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Abstract: Mutations in cancer-causing genes induce changes in gene expression programs critical for malignant cell transformation. 
Publicly available gene expression profiles produced by modulating the expression of distinct cancer genes may therefore represent a 
rich resource for the identification of gene signatures common to seemingly unrelated cancer genes. We combined automatic retrieval 
with manual validation to obtain a data set of high-quality gene microarray profiles. This data set was used to create logical models of the 
signaling events underlying the observed expression changes produced by various cancer genes and allowed to uncover unknown and 
verifiable interactions. Data clustering revealed novel sets of gene expression profiles commonly regulated by distinct cancer genes. Our 
method allows retrieval of significant new information and testable hypotheses from a pool of deposited cancer gene expression experi-
ments that are otherwise not apparent or appear insignificant from single measurements. The complete results are available through a 
web-application at http://biodata.ethz.ch/cgi-bin/geologic.
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Introduction
The development of cancer requires multiple genetic 
alterations perturbing distinct cellular pathways. In 
human cancers, these alterations often arise owing 
to mutations in tumor suppressor genes and proto-
oncogenes, which in turn trigger uncontrolled cell 
proliferation, survival and genomic instability. 
Consequently, the study of tumor suppressor pro-
teins and proto-oncogenes and the cellular signaling 
networks deregulated by the corresponding mutant 
proteins has become a centerpiece of contemporary 
cancer research. In fact, investigations of their mode 
of action have pinpointed key mechanisms that pro-
tect humans against tumor development and thus 
provided rational foundations for preventing, detect-
ing, and treating cancer.

Inactivation of tumor suppressor genes or the 
activation of oncogenes invariably trigger changes 
in gene expression programs. DNA microarrays1 are 
in wide use as a method to quantify changes in global 
expression levels. Public microarray databases con-
tain measurements of transcription programs in cells 
under thousands of different biological conditions 
and/or perturbations. One of the most prominent is 
NCBI Gene Expression Omnibus (GEO),2 a curated 
repository containing microarray data in a standard-
ized format.3 This database therefore offers a rich 
resource of quantitative data on the behavior of 
gene expression changes in response to cancer gene 
mutations.

By specifically analyzing gene expression program 
changes associated with cancer gene activation or 
inactivation, we sought for signatures shared among 
distinct cancer genes listed in the census of cancer 
genes4 and integrated the resultant data sets into logi-
cal networks of interactions.

Meta-analysis of cancer microarray data has been 
successfully applied by Rhodes et al to find a com-
mon gene-expression signature5 in independent data 
sets from different cancer types. Ramaswamy and 
colleagues discovered a predictive signature6 for the 
metastatic status of tumors from diverse origins and 
Creighton reported coordinate expression patterns of 
multiple oncogenic pathway signatures7 in human 
prostate tumors. Our approach used measurements 
from cell culture experiments in which the expres-
sion of specific cancer-causing genes has been either 
induced or downregulated. This allowed us to unveil 

gene expression signatures common to cancer genes 
that have not been linked previously.

Methods
Selection and acquisition
As outlined in Figure 1, the first step in data acquisi-
tion was searching the 385 genes present in the cancer 

385 Cancer-census genes

324 GEO entries

 Search GEO

99 validated datasets

 Manually filter

 Define replicates

70 intensity 29 ratio

 Define controls

78 valid datasets

 Download samples
 map probes to genes

Pool genes and
 replicates

Intensities Ratios

Gene regulations

 Compute ratios
 t-test

 Convert to log10
 1-sample t-test

78 comparable gene regulation sets

 Map genes to human
 scale ratios

Figure 1. Flowchart of the data acquisition process.
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gene census in the NCBI GEO repository. 324 GEO 
entries contained one of these gene names in the title 
or abstract. The descriptive fields of the entries were 
duplicated into a local database. False positives were 
made apparent through an appropriate visualization 
of the entry description and subsequently removed. 
We selected experiments in which cancer genes were 
over-expressed, depleted by the application of small 
interfering RNAs or genetically eliminated by virtue 
of gene knock-out in mice. In addition, we included 
experiments in which dominant-negative forms of 
cancer genes were expressed. All of these 99 experi-
ments were performed in either human, mouse or rat 
cell lines as described in the publication accompany-
ing the experiment. If the measured values were given 
as raw intensities, samples for induced and control as 
well as their replicates were selected. Replicates and 
type of logarithm were selected for entries providing 
ratios. The definition database was made accessible 
from network-edges in the web-interface.

Expression values were retrieved for the 607 
defined samples. The probe identifiers were mapped 
to Entrez gene identifiers using the microarray plat-
form description provided by GEO and the UniGene 
database.8 78 data sets were successfully mapped, 
the remaining 21 did not contain valid identifiers. 
NCBI HomoloGene provided human homologues of 
mouse and rat genes. Measurements were available 
for 18885  genes, while there was a total of 19978 
human genes in HomoloGene. The probe-level mea-
surements (N  =  9981226) were grouped by genes 
and replicates. Intensity values were grouped into 
induced/control to compute the log(ratio) as well as 
the P-value of a t-test. In the case of entries contain-
ing ratios, they were converted to base 10 logarithm 
and a one-sample t-test was performed. In order to be 
able to filter sets of comparably regulated genes, the 
log-ratios were scaled by subtracting the experiment 
mean and dividing by the standard deviation. These 
computations were performed using the Python pro-
gramming language. The final data matrix is available 
for download from http://biodata.ethz.ch/cgi-bin/
geologic at the bottom of the page.

Clustering
Automatic classification and multiscale bootstrap 
resampling was performed using the R9 package 
pvclust.10 A matrix consisting of experiments as 

columns, genes as rows and gene-expression changes 
for each pair was used as input. Because not every 
gene was present in all of the microarray experiments, 
there are missing values in this matrix. An iterative 
method was used to reduce the fraction of missing 
values. In each step, the row or column containing 
the largest fraction of missing values was removed 
from the matrix. This procedure was repeated until no 
more rows or columns contained a fraction of missing 
values larger than the desired threshold.

The matrices ranging from 1% to 33% missing  
value thresholds (termed “namax” in the web-
application) were computed. Each of them was sepa-
rately clustered and the resulting dendrograms were 
made available through the web-application. Negative 
correlation distance of pairwise complete observation 
was used as the distance measure. The average link-
age method was used in hierarchical clustering. The 
relative size of the bootstrap sample was increased 
from 50% to 140% in 10  steps. At each step, 1000 
bootstrap replications were performed.

Interaction network analysis
In order to find the significant gene expression changes 
in our data sets, thresholds were set on the P-value 
as well as the magnitude of the change between 
induced and control. As previously described, each 
mircoarray data set originates from an experiment 
in which the expression of a gene has been altered 
by genetic methods. Therefore, a set of 56 “altered 
genes” is defined. If in any of the data sets one of the 
other “altered genes” is significantly changed, a con-
nection between this and the one altered in the data 
set is created. The collectivity of these connection 
define a network (directed graph) which was plot-
ted using the Graphviz graph visualization software11 
and displayed as Scalable Vector Graphics (SVG) 
or in the ZGRViewer Java applet.12 The P-value and 
expression change threshold was made variable in 
the web-application. A default threshold of P-value 
below 0.01 and abs[log10(ratio)] above 1.5 provided 
an appropriate number of interactions. The network 
was searched for sub-networks, in which the direc-
tion of gene expression change matched the perturba-
tion in an experiment studying this gene.

The novelty of the gene interactions was deter-
mined by searching PubMed. Edges in the web-appli-
cation link to the manually confirmed PubMed source 
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sentences. The web-application can be controlled 
through a menu at the top, where the first item 
(“HELP”) provides information on usage.

Transcription factor analysis
The TRANSFAC database of transcription factors 
and their binding sites13 was aquired from BIOBASE. 
All human genes annotated with known binding sites 
were extracted from the “GENE” table. The gene-factor 
pairs found by in-vivo ChIP-chip and ChIP-Seq 
experiments were extracted from the “FRAGMENT” 
table. Promoter sequences of all human genes 
from −5000 to +500 relative to the transcriptions start 
site were retrieved from the ENSEMBL database 
(version GRCh37) using the Perl API. The “match” 
program provided by BIOBASE was used to detect 
further binding sites in these sequences, using the 
non-redundant vertebrate profile, where matrices 
from the “MATRIX” table were selected with respect 
to minimize the rate of false positives. Matches exhib-
iting a matrix similarity scores above 0.9 were used. 
Finally, these three data-sets were pooled into one 
table containing 1458399 gene to binding-site pairs. 
Over-representation of transcription factor targets in 
gene sets was detected by a Fisher exact test.

Results and Discussion
Clustered experiment groups
Searching for microarray measurements based on the 
reported census of genes causally linked to cancer 
progression4 resulted in 78  individual studies, per-
formed on 56 cancer genes. Table 1 shows which can-
cer genes were present in which type of perturbation. 
The processed data matrix of these 78 experiments 

with expression levels for an average of 12517 genes 
contained 34% missing values. In order to find groups 
of experiments in which genes are similarly regu-
lated, this data matrix was clustered. Groups of cancer 
genes along known classical pathways were detected 
with high significance in bootstrapped clustering, 
corroborating the methodology. The dendrograms in 
the web-application shows clusters above the 95% 
significance level highlighted by red rectangles. The 
numbers in red next to the dendrogram branches are 
the “Approximately Unbiased” (AU) values provided 
by pvclust, from which the P-value can be deduced 
by 1 - AU/100.

The largest group of genes repeatedly detected 
in clustering analysis (P-value =  0.05) were based 
on the following experiments and brought about by 
cancer genes previously not known to induce com-
mon gene expression changes. These include murine 
sarcoma viral oncogene homolog B1 (BRAF) ele-
vated (+), breast cancer 1 (BRCA1) reduced/absent 
(−), Notch homolog 1 (NOTCH1) (−), homeobox 
A9 (HOXA9) (−) and erythroblastosis virus E26 
oncogene homolog (ERG) (+). As these perturba-
tions lead to a common gene expression signature, it 
can by hypothesized that the signaling pathways that 
these distinct cancer genes affect converge to change 
a common program in gene expression. Therefore, it 
is conceivable that deregulated expression of this set 
of genes contributes to one or more general aspects 
of the cancer phenotype. Complete results are avail-
able in the web-application through the “Experiment 
Clusters” link.

In-depth analysis
The most significant cancer gene group that produced 
a common gene expression signature identified here 
included BRAF+, BRCA1-, NOTCH1-, HOXA9- 
and ERG+ and has been studied by different authors 
in different cell lines of which four were of human 
and one of mouse origin (Table 2). Moreover, three 
different kinds of microarray chips were used for the 
measurements. Therefore, the similarity observed is 
likely not based on experimental variations but rather 
reflects relevant changes in gene expression and com-
monalities following perturbations of the above-noted 
cancer genes. We note that there were 10866 genes 
common to all five experiments. Genes with average 
ratios below the mean of up-regulated genes or above 

Table 1. Cancer genes.

Increased Decreased
AKT1, BCL2, BRAF, EBF1, 
EGFR, ERBB2, ERG,  
FGFR2, FGFR3, GATA6,  
HOXC13, HRAS,KIT,  
KRAS, MAP2K1, MKL1,  
NOTCH1, PPARG, RAF1,  
RB1, RET, WT1

APC, ATM, BCL11A, 
BCL11B, BRCA1, CARD11, 
CDX2, CREB1, FH, FUS, 
HNF1A, HOXA11, HOXA9, 
IRF4, JAK2, MET, MYC, 
NF1, NOTCH1, NRAS, 
PARP1, PAX5, PBX1, 
POU5F1, PPARG, PTEN, 
RAG1, RBM15, RELA, 
RING1, RUNX1, SDHB, 
TFRC, TP53, VHL, WRN, 
WT1
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Table 2. GEO Series in the most significant group of five experiments from clustering. 

Target Type Author Cells GSE Array N
BRAF OE Ryu Melanocyte 13827 A1 17256
BRCA1 KD Lee MCF10A 4750 A1 17256
HOXA9 KD Faber Leukemia 13714 A2 12186
ERG OE Carver HEK-293 14595 A2 12186
NOTCH1 KO Kopan Hair follicle 6867 A3 15125
Abbreviations: GSE, GEO Series identifier; N, number of probes mapped to human genes; Experiment types: OE, Over-expression; KD, Knock-down; 
KO, Knock-out; Array names: A1, Affymetrix Human Genome U133 Plus 2.0; A2, Affymetrix Human Genome U133A 2.0; A3, Affymetrix Mouse Genome 
430 2.0.

the mean of down-regulated genes were excluded to 
obtain a set of 1296 regulated genes.

Table  3 lists the 20  genes exhibiting comparably 
small standard deviation along with their function and 
ratios from each of the five measurements. Most of 
these genes control growth directly or through signaling 
events. The three genes most highly up-regulated were 
previously shown to contribute to tumor development 
and include ubiquitin specific peptidase 2 (USP2),14 
duffy blood group chemokine receptor (DARC)15 
and C-C motif chemokine receptor 3 (CCR3).16 The 
EED gene is a member of the Polycomb-group (PcG) 
family, which form multimeric protein complexes 
involved in maintaining the transcriptional repressive 

Table 3. Top 20 most similar regulated genes in the group of five experiments. 

Gene StdDev Function bra brc hox ERG not C+ C-
DDX50 0.048 RNA helicase -0.15 -0.27 -0.15 -0.18 -0.14 1 1
USP2 0.058 Peptidase 0.27 0.38 0.22 0.35 0.29 1 26
NCAPD2 0.059 Protein binding -0.22 -0.22 -0.14 -0.09 -0.08 21 3
DARC 0.067 Cytokine binding 0.18 0.27 0.15 0.33 0.21 4 46
CCR3 0.069 Cytokine binding 0.4 0.49 0.38 0.33 0.51 0 0
NUP37 0.07 Nuclear pore -0.25 -0.14 -0.07 -0.21 -0.08 17 1
PSMG1 0.071 Chaperone -0.2 -0.07 -0.19 -0.22 -0.04 17 6
IDI1 0.072 Isomerase -0.16 -0.18 -0.19 -0.21 -0.01 1 6
LRIT1 0.072 Protein binding 0.22 0.17 0.29 0.39 0.28 0 1
NOL4 0.075 DNA binding 0.28 0.38 0.31 0.46 0.25 5 10
RPA2 0.075 DNA replication -0.28 -0.12 -0.15 -0.06 -0.11 2 1
CHST1 0.076 Transferase 0.31 0.29 0.12 0.21 0.14 5 3
PCBP1 0.078 Translation regulator -0.2 -0.1 -0.18 -0.25 -0.03 2 2
HAT1 0.079 Transferase -0.17 -0.04 -0.18 -0.26 -0.07 18 1
ADNP2 0.079 Transcription regulator -0.28 -0.1 -0.15 -0.04 -0.18 3 1
CD7 0.079 Receptor 0.29 0.19 0.14 0.36 0.28 2 8
DEK 0.08 Transcription regulator -0.23 -0.08 -0.08 -0.25 -0.07 17 3
EED 0.081 Transferase -0.26 -0.16 -0.2 -0.15 -0.02 1 2
KDR 0.081 Growth factor receptor 0.25 0.34 0.2 0.39 0.17 1 11
EDNRA 0.081 Peptide receptor 0.23 0.22 0.18 0.33 0.08 31 17
Notes: Values are log10 ratios between induced and control. C+/C-: number significant unique analyses of cancer tissue in the Oncomine database 
showing up/down-regulation in the 10% rank percentile, P-value below 1e-4 and fold-change above 2.0.
Abbreviations: StdDev, standard deviation; bra, BRAF+; brc, BRCA1-; hox, HOXA9-; ERG, ERG+; not, NOTCH1-.

state of genes. The down-regulation of the EED gene 
on activation of the oncogene BRAF as well as on 
inactivation of the tumor suppressor BRCA1 leads to 
inactivation of gene silencing, pointing to a possible 
mechanism of neoplastic transformation mediated by 
these distinct cancer genes.

The Oncomine database17 was used to check for 
consistent differential expression in actual cancer 
tissue. Table 3 contains the number significant unique 
analyses showing up- or down-regulation in the 10% 
rank percentile, P-value below 1e-4 and fold-change 
above 2.0.

From this list, five genes (IDI1, CHST1, ADNP2, 
EED, EDNRA) showed consistent differential 
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Figure 2. Logical network at P-value below 0.01 and abs[log(ratio)] above 1.5.
Notes: Rectangle: increased expression; Diamond: decreased expression; Pointy arrow: up-regulation; Curved: up-regulation linked to up-expression; 
Tee: down-regulation; Block: down-regulation linked to down-expression; Golden edges: confirmed by PubMed evidence; Gray: false positive evidence; 
Black: no evidence; red node background: tumor promoting gene; green node background: tumor suppressive gene; yellow node background: tumor 
promoting and suppressive gene.

expression in a majority of analyses represented in 
Oncomine (see Table  3). Thirteen genes (DDX50, 
USP2, NCAPD2, DARC, NUP37, PSMG1, NOL4, 
RPA2, PCBP1, HAT1, CD7, DEK, KDR) showed 
consistent differential expression in a minority of 
analyses. Only one gene (LRIT1) was inconsistent 
and one gene (CCR) did not show differential expres-
sion at all.

Checking for over-representation of transcrip-
tion factors in the TRANSFAC database, we found 
that with the exception of three genes (CD7, DARC, 
EDNRA), all genes can be potentially regulated by 
the transcription factor NF-YA (P-value = 6.79e-04). 
NF-YA functions as part of a heterotrimeric complex 
that activates a number of genes involved in cell cycle 
regulation, cell proliferation and survival.18,19

Networks
The expression value matrix for the analyzed cancer 
genes contained 9% missing values, as they were 
present in essentially all arrays used as a basis for 
this study. Inspection of the network of protein inter-
actions (Fig. 2) showed that Mitogen-activated pro-
tein kinase kinase 1 (MAP2K1), Notch homolog 1 
(NOTCH1), V-myc myelocytomatosis viral oncogene 

homolog (MYC), and Paired box 5 (PAX5) were the 
most highly interconnected genes, connecting each 
to more than six other nodes. This observation was 
constant at all combination of thresholds. For MYC 
and MAP2K1, PubMed articles confirmed many of 
the interactions, but only one was found for NOTCH1 
and PAX5. This indicates novel links to PAX5 and 
NOTCH1, outlining a previous unrecognized impor-
tance for these potential cancer genes.

The expression value matrix was randomized 
and the resulting network compared to the one 
created from experimental data. In the randomized 
data network, node connectivity was decreased to 
2.2 from 3.8  in experimental data. The number of 
predicted connections confirmed by publications in 
PubMed dropped from 16 in experimental to 4 in ran-
domized data.

Looking at sub-networks revealed verifiable 
sequences of interactions between genes, as shown in 
Figure 3. This sub-network contained retinoblastoma 
1 (RB1) (+), homeobox A9 (HOXA9) (−), Phos-
phatase and tensin homolog (PTEN) (−), PAX5 (−), 
and Transferrin receptor (TFRC) (−). These results 
therefore predict that RB1, a key regulator of entry 
into cell division, can be connected to TFRC, which 
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Figure 3. Sub-network of the above network.
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regulates cellular uptake of iron, an element known 
to be required for cell division. This is confirmed by 
the measurement of a down-regulation of TFRC in 
the RB1 up-regulation experiment and can therefore 
serve as an internal validation of the prediction.

Conclusions
Through analysis of a large set of gene expression 
data publicly available, we were able to identify a 
select class of cancer-causing genes whose activi-
ties converge to deregulate a common transcription 
program. This finding is surprising, as the products 
of the identified cancer-causing genes are known to 
function in distinct signaling pathways. However, 
tumor cell evolution proceeds via a process in which 
genetic changes confer one or another type of growth 
advantage. Therefore, it is conceivable that changes 
in the gene expression signature described here medi-
ate a specific aspect of tumor cell evolution. Clearly, 
the methodology reported here allows to extract from 
the inundation of gene expression information key 
patterns of gene expression and to connect them to 
the deregulation of specific cancer-causing gene 
products.
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