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Abstract: Multiclass classification and feature (variable) selections are commonly encountered in many biological and medical 
applications. However, extending binary classification approaches to multiclass problems is not trivial. Instance-based methods such as 
the K nearest neighbor (KNN) can naturally extend to multiclass problems and usually perform well with unbalanced data, but suffer 
from the curse of dimensionality. Their performance is degraded when applied to high dimensional data. On the other hand, model-based 
methods such as logistic regression require the decomposition of the multiclass problem into several binary problems with one-vs.-one 
or one-vs.-rest schemes. Even though they can be applied to high dimensional data with L1 or Lp penalized methods, such approaches 
can only select independent features and the features selected with different binary problems are usually different. They also produce 
unbalanced classification problems with one vs. the rest scheme even if the original multiclass problem is balanced.
By combining instance-based and model-based learning, we propose an efficient learning method with integrated KNN and constrained 
logistic regression (KNNLog) for simultaneous multiclass classification and feature selection. Our proposed method simultaneously 
minimizes the intra-class distance and maximizes the interclass distance with fewer estimated parameters. It is very efficient for prob-
lems with small sample size and unbalanced classes, a case common in many real applications. In addition, our model-based feature 
selection methods can identify highly correlated features simultaneously avoiding the multiplicity problem due to multiple tests. The 
proposed method is evaluated with simulation and real data including one unbalanced microRNA dataset for leukemia and one multi-
class metagenomic dataset from the Human Microbiome Project (HMP). It performs well with limited computational experiments.
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Introduction
Multi-class classification and feature selections 
are commonly encountered in many biological and 
medical applications, especially in genomic and 
metagenomic studies. Those data usually have high-
dimensions, small-sample size, and unbalanced 
classes, and features (genes) may be highly cor-
related. It is not trivial to detect disease associated 
genes and evaluate the predictive powers under the 
multi-class classification framework, Machine learn-
ing for multiclass (and more general multilabel) clas-
sification has received increasing attention in many 
areas.1–4 In current literature, all machine learning 
methods roughly fall into two different categories: 
instance-based and model-based learning. Instance-
based learning (IBL) such as the k-nearest neighbor 
(KNN)5 predicts the class of a sample with unknown 
class by considering the classes of k-nearest neigh-
bors. It is more robust for data with unbalanced 
classes and is efficient for multiclass classification 
with a small number of features. However, its pre-
dictive accuracy is seriously degraded when there is 
a large number of irrelevant features because of the 
curse of dimensionality. On the other hand, model-
based learning methods such as support vector 
machine (SVM) and logistic regression are mainly 
designed for binary classification. They are designed 
to separate two different classes as far as possible 
without considering the intra-class distances. Multi-
class problems are often dealt by combining binary 
classifier outputs, such as one class against the other 
(one vs. one) or one class against the rest (one vs. 
rest). However, this may lead to over-fitting and poor 
predictive accuracy especially when sample size is 
small, since we need to estimate either c(c - 1)n/2 or 
(c - 1)n parameters for problems with c classes and 
n features. It also produces unbalanced classification 
problems with one vs. the rest rule even if the origi-
nal multiclass problem is balanced.

Instance-based leaning only takes into account the 
minimal distance, while model-based learning incor-
porates maximizing the interclass distances (eg, max-
imizing the margin in SVM). It is natural to integrate 
the instance-based and model-based methods and 
maximize the interclass distances while minimizing 
the intraclass distances. While there are some efforts in 
this direction,6 they only consider the labels of neigh-
borhood instances as additional features for logistic 

regression. They do not fully take advantage of the 
robustness of instance-based learning for unbalanced 
classes and continue to have the same drawbacks 
of estimating too many parameters and creating 
unbalanced classes in multi-class classifications, even 
if the original problem is balanced.

A fundamental aspect of feature (variable) selec-
tion for high dimensional data is to derive interpreta-
ble results. Earlier approaches for feature selection7–9 
were based on filtering to select a subset of features, 
independent of the statistical learning methods. 
However, filtering methods, which examine each fea-
ture in isolation and ignore the possibility that groups 
of features, may have a combined effect that does not 
necessarily follow from the individual performance 
of features in the group.10 In addition, they result in 
multiplicity problems due to multiple comparisons. 
The more recent L1 and Lp based penalized statisti-
cal learning approaches perform variable selection as 
part of the statistical learning procedure.11–16 However, 
they are mainly designed for binary classification 
and can only select independent features. However, 
highly correlated features may function together and 
it is very important to select highly correlated genes 
in biological research.

There are two difficulties when dealing with mul-
ticlass problems with high dimensional data: small 
sample size and unbalanced classes. In this paper, we 
propose a novel approach through integrating instance-
based and model-based learning to overcome both 
difficulties encountered in multiclass classification 
with high dimensional data. Our proposed approach 
combines the k-nearest neighbor (KNN) and a model-
based binary classifier and simultaneously maximizes 
the interclass distance and minimizes the intraclass 
distance. It is robust for unbalanced classification 
and can classify multiclasses simultaneously without 
creating unbalanced classes. It also estimates a fewer 
number of parameters (only the same as the number of 
features) and can simultaneously select features and 
predict multiclasses with simple parameter regulation. 
Moreover, the proposed method can identify highly 
correlated features for multiclass classification and 
overcome both the problem of multiplicity with sta-
tistical tests and the problem of failing to identify 
correlated features with L1 and Lp penalized statistical 
learning methods. We evaluate the performance of our 
proposed method through simulation and the publicly 
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available microRNA expression and metagenomic 
data sets. The proposed method is robust across data-
sets and efficient for feature identification and pheno-
type prediction.

Methods
A general multiclass classification problem may be 
simply described as follows. Given n samples, with 
normalized features, D = {(x1, y1), …, (xn, yn)}, where 
xi is a multidimensional feature vector with dimension 
m and g classes with class label yi ∈ C = {c1, …, cg}, 
find a classifier f(x) such that for any normalized fea-
ture vector x with class label y, f(x) predicts class y. 
Given two samples xi and xj, we introduce a general 
weighted distance functions for KNN learning as 
follows:
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where |.| denotes the absolute value, wk  $  0 for 
k = 1, …, m are the nonnegative weights, and p is a 
positive free parameter. Especially when p  =  1 and 
p  =  2, D(w, xi, xj, 1) and D(w, xi, xj, 2) represent the 
weighted city-block and Euclidean distance between 
xi and xj respectively. Given a new sample xl, we the 
calculate k nearest neighbor of xl denoted by Nk(xl, cs) 
for each class cs, and then take the average distance
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as the distance of xl to class cs. Finally, we assign xl to 
class cj by means of a minimal distance vote:
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Loglikelihood Based Approach  
for Weight Estimation (KNNLog)
Now, the goal is to choose optimal w with small intra-
class distance and large interclass distances simultane-
ously and automatically identify features relevant to 
multiple classes. We proposed an integrated KNN and 

constrained logistic regression (KNNLog) approach for 
sparsef parametric estimation, which forces the irrel-
evant features to zero. The problem can be formulated 
as a constrained linear programming (LP) as follows:
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where |xi - xj|.
p =  [(xi1 - xj1)

p, …, (xim - xjm)p]T is an 
element-wise operation, and λ, k, and p will be deter-
mined through cross validation. In Equation (4), the 
first constraint represents the k-nearest neighbor intra-
class distances, and we restrict them to a soft upper 
bound 1. The second constraint indicates the inter-
class distances with a soft lower bound 2. Hence, we 
can enforce a soft-margin 1 between the intra-class 
and inter-class distances. Therefore the solution of 
Equation (4) will guarantee a small KNN intra-class 
distance and large interclass distance simultaneously. 
Finally, we used the k nearest neighbor instead of all 
the samples in the same class for the first constraint 
because samples in one class may have multimodal 
distributions. It is too stringent and unrealistic to require 
that all samples in one class have small distances.

While we can solve Equation  4 with some LP 
software such as linprog in MATLAB, and lp_solve 
in C (http://lpsolve.sourceforge.net/5.5/), there 
are limitations with the LP approach. It could not 
scale both in terms of time and memory for problems 
with large number of examples and variables. The 
number of constraints will increase with O(n2) for a 
problem with the number of samples n. Even though 
efficient algorithms exist, handling a large number 
of constraints is still challenging. We therefore pro-
pose an efficient log-likelihood based approach for 
weight estimation. Since we would like to maximize 
the intra-class distance and minimize the inter-class 
distance, we first define an augmented distribution 
for the intra-class and inter-class distances with the 
truncated logit function of logistic regression. Letting 
h = 1 be the class of intra-class distance Dr(w, xi, xj, p) 
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and h = 0 represent the class of inter-class distances 
De(w, xi, xj, p), we define the probabilities:
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where Dr(w, xi, xj, p)  =  0. So we have P(h  =  1| 
Dr(w, xi, xj, p)) = 0.5 and 1, when Dr(w, xi, xj, p) = 2 and 
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Taking the negative log likelihood and drop the 
constant, we have the following error function:
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Equation (8) is a much simpler negative log likeli-
hood with nonnegative constraints. It can be solved 
efficiently, even if the problem is one of both large 
sample size and high dimension. Let
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be the two intra-class and interclass distance matrices, 
the first order derivative for Equation (8) is as follows:
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Based on Equation (10) and wk $ 0 ∀ k = 1, …, m, 
we implement a standard conjugate gradient method17 
with nonnegative constraints. Because E is a convex 
optimization with a convex constraint, a global opti-
mal solution is guaranteed theoretically. The global 
minimum of E is reached if, for each element wk, 
either (i) wk . 0 and (∂E/∂wk)|ŵ = 0, or (ii), wk = 0 
and (∂E/∂wk)|ŵ $ 0. The first condition applies to the 
positive elements of ŵ, whose corresponding terms 
in the gradient must vanish, and the second condition 
applies to the zero elements of ŵ. Here, the corre-
sponding terms of the gradient must be nonnegative, 
thus pinning wk to the boundary of the feasible region. 
Upon reaching the optimal solution, sparse ŵ with a 
small number of nonzero parameters can be found. The 
important features are identified with the nonzero ŵ. 
Since w $ 0, sparsity of the model is determined by 
both k and λ. The larger the k and λ, the fewer of the 
nonzero w. The free parameters λ, k, and p are also 
determined by leave-one-out Jackknife test with the 
smallest prediction error. For simplicity, we choose 
p = 1 or 2 only in all computational experiments, but 
other choices of p do improve the predictive power 
of our method. Different P values may be selected in 
individual computations.

Computational Results
Simulation data
The purpose of our first simlation is to show that 
the proposed method can predict the class labels 
with high accuracy and identify the class associated 
features correctly even if there is a high correlation 
among the features. The simulated dataset is ran-
domly generated with input dimension m = 1000 and 
only the first 10 features are relevant to the classes. 
All other features are random noise generated from 
N(0, 1). We first generate the input data of 5 classes 
with the sample size of 10, 20, 30, and 50 for each 
class from 5-dimensional multivariate normal dis-
tributions with different means and a variance-

covariance matrix Σ =

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dimension for each class is randomly chosen from an 
integer between and including 1 and 5, and the mean 
of each dimension for different classes is different. In 
addition, the pairwise correlation among the features 
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(ρ  =  0.5) is used to assess the performance of the 
proposed method. We then reduplicate the first 5 
features at the dimension 6–10 so that the input fea-
tures from dimensions 1–5 and 6–10 are exactly the 
same. We are trying to demonstrate that KNNLog can 
identify the first 10 class-relevant features correctly 
even if some of them are highly correlated (exactly 
the same).

We analyze this simulation data with the proposed 
approach and show that our method can identify 
the features 1–5 and 6–10  simultaneously. The free 
parameters k, p, and λ are determined through leave-
one-out Jackknife test with the training data only. 
We simulate the experiments 100 times for each of 
the different sample sizes and count number of cor-
rectly identified features in Table 1. Table 1 indicates 
that KNNLog correctly identified all 10 features 
with at least 76% accuracy and correctly chose 6 out 
of 10 features in all 100  simulations with a sample 
size of n =  10 for each class. As the sample size n 
increases, the accuracy for selecting the true features 
also increases. KNNLog identified all 10 features 
with at least 93% accuracy and 6 out of 10 features 
with 100% accuracy with the sample size of n = 50. In 
addition, KNNLog selected features 1 and 6, 2 and 7, 
3 and 8, 4 and 9, and 5 and 10 simultaneously with 
the same accuracy, even if they are exactly the same. 
Therefore, KNNLog can identify highly correlated 
features simultaneously without encountering the 
multiplicity problem with statistical tests. Moreover, 
the average number of selected features is also closer 
to the true number 10, when the sample size increases 
as shown at the bottom of Table  1. The prediction 

errors with KNNLog are 0.046, 0.04, 0.041, 0.034 
with the sample size of 10, 20, 30, and 50 respec-
tively, compared to the much larger prediction errors 
(0.41, 0.32, 0.25, and 0.20) using KNN without fea-
ture selection as shown in Figure 1. In addition, we 
also compare the performance of our KNNLog with 
random forests (RF). Random forests (RF) is a classi-
fication algorithm that uses an ensemble of unpruned 
decision trees, each of which is built on a bootstrap 
sample of the training data using a randomly selected 
subset of variables.18 Figure 1  shows that KNNLog 
has similar test errors with a different sample size. 
It also has better performance than random for-
ests (RF) which has the prediction errors of 0.104, 
0.063, 0.06, and 0.037 respectively, especially when 
the sample size are small. Finally, unlike KNNLog 
which can identify highly correlated features, RF can 
only select independent features, the average num-
ber of features selected with RF are 3.8, 4.2, 4.5, 
and 4.8 respectively.

When two classes have different distributions but 
have the same or small means, statistical tests based 
summary statistics (eg, t-test) fail to detect the dif-
ferences and identify important features. KNNLog, 
based on location parameter, can still be used to 
select important features and achieve good predictive 
accuracy. We simulate two classes of sample size 100 
for each class from a 2-dimensional normal distribu-
tion with the same mean m1 = m2 =  [1, 2]t and stan-
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Table 1. Frequencies of correctly identified features with different sample sizes. 

Sample size/per-class
parameters (λ*, k*, p*)

10
(300, 9, 2)

20
(350, 19, 2)

30
(450, 28, 1)

50
(460, 45, 1)

w1 90 93 94 96
w2 100 100 100 100
w3 100 100 100 100
w4 100 100 100 100
w5 76 88 91 93
w6 90 93 94 96
w7 100 100 100 100
w8 100 100 100 100
w9 100 100 100 100
w10 76 88 91 93
Average no. of features selected 9.32 10.87 9.7 9.96
Note: The frequency number indicates the number of times each feature is selected over 100 permutations.
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class 2, with the ratio σ2/σ1 = 4, 6, 8, 10, respectively. 
We then reduplicate the generated data to dimension 
3–4, so the data from dimension 3–4 are exactly the 
same as that from dimension 1–2. The total input 
dimension of the simulated data is 1000, with the rest 
996 features for both class generated from N(0, 1). 
In this setting, the standard t-test fails to identify any 
features, but KNNLog identifies features 1–4 effi-
ciently as shown in Table  2. The free parameters 
(k, p, λ)  =  (56, 2, 1) are determined through cross-
validation with training data only. We simulate the exper-
iments 100 times for each different σ2/σ1 ratio and the 
number of correctly identified features 1–4 is reported 
in the upper part of Table 2. KNNLog correctly iden-
tifies features 1–4  in 78% or more simulations with 
σ2/σ1 = 4, 96% or more simulations with σ2/σ1 = 6, 
and 98% or more simulations with σ2/σ1 = 8 or 10. 

The average number of identified features is closer to 
the true number of features (4) and the test areas under 
the ROC curve (AUCs) become larger when the ratio 
of σ2/σ1 increases as shown at the bottom of Table 2. 
Therefore, KNNLog based on the pairwise distance 
of individual samples is more powerful than typical 
statistical tests.

microRNA Expression Profiling  
for Leukemia
A microRNA is a short ribonucleic acid (RNA) mol-
ecule found in eukaryotic cells. It has very few nucle-
otides (an average of 22) compared with other RNAs 
(http://en.wikipedia.org/wiki/MicroRNA). The varia-
tions in microRNA expressions may be associated 
with different complex diseases including cancer. The 
microRNA expression data analyzed in this examples 
are from the NCBI Gene Expression Omnibus (http://
www.ncbi.nlm.nih.gov/geo) under the respective 
accession numbers E-TABM-969 for normal tissues, 
E-TABM-972 for acute myeloid leukemia (AML), 
and E-TABM-973 for chronic lymphocytic leukemia 
(CLL).19–21 There are total 506 samples with 255 nor-
mal tissue, 141 AMLs, and 110 CLLs and 390 candi-
date human microRNAs. We preprocess the data with 
log2 transformation and quantile normalization, and 
then evaluate the performance of proposed approach 
with 2-fold cross-validation. We divide the data into 
two subsets of roughly equal size with one training 
and one test data, build a model with the training 
data, and evaluate the performance with the test data. 
The free parameters λ, p, and k are estimated using the 
training data only with the leave-one-out Jack-knife 
test. To prevent bias arising from a specific partition, 
we partition the data 100 times through permutation. 
The relevance count is calculated by the number 
of times a microRNA is selected in our model. The 

Table 2. Frequencies of correctly identified features with different σ2/σ1 ratios. 

σ2/σ1 4 6 8 10

w1 84 96 98 98
w2 78 98 100 100
w3 84 96 98 98
w4 78 98 100 100
No. of features 3.72 (±1.37) 3.98 (±0.58) 3.96 (±0.28) 3.96 (±0.28)
Test AUC 0.65 (±0.052) 0.67 (±0.038) 0.692 (±0.03) 0.97 (±0.024)
Note: The frequency numbers represent the number of times each relevant feature is selected over 100 permutations.
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Figure 1. Average prediction. 
Notes: Error with different sample sizes (n = 10, 20, 30, 50) and different 
methods: left—KNNLog; middle—KNN; and right—RF. The mean 
predictive errors are 0.046, 0.41, and 0.104 respectively for n = 10; 0.04, 
0.32, and 0.063 respectively for n = 20; 0.042, 0.25, and 0.06 respectively 
for n = 30; 0.0345, 0.197, and 0.0371 respectively for n = 50.
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optimal free parameters are (λ*, k*, p*) = (20, 15, 2). 
The 32 selected microRNAs are reported in Table 3. 
The predictive errors are 0.0079  ±  0.003 with 
32  selected microRNAs, so KNNLog predicts nor-
mal, AML, and CLL with over 99% accuracy with 
only 32 microRNAs. The log gene expression levels 
of each microRNA under different clinical condi-
tions are plotted in Figure 2. Most of the 32 identified 
microRNA signatures are known to be associated with 
leukemia. For instance, The microRNA miR-125b-1 
we identified is known to cause leukemia.22 
MicroRNA-125b-1 is involved in several chromo-
somal translocations, such as t(2;11)(p21;q23) and 
t(11;14)(q24;q32), which leads to myelodysplasia 
and acute myeloid leukemia (AML) or B-cell acute 
lymphoid leukemia (B-ALL), respectively. Because 
miR-125b-1 negatively regulates many proteins in the 
p53 pathway, the deregulation of miR-125b expres-
sion would impair human and mouse hematopoiesis. 
Figure  2  indicates that microRNA-125b-1 is over-
expressed in both AML and CLL. In addition, several 
microRNAs are also involved in the differentiation 
process of various hematopoietic lineages. Indeed, 
miR-150 controls early B-lymphocyte differentiation 
and both miR-181a and miR-181b are a crucial mod-
ulator for T lymphocyte differentiation and are linked 
to both AML and CLL. Mir-181b targets Mcl-1 pro-
tein and the decrease of its expression inversely cor-
related with increased protein levels of MCL1 and 

BCL2 target genes. Therefore mir-181b expression 
values can be used to specify disease progression in 
chronic lymphocytic leukemia.23 In addition, since 
microRNAs control the regulation of fundamen-
tal processes, their dysregulation has been clearly 
linked to cancer and particularly to leukemia. For 
instance, overexpression of miR-155 has been found 
in many human leukemias and lymphomas, and mice 
transplanted with bone-marrow cells. Ectopically 
expressing miR-155 may develop a myeloprolifera-
tive disorder. Finally, the identified microRNAs also 
provide important targets for biomedical researchers 
to pursue further studies. As an example, microRNA 
12: hsa-mir-216 and microRNA 24: hsa-mir-518c are 
only over-expressed in AML patients as shown in 
Figure 2. Those microRNAs need further studies to 
verify if they have important biological and clinical 
implications.

Human metagenomic count data
KNNLog was applied to a 16S rRNA metagenomic 
dataset from 6 human body habitats,25 external audi-
tory canal (EAC), gut, hair, nostril, oral cavity (OC), 
and skin. This benchmark dataset excludes samples 
from communities that were transplanted from another 
subject or body site. Similar to Costello et al25 it has 
552 remaining samples. OTU count data are gener-
ated using Mothur package24 (pubmed: 19801464) 
with the standard processing pipeline at a sequence 

Table 3. 32 selected leukemia associated microRNAs and their relevance counts. 

microRNA Relev. count microRNA Relev. count
1 hsa-mir-125b-1 93 17 hsa-mir-514-1 100
2 hsa-mir-142 99 18 hsa-mir-514-2&3 100
3 hsa-mir-150 97 19 hsa-mir-515-15p 100
4 hsa-mir-153-1 100 20 hsa-mir-515-25p 100
5 hsa-mir-153-2 100 21 hsa-mir-517a 100
6 hsa-mir-154 100 22 hsa-mir-518a-1 100
7 hsa-mir-155 100 23 hsa-mir-518b 100
8 hsa-mir-181a 100 24 hsa-mir-518c 100
9 hsa-mir-181b 100 25 hsa-mir-518e 100
10 hsa-mir-20b 100 26 hsa-mir-518e/526c 100
11 hsa-mir-213 100 27 hsa-mir-520a 100
12 hsa-mir-216 83 28 hsa-mir-520a* 100
13 hsa-mir-302c 100 29 hsa-mir-520c/526a 100
14 hsa-mir-367 88 30 hsa-mir-520d 100
15 hsa-mir-368 94 31 hsa-mir-526a-1 100
16 hsa-mir-373 100 32 hsa-mir-526b 100

Average predictive error 0.0079 ± 0.003
Note: The count number indicates how many times a microRNA is selected over 100 permutations.
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similarity threshold of 97%. Since this is a highly 
unbalanced dataset dominated by one class (skin), 
which could create challenges for classification. We 
normalized the count data with proportion and arcsin 
transformation,26 and then detect the body-site associ-
ated features and estimate the predictive powers with 
KNN. The data is split into training (2/3 of samples) 
and test (1/3 of samples. We estimate parameters λ, 
p and k using the leave-one-out Jackknife test with 
the training data only. To prevent bias from a spe-
cific partition, we repeat the partition 100 times, 
the relevance count is calculated by the number of 
times an OTU is selected in 100 permutations. The 
parameters with best predictive error are (λ*, k*, p*) 
are (50, 8, 1) respectively. The predictive performance 
for classification is shown in Table 4. Eleven selected 
OTUs with nonzero parameters are given in Table 5. 

The numbers in the parentheses are the relevance 
counts an OTU being selected. Table 4 shows that OC 
and Gut can be separated from other class perfectly, 
which is consistent with the result of Costello et al. 
We also achieved a predictive error of 0.07 (±0.005) 
with only 11 OTUs in Table  5, compared with the 
predictive error of 0.08 with 27 OTUs reported by 
Knights et  al.27 KNNLog performs very well even 
with this highly unbalanced dataset.

Conclusions
We have proposed a KNNLog method that combines 
instance-based learning (KNN) and model-based 
learning (logistic regression) for simultaneous feature 
selection and multi-class prediction. Unlike L1 and Lp 
(P  ,  1) penalized methods, which can select only 
independent features, KNNlog can identify highly 
correlated features without encountering the multi-
plicity problem due to multiple tests. In addition, the 
proposed method can also identify features from data 
that different classes may have similar means, but are 
from different distributions, a task t-test fails. Finally, 
it is robust for unbalanced classification, and can clas-
sify multiple classes simultaneously without creating 
unbalanced classes. It also estimates fewer number 
of parameters (the same as the number of features) 
than both one-vs.-one and one-vs.-rest classification 

Table 4. Predictive performance of the test data for each 
location.

True  
classes

Predicted classes
EAC Gut Hair Nostril OC Skin

EAC 10 0 0 0 0 4
Gut 0 15 0 0 0 0
Hair 0 0 1 0 0 3
Nostril 0 0 0 11 0 4
OC 0 0 0 0 15 0
Skin 0 0 0 1 0 118

Table 5. Identified class associated OTUs with KNNLog.

Bacteria;Actinobacteria;Actinomycetales; 
Propionibacteriaceae;Propionibacterium(100)
Bacteria;Cyanobacteria;Cyanobacteria_incertae sedis; 
Chloroplast;Streptophyta(100)
Bacteria;Actinobacteria;Actinomycetales; 
Corynebacteriaceae;Turicella(100)
Bacteria;Proteobacteria;Betaproteobacteria; 
Neisseriales;Neisseriaceae;Neisseria(100)
Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales; 
Bacteroidaceae;Bacteroides(100)
Bacteria;Actinobacteria;Actinomycetales; 
Corynebacteriaceae;Corynebacterium(100)
Bacteria;Gammaproteobacteria;Pasteurellales; 
Pasteurellaceae;Haemophilus(100)
Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales; 
Prevotellaceae;Prevotella(100)
Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales; 
Bacteroidaceae;Bacteroides(100)
Bacteria;Firmicutes;Clostridia;Clostridiales; 
Incertae-Sedis-XI;Peptoniphilus(72)
Bacteria;Firmicutes;Clostridia;Clostridiale; 
Ruminococcaceae;Faecalibacterium(89)
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Figure 2. Normalized log-gene expressions for the 32 identified 
microRNAs in three different classes: left—normal, middle—AML, and 
right—CLL.
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schemes, and is efficient for problem with small 
sample size and a large number of features. While 
KNNLog was evaluated with only a limited number 
of datasets, it shows that the integration of instance-
based and model-based learning methods can improve 
the efficiency in both feature selection and multi-class 
prediction.
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