mg/m2

3–24 mos. 
50 mg/m2

2–11 yrs. 
50 mg/m2

12–17 yrs. 
50 mg/m2

Adults 
50 mg/day

Adults 
70 mg LD 
50 mg/day

C1 hr—day 4  
(µg/mL)

11.1 16.5 15.6 13.5 9.4 7.0

C24 hr—day 4  
(µg/mL)

2.4 1.4 1.3 2.2 2.0 1.5
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inhibitor or inducer of mammalian cytochrome P450 
enzymes, there are few clinically significant drug 
interactions associated with members of this antifun-
gal class. This is in contrast to the azoles, which are 
associated with numerous drug-interactions as most 
of the members of this class are both substrates and 
inhibitors of cytochrome P450 enzymes. Most of the 
data regarding drug interactions with the echinocan-
dins have come from healthy volunteer studies in 
adults. Increases in serum aminotransferase levels 
have occurred in those receiving cyclosporine and 
caspofungin, and cyclosporine has also been reported 
to increase the AUC of caspofungin by approximately 
35%.71,72 This interaction is not specific to caspofungin 
as similar increases in AUC levels have also been 
reported for micafungin.73 In contrast, tacrolimus con-
centrations may be decreased when administered con-
currently with caspofungin but not micafungin.72,74 
This interaction between caspofungin and tacrolimus 
may require more frequent monitoring of serum levels 
of this calcineurin inhibitor.72 Although caspofungin 
is not a substrate of cytochrome P450 enzymes, logis-
tic regression modeling has suggested that concomi-
tant administration of inducers of metabolism, such 
as efavirenz, nevirapine, phenytoin, dexamethasone, 
or carbamazepine, may reduce caspofungin concen-
trations. Additionally, a 30% decrease in caspofungin 
trough concentrations has been observed in healthy 
volunteers who were began to receive rifampin 
14 days prior to the initiation of caspofungin.72 The 
exact mechanism of this interaction is unknown, but 
may be due to an induction of uptake transporters, 
such as Oatp1 and Oatp2, by rifampin.75,76 Few drug 
interactions have been reported with caspofungin in 
pediatric patients. As previously described, reductions 
in caspofungin trough concentrations were observed 
with concurrent use of dexamethasone and vancomy-
cin, and acyclovir resulted in decreased peak blood-
stream concentrations in pharmacokinetic studies of 
caspofungin in pediatric patients.67 The clinical sig-
nificance of these interactions is unknown.

Clinical Efficacy
Few clinical studies have evaluated the efficacy of 
caspofungin in pediatric patients as either treatment 
for established infections or as empiric therapy in 
the setting of neutropenic fever. Zaoutis et al con-
ducted a prospective, multi-center, open-label study 

of  caspofungin in children and adolescents as therapy 
against invasive candidiasis or aspergillosis.64 Patients 
age 3–16 years received caspofungin, dosed at 
70 mg/m2 on the first day followed by 50 mg/m2 daily 
thereafter as either primary or salvage therapy against 
invasive candidiasis, or as salvage therapy against 
invasive aspergillosis. Response to therapy was mea-
sured at the end of caspofungin therapy. Ten patients 
with invasive aspergillosis, 38 with invasive can-
didiasis, and one with esophageal candidiasis were 
enrolled. One of the invasive candidiasis patients 
was excluded due to an infection with a Trichosporon 
species rather than Candida. Five of the patients who 
received salvage therapy for invasive aspergillosis 
had a favorable response at the end of therapy, 3 of 
which were judged to be a complete response. The 
five patients who failed to respond were either neu-
tropenic at study entry or received chemotherapy, 
and each died despite treatment with caspofungin or 
other antifungal therapy. Favorable responses were 
observed in 81% of patients with invasive candidi-
asis, with similar rates between those that received 
caspofungin as primary (25 of 30) or salvage therapy 
(5 of 7). Patients whose infections were caused by 
C. parapsilosis responded well with 7 of 8 having a 
favorable outcome at the end of therapy. Complete 
resolution of oro-esophageal lesions occurred in the 
one patient with esophageal candidiasis, and only 
one patient with either invasive aspergillosis or inva-
sive candidiasis had a relapse within 28 days of com-
pleting therapy. A similar response rate was reported 
for micafungin against invasive candidiasis in a pedi-
atric sub-study that compared this echinocandin to 
liposomal amphotericin B.77 The favorable response 
rates observed in this open-label study are similar 
to those previously reported for adults who received 
caspofungin as salvage therapy for invasive aspergil-
losis (48%) and as primary therapy for invasive can-
didiasis (74%) (Fig. 1).70,78

Caspofungin has also been evaluated as empiric 
therapy in pediatric patients with febrile neutropenia. 
In a prospective, multi-center, double-blind study, 
patients age 2–17 years that were receiving cancer 
chemotherapy or had undergone a hematopoietic 
stem cell transplant and had persistent neutropenia 
(absolute neutrophil count , 500/mm3 for 96 hours) 
and were febrile despite broad-spectrum antibac-
terial therapy were randomized to receive either 
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 caspofungin (70 mg/m2 loading dose followed by 
daily doses of 50 mg/m2) plus placebo, or liposomal 
amphotericin B (3 mg/kg/day) plus placebo.65  Efficacy 
was based on a composite endpoint that included: 
(1) successful treatment of any baseline fungal infec-
tion based on the assessment of the Adjudication 
Committee, (2) absence of any breakthrough fungal 
infection during therapy or within 7 days of complet-
ing therapy, (3) survival for 7 days after completion 
of therapy, (4) no premature discontinuation of ther-
apy due to drug-related toxicity or lack of efficacy, 
and (5) resolution of fever for at least 48 hours during 
neutropenia. A total of 83 patients were randomized, 
and 81 were included in the modified intent-to-treat 
population that was used to evaluate efficacy. A favor-
able overall response was observed in 46.4% of those 
randomized to caspofungin and 32% of those who 
received liposomal amphotericin B. Among high-
risk patients, defined as those who had undergone an 
allogeneic bone marrow or peripheral blood stem-cell 
transplantation or had received chemotherapy for a 
relapse of acute leukemia, favorable responses were 
observed 9 of 15 (60%) who received caspofungin 
and in none of the 7 patients who received liposomal 
amphotericin B. Overall, the favorable response 
rates observed these pediatric patients were similar 
to those reported in a study of adults who received 
empiric therapy with either caspofungin (33.9%) or 
liposomal amphotericin B (33.7%).79 As fever may 
neither be a sensitive or specific indicator of invasive 
fungal infections, some have suggested removing 
resolution of fever from the composite endpoint in  

empiric therapy trials.80 In this study, both the 
caspofungin and liposomal amphotericin B groups 
had progressive increases in overall favorable 
response rates as the definition of fever became less 
conservative and reached 89% for caspofungin and 
84% for liposomal amphotericin B recipients when 
resolution of fever was completely removed from the 
composite endpoint.

Although the efficacy of caspofungin has not been 
evaluated in neonates in clinical trials, case-series have 
reported that this agent may be effective within this 
population. In one case-series from a single-center, 
caspofungin monotherapy was used as salvage ther-
apy in 10 neonates, 9 of which were born premature 
(mean gestational age 33 weeks), who had persistent 
candidemia despite the administration of amphotericin 
B deoxycholate.81 Two of the patients also developed 
disseminated candidiasis while on amphotericin B and 
one experienced both infusion-related and renal tox-
icities secondary to this polyene. After the initiation 
of caspofungin, blood cultures cleared in all patients 
within three to seven days. An atrial vegetation second-
ary to C. parapsilosis resolved after 9 days of caspo-
fungin in one patient, and renal Candida bezoars were 
cleared after 19 days of therapy in another. No clinical 
or adverse effects were reported in these patients. Other 
case reports have also reported the successful treatment 
of persistent candidemia and Candida septicemia with 
caspofungin monotherapy in neonates.82,83

Caspofungin was also reported to be effective as 
part of combination therapy in neonates with persis-
tent candidemia. In this single center retrospective 
review, caspofungin was added to antifungal therapy 
that included a lipid formulation of amphotericin B 
either as monotherapy or already combined with flu-
conazole or flucytosine, in 13 infants with persistent 
candidemia who were in the neonatal intensive care 
unit, 12 of whom were premature (median gestational 
age 27 weeks).84 Microbiological sterilization of the 
blood cultures occurred in 11 of the 13 patients within 
1 to 21 days of caspofungin initiation. Recurrent infec-
tions with the same Candida species occurred in 3 
of these patients after caspofungin was discontinued. 
Two of these patients were again treated with caspo-
fungin and achieved microbiological clearance. These 
results were compared to 11 patients in the neonatal 
intensive care unit with persistent candidemia who 
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Figure 1. Favorable response rates in children and adolescents 
compared to adults who received caspofungin either as treatment for 
invasive or esophageal candidiasis, or as salvage therapy against 
invasive aspergillosis.
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did not receive caspofungin therapy. Microbiological 
clearance of the blood cultures was achieved in 5 of 
these control patients.

One study has also evaluated the effectiveness of 
combination therapy with caspofungin in severely 
immunocompromised children and adolescents. In 
this retrospective study, charts were reviewed for 
patients age 6 months to 17 years with acute leu-
kemia and other hematologic malignancies who 
received combination therapy with caspofungin and 
either liposomal amphotericin B or voriconazole for 
at least 7 days for the treatment an invasive fungal 
infection.85 In 17 of the 19 episodes of invasive myco-
ses, the patients had agranulocytosis (absolute neu-
trophil counts , 200/mm3) while in 2 other episodes 
the patients were severely neutropenic (absolute 
neutrophil counts , 500/mm3). Four of the episodes 
were considered proven, 12 probable, and 3 had pos-
sible invasive fungal infections, each of which was 
considered to be refractory to monotherapy with 
liposomal amphotericin B. Caspofungin was added 
to liposomal amphotericin B in 11 patients, while 
therapy was immediately changed to caspofungin 
plus voriconazole in 4 patients. Six of those treated 
with caspofungin and liposomal amphotericin B had 
a complete response and one died after 8 days of this 
 combination. Four patients failed to respond to this reg-
imen and were subsequently switched to  caspofungin 
plus voriconazole. The combination of caspofungin 
and voriconazole was used to treat 12 invasive fun-
gal infections in 10 patients. Complete resolution 
was reported in 5 of these infections, 4 had a partial 
response to therapy, and failure was observed in 3 
episodes. In this study, each of the 5 patients in which 
severe neutropenia failed to resolve died.  Overall, 
complete resolution was observed in 57.9% of the 
episodes of invasive fungal infections and a favor-
able response in 78.9%. When those with possible 
infections were excluded, the complete and favorable 
response rates were 62.5% and 68.4%, respectively.

safety
In the clinical and pharmacokinetic studies discussed 
above, caspofungin monotherapy has been generally 
well tolerated with few significant clinical or labora-
tory adverse effects. Furthermore, few patients have 
had to discontinue therapy with this echinocandin 

due to drug toxicity. In the prospective, multi-center, 
open-label study of caspofungin as therapy against 
invasive candidiasis or aspergillosis in children and 
adolescents, thirteen of the 49 patients had at least 
one adverse event that was possibly related to caspo-
fungin therapy.64 However, none were considered seri-
ous and no patients discontinued therapy as a result. 
The most common drug-related laboratory adverse 
events were elevated liver transaminase levels, which 
occurred in 10 patients. These levels exceeded five 
times the upper limit of normal in only one patient and 
resolved once caspofungin therapy was discontinued. 
In the prospective, multi-center, double-blind study 
in patients with febrile neutropenia both caspofungin 
and liposomal amphotericin B were well tolerated.65 
Clinically significant adverse effects were reported 
in only 1 patient who received caspofungin and in 3 
recipients of liposomal amphotericin B. The rates of 
hypokalemia (3.6% and 11.5% for caspofungin and 
liposomal amphotericin B, respectively) and nephro-
toxicity (5.5% and 8.0%) were also similar between 
the treatment groups. The rates of infusion-related 
reactions were also similar between these agents, 
although these were generally considered to be mild in 
those who received caspofungin but severe in patients 
who received liposomal amphotericin B. Five patients 
randomized to caspofungin discontinued treatment 
due to a lack of efficacy or drug toxicity compared to 
4 who received liposomal amphotericin B.

In addition to its excellent safety profile as 
 monotherapy, caspofungin is also well tolerated when 
administered in combination with other  antifungals. 
When caspofungin was combined with a lipid 
 formulation of amphotericin B or to a regimen already 
consisting of a lipid amphotericin B formulation plus 
fluconazole or flucytosine in premature infants with 
persistent candidemia in the neonatal intensive care 
unit, severe thrombophlebitis was occurred in one 
patient and two experienced hypokalemia, which 
improved with potassium supplementation and 
continued  therapy.84 Four patients did experience a 
greater than 3-fold elevation in ALT and AST levels, 
three of which improved after the completion of 
therapy. Similarly, combination therapy with caspo-
fungin plus liposomal amphotericin B or voriconazole 
was well tolerated in children and adolescents with 
acute leukemia or another  hematologic malignancy.85 
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Hypokalemia was the most frequently reported 
adverse events and occurred in 9 patients, 8 of which 
also received liposomal amphotericin B.  Additionally, 
increases in AST and ALT to more than 5 times the 
upper limit of normal were observed in four patients 
who received caspofungin in combination with 
voriconazole.

The safety profile of caspofungin in neonates, 
children, and adolescents was confirmed by a sys-
tematic review of 5 clinical registration studies, 
which included 171 pediatric patients, age 1 week 
to 17 years, who received at least one dose of caspo-
fungin.68 The overall incidence of drug-related clini-
cal and laboratory adverse events were 26% and 
16%, respectively, and were similar among the dif-
ferent pediatric age ranges. Fever, rash, and head-
ache were the most common clinical adverse events, 
while increases in AST, ALT, and decreases in potas-
sium were the most common drug-related laboratory 
events. The laboratory adverse events resolved either 
during subsequent caspofungin therapy or within 
14 days of discontinuation, and none were consid-
ered serious or led to discontinuation of therapy. Two 
patients discontinued caspofungin therapy due to a 
drug-related adverse event. This included one patient 
with moderate hypotension, which resolved with the 
administration of a saline bolus, and the other who 
had a moderate rash that resolved within 10 days 
without treatment.

conclusions
The role of caspofungin, and possibly the other 
echinocandins, in the treatment of invasive fungal 
infections, such as invasive candidiasis and invasive 
aspergillosis, will undoubtedly increase in infants, 
children, and adolescents. Overall, this agent is well 
tolerated both in the pediatric population as well as in 
adults. This is especially attractive in highly immun-
compromised or critically ill patients where drug tox-
icities may adversely affect therapy. In addition, the 
lack of clinically significant drug interactions with 
caspofungin compared to other antifungals is also 
highly desirable in patients receiving poly-pharmacy. 
Although clinical data demonstrating efficacy are 
limited and no studies have been performed directly 
comparing treatment outcomes with other available 
antifungal agents, response rates in pediatric patients 
are similar to those reported from large clinical 

trials conducted in adults. However, because of the  
lack of comparative data and limited experience 
with caspofungin, at this time it is difficult to rec-
ommend caspofungin as first line therapy for the 
treatment of invasive fungal infection in neonates, 
children, and adolescents. Further studies are war-
ranted to fully determine the place of caspofungin as 
therapy against invasive fungal infections in pediat-
ric patients.
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