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Abstract: In this paper we are approaching, from a computational perspective, the problem of promoter sequences prediction, an 
important problem within the field of bioinformatics. As the conditions for a DNA sequence to function as a promoter are not known, 
machine learning based classification models are still developed to approach the problem of promoter identification in the DNA. We 
are proposing a classification model based on relational association rules mining. Relational association rules are a particular type of 
association rules and describe numerical orderings between attributes that commonly occur over a data set. Our classifier is based on the 
discovery of relational association rules for predicting if a DNA sequence contains or not a promoter region. An experimental evalua-
tion of the proposed model and comparison with similar existing approaches is provided. The obtained results show that our classifier 
overperforms the existing techniques for identifying promoter sequences, confirming the potential of our proposal.
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Introduction
Association rule mining means searching attribute-
value conditions that occur frequently together in a 
data set.1,2 Ordinal association rules3 are a particu-
lar type of association rules. Given a set of records 
described by a set of attributes, the ordinal associa-
tion rules specify ordinal relationships between record 
attributes that hold for a certain percentage of the 
records. However, in real world data sets, attributes 
with different domains and relationships between 
them, other than ordinal, exist. In such situations, 
ordinal association rules are not powerful enough 
to describe data regularities. Consequently, we have 
introduced relational association rules4 in order to be 
able to capture various kinds of relationships between 
record attributes. Relational association rule mining 
can be used in solving problems from a variety of 
domains, such as: Data Cleaning, Natural Language 
Processing, Databases, HealthCare.

In this paper, based on the idea of discovering 
relational association rules within a data set, we 
propose a classification model for the problem of pro-
moter sequences prediction. The problem of predicting 
if a DNA sequence contains or not a promoter region 
is an important problem in bioinformatics, mainly 
because determining the promoter region in the DNA 
is a significant step in the process of detecting genes. 
This classification problem was already approached 
both in the biological and computer science litera-
ture, offering this way the opportunity to relate our 
proposal to similar existing ones. We have to empha-
size that the problem mentioned above is approached 
from a computational perspective, without looking 
into deep biological insights of it. We are focusing on 
developing a machine learning based computational 
model that will be powerful enough (as shown in the 
experimental section) to capture aspects that are rele
vant in distinguishing between DNA sequences that 
contain or not a promoter region. In building our clas-
sifier, we try to interpret DNA sequences both by their 
biological and chemical properties and to exploit the 
benefit of data mining techniques to uncover hidden 
patterns in data.

The results obtained by evaluating the classifi-
cation model proposed in this paper confirm that 
applying relational association rule mining for pro-
moter sequences recognition is promising and indi-
cate the potential of our proposal. Moreover, the 

use of relational association rules in classifying 
promoter sequences, proposed in this paper, is a novel 
approach.

Motivation
Relational association rules were introduced as an 
extension to association rules, in order to be able to 
discover various kinds of relations or correlations that 
exist between data in large data sets. Classical asso-
ciation rules discard any quantitative information that 
may exist between record attributes in data sets, but 
many times this type of information can give valuable 
insights into the problem at hand. The record attributes 
may be in an ordinal relationship, if the domains of 
the attributes are similar or comparable. Otherwise, 
when the attributes do not have commensurable 
values, more general relations are needed, ones that 
are powerful enough to capture different interesting 
relationships between data. Therefore, the extension 
of classical association rules towards ordinal and 
more general, relational association rules allows the 
uncovering of much stronger rules that consequently 
achieve superior data mining, or classification.

For example, considering a data set composed of 
many DNA sequences, which represent the records 
and where the record attributes are the nucleotide 
bases, significant information can be extracted 
from the chemical and physical properties of the 
nucleotides. Therefore, relations between attributes 
could be given by such characteristics. Measurable, 
comparable properties, like molar mass, density or 
acidity may be easily used to generate ordinal associ-
ation rules. However, other properties, which cannot 
be quantified, like the class the compound belongs to 
in a certain thesaurus or classification, or the biomo-
lecular interactions it can perform could also have 
an impact in mining or classification. Consequently, 
there appears the need to define different types of 
relations in order to take into consideration all kinds 
of relevant properties.

In a relational association rule mining or classifica-
tion task, the objective is to find several relationships 
between the attributes that tend to hold over a large per-
centage of records. In a binary classification problem, 
if attribute A is in relation with attribute B for a great 
number of positive instances, then a record in which 
attribute A is not in relation with attribute B may be a 
negative instance. It may not mean very much if only 
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one rule including B is not fulfilled, but if many such 
rules are broken, then the likelihood that the instance in 
question belongs to the negative class increases.

We have started from the intuition that in the 
problem of deciding if a DNA sequence contains 
or not promoter regions, relationships between the 
nucleotides that form the DNA sequence may be 
relevant. These relationships may express quantita-
tive information that may exist in a DNA sequence, 
and it is likely that this type of relationships could 
significantly influence the classification task.

Promoter Sequences Prediction
In this section we aim at presenting the problem of 
promoter sequences prediction and its relevance, as 
well as existing machine learning based approaches 
for solving the considered problem.

The problem statement and relevance
Proteins are one of the most important classes of bio-
logical molecules, being the carriers of the message 
contained in the DNA. There are two processes that 
are involved in the synthesis of proteins, the first of 
these being transcription. During transcription, a sin-
gle stranded RNA molecule, called messenger RNA is 
synthesized (using the complementarity of the bases) 
from one of the strands of DNA corresponding to a 
gene (a gene is a segment of the DNA that codes for 
a type of protein). This process begins with the bind-
ing of an enzyme called RNA polymerase to a certain 
location on the DNA molecule. This exact site, that 
determines which of the two strands of DNA will be 
transcript and in which direction, is recognized by 
the RNA polymerase due to the existence of certain 
regions of DNA placed near the beginning of a gene, 
regions called promoters.

Because determining the promoter region in the 
DNA is an important step in the process of detect-
ing genes, the problem of promoter identification is 
of major importance within bioinformatics. As the 
conditions for a DNA sequence to function as a pro-
moter are not known, Machine Learning methods are 
suitable to approach this problem because they can 
learn useful descriptions of concepts when given only 
instances—DNA sequences that are assumed to con-
tain underlying but unknown patterns of base pairs.5

In the context of Supervised Machine Learning, 
the identification of promoters can be stated as 

follows: given two sets of DNA sequences of fixed 
length, one containing sequences with known pro-
moter regions and the other one containing sequences 
without the presence of this signal, generate a classi-
fier able to predict whether a fixed length “window” of 
a DNA sequence contains or not promoter regions.6

Related work
Several machine learning approaches have been 
applied in order to recognize biological signals (such 
as promoters) that enable the transcription process.

A hybrid learning system, that combines expla-
nation based learning and empirical learning was 
proposed by Towell et  al.7 The Knowledge-Based 
Artificial Neural Networks (KBANN) system uses a 
knowledge base of approximately correct, domain-
specific rules and translates them into an Artificial 
Neural Network, whose structure and initial weights 
correspond to parts of the knowledge base. In order 
to test this algorithm, the authors investigate the 
promoter identification problem. They developed 
a data set of 106 E. coli DNA subsequences (53 of 
which contained promoters, thus representing posi-
tive examples and 53 being negative examples), each 
sequence containing 57 nucleotides. Results obtained 
by artificial neural networks created by KBANN 
were compared to those obtained by standard back 
propagation networks, classification trees and nearest 
neighbor methods and the proposed method proved to 
be superior to the other three learning algorithms.

Pedersen and Engelbrecht8 present a new method 
that uses a neural network in order to discover sig-
nals that imply the existence of promoters in regions 
of DNA. The authors used a classic version of 
feedforward artificial neural network, with an input 
layer (that contained the DNA sequence, encoded 
into a binary string), one hidden layer (with two or 
three neurons) and an output layer consisting of only 
one neuron. The experiments were made on a data 
set of 167 E. coli DNA sequences. For each of the 
167 sequences, the training and test input values for 
the networks were constructed by sliding a window 
over the entire sequence in order to obtain positive and 
negative examples (of 65 nucleotides). In addition to 
this type of construction, the new method the authors 
introduce feeds the network with the same windows, 
but which contain a hole (of length 7 base pairs). This 
way they detect the local regions with significant 
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information by searching for positions of the hole 
that causes the learning ability of the network to be 
partially destroyed.

A new approach for predicting promoters from a 
data set of 2111 samples from 4 species (among which 
Homo Sapiens and E. coli) is proposed by Tatavarthi  
et al.9 It is based on the machine learning algorithm 
called Grey Relational Analysis (GRA). In a GRA 
approach, a system that has no information is defined 
as black, one that is full of information is called white, 
while a system that has incomplete or undetermined 
information is defined as grey. Thus, a grey element 
or relation in such a system represents an element or a 
relation with incomplete information. Using the basic 
definitions of a GRA system, the grey relational grade 
of a test sequence is computed, with respect to a cer-
tain number of comparative sequences (from the data 
set). Then, this grade is used to measure the relation-
ship between the test sequence data and comparative 
sequences data.

Multiple Support Vector Machine (SVM) 
approaches for the problem of promoter recognition 
have been proposed, one of these being presented by 
Kasabov and Pang.10 More specifically, the authors 
introduce a novel Transductive Support Vector 
Machine (TSVM), which develops a model for every 
new input vector, based on specific training examples 
and then uses the model to predict the output only 
for the specific input vector. This technique differs 
from the traditional inductive SVMs, that build a 
general model using the training data and then apply 
the obtained model on the entire test data. Both the 
inductive and transductive SVMs were trained and 
tested using a data set of 793 different vertebrate pro-
moter sequences of length 250 base pairs and another 
1200 human DNA sequences, of the same length. The 
TSVM has proven to outperform the inductive SVM 
on the task of promoter recognition.

Although, to our knowledge, association rules 
have not been used for the specific task of detecting 
promoters, there are some approaches that use asso-
ciation rules mining in the context of gene expres-
sion and signal recognition in promoter sequences. 
Icev et  al11 determine the expression patterns of 
certain genes by building a new type of association 
rules—distance-based association rules. These rules 
are based on short sequences of DNA, called motifs, 

that are contained in promoters and to which certain 
gene regulatory proteins may bind. Shibayama et al12 
obtained successful results when extracting simple 
association rules in order to find signals in mamma-
lian promoter sequences.

Relational Association Rules. 
Background
In order to be able to capture various kinds of rela-
tionships between record attributes, the definition of 
ordinal association rules3,13 was extended towards 
relational association rules.4

In the following we will briefly review the concept 
of relational association rules, as well as the mecha-
nism for identifying the relevant relational associa-
tion rules that hold within a data set.

Let R  =  {r1, r2, …, rn} be a set of instances 
(entities or records in the relational model), 
where each instance is characterized by a list of 
m attributes, (a1, …, am). We denote by Φ(rj, ai) 
the value of attribute ai for the instance rj. Each 
attribute ai takes values from a domain Di, which 
contains the empty value. Between two domains 
Di and Dj relations can be defined (not necessarily 
ordinal relations), such as: less or equal (#), equal 
(=), greater or equal ($), etc. We denote by M the 
set of all possible relations that can be defined on 
Di × Dj.

Definition 1:4 A relational association rule is an 
expression (ai1

, ai2
, ai3

, …, ail
) ⇒ (ai1

 µ1 ai2
 µ2 ai3 … 

µl - 1ail
) where {ai1

, ai2
, ai3

, …, ail
} ⊆ A = {a1, …, am}, 

aij 
≠ aik

, j, k = 1… l, j ≠ k  and µi∈M is a relation over 
D Di ij j

×
+1

,        is the domain of the attribute ai j
. If:

a)	 a a a ai i i il1 2 3
, , , ,…  occur together (are non-empty) in 

s% of the n instances, then we call s the support of 
the rule, and

b)	we denote by R′  ⊆  R the set of instances 
where a a a ai i i il1 2 3

, , , ,…  occur together and 
Φ Φ Φ Φ( , ) ( , ) ( , ) ( , )′ ′ ′ ′−r a r a r a r ai i i l il1 2 31 2 1µ µ µ…  
is true for each instance r′ from R′;then we call 
c = |R′|/|R| the confidence of the rule.

We call the length of a relational association rule 
the number of attributes in the rule. The length of 
a relational association rule can be at most equal to 
the number m of the attributes describing the data.

Di j
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The users usually need to uncover interesting 
relational association rules that hold in a data set; 
they are interested in relational rules which hold in a 
minimum number of instances, that is rules with sup-
port at least smin, and confidence at least cmin (smin and 
cmin are user-provided thresholds).

Definition 2:4 We call a relational association rule 
in R interesting if its support s is greater than or equal 
to a user specified minimum support, smin, and its con-
fidence c is greater than or equal to a user-specified 
minimum confidence, cmin.

An A-Priori14 like algorithm, called DOAR (Discovery 
of Ordinal Association Rules)13, was introduced in 
order to efficiently find all ordinal association rules 
(i.e., relational association rules in which the relations 
are ordinal) of any length, that hold over a data set. The 
mechanism of discovering interesting ordinal associa-
tion rules in a data set will be extended in our approach 
towards identifying relational association rules.

In the following a brief description of the idea of 
discovering interesting ordinal association rules will 
be given.13 This algorithm identifies ordinal associa-
tion rules using an iterative process that consists in 
length-level generation of candidate rules, followed by 
the verification of the candidates for minimum support 
and confidence compliance. DOAR performs multiple 
passes over the data set R. In the first pass, it calcu-
lates the support and confidence of the 2-length rules 
and determines which of them are interesting, i.e., 
verify minimum support and confidence requirement. 
Every subsequent pass over the data consists of 
two phases. The first phase starts with a seed set of 
(k−1)-length (k  $  3) interesting rules, found in the 
previous pass. This set is used to generate new pos-
sible k-length interesting rules, called candidate rules. 
The candidate generation process is a key element of 
the DOAR algorithm. During the second phase, a scan 
over the R data is performed in order to compute the 
actual support and confidence of the candidate rules. 
At the end of this step, the algorithm keeps the rules 
that are deemed interesting (have minimum support 
and satisfy the confidence requirements), which will be 
used in the next iteration. The process stops when no 
new interesting rules were found in the latest iteration.

The DOAR algorithm significantly prunes the expo-
nential search space of all possible interesting ordinal asso-
ciation rules, due to the candidate generation technique. 

The candidate generation restricts the search to those 
regions of the search space where it is possible that inter-
esting rules exist, pruning out all the regions where it is 
impossible to find any interesting rules. The search space 
reduction depends on the data being analyzed. The larger 
the number of interesting rules in the data set is, the larger 
the size of the candidates sets will be.

DOAR algorithm is proven to be correct and com-
plete and it efficiently explores the search space of 
the possible rules.13 The DOAR algorithm is extended 
in our approach towards DRAR algorithm (Discovery 
of Relational Association Rules) for finding interest-
ing relational association rules, i.e., association rules 
which are able to capture various kinds of relation-
ships between record attributes.

Our current implementation provides two 
functionalities:

•	 finds all interesting relational association rules of 
any length.

•	 finds all maximal interesting relational association 
rules of any length, i.e., if an interesting rule r of a 
certain length l can be extended with one attribute 
and it remains interesting (its confidence is greater 
than the threshold), only the extended rule is kept.

Methodology
In this section we propose a supervised learning tech-
nique in order to predict promoter sequences, based 
on relational association rules mining, called PCRAR 
(Promoter sequences Classifier using Relational 
Association Rules).

Although there are some fundamental differences 
between promoters in eukaryotic and prokaryotic 
organisms, it was not our goal to design an organism 
specific system, that would recognize certain classes 
of promoters or special nucleotide motifs. The classi-
fier was built with the purpose of distinguishing DNA 
sequences that contain promoters from those that do 
not. Therefore, our PCRAR classifier is not based on 
any particular biological mechanisms, its strength 
consisting in its ability to automatically learn the 
differences between DNA sequences that include or 
not promoter regions, when given as input only these 
sequences and no other extra biological information.

The problem that we are focusing on is a binary 
classification problem. There are two possible classes, 
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denoted in the following by “+” and “−”. By “+” we 
denote the class corresponding to DNA sequences 
that contain promoter regions, and the sequences that 
belong to the “+” class will be referred to as positive 
instances or promoters. By “−” we denote the class 
corresponding to DNA sequences that do not contain 
promoter regions, and the sequences that belong to 
the “−” class will be referred to as negative instances 
or non-promoters.

The main idea of our approach is the following. In 
a supervised learning scenario for predicting promoter 
sequences, two sets containing positive and negative 
instances are given. These sets will be used for train-
ing the classifier. During training, the DRAR algorithm 
will be used. Even if this algorithm can be used to dis-
cover all the relational rules, of any length, in a data 
set, we used it to discover only the binary relational 
association rules, i.e., relational association rules of 
length two. In our approach, binary rules are sufficient 
in order to classify a DNA sequence as a promoter or 
non-promoter. We detect in the training data sets all 
the interesting binary relational rules (rules between 
two attributes), with respect to the user-provided sup-
port and confidence thresholds). After the training was 
completed, when a new instance (DNA sequence) has 
to be classified (as “+” or “−”), we reason as follows. 
Considering the binary rules discovered during 
training in the set of positive and negative instances, 
the probability to assign the instance to the “+” class 
will be computed. If this probability is greater or 
equal to 0.5, then the query instance will be classified 
as a positive instance, otherwise it will be classified as  
a negative instance.

Let us consider, in the following that we are focusing 
on DNA sequences having a fixed length. We con-
sider a DNA sequence (instance) as an n-dimensional 
chain (sequence) S  =  (s1, s2, …, sn) containing the 
four letters A, T, G and C, which represent the nucle-
otides composing the DNA (A-Adenine, T-Thymine, 
G-Guanine, C-Cytosine).15 Consequently, the attribute 
(feature) set characterizing the instances (DNA 
sequences) is an n-dimensional list A = (A1, A2, …,  An), 
where attribute Ai corresponds to the i-th nucleotide 
from the DNA sequence. Therefore, each attribute 
Ai (∀1 # i # n) has 4 possible values: the characters 
A, T, G and C.

The process takes place in two phases that reflect the 
principles of a supervised learning algorithm: training 

and testing. During the training, a classification model 
will be built, and during testing, the model built during 
the training will be applied for classifying an unseen 
instance. As mentioned above, we consider for training 
two data sets: DS+ consisting of positive n-dimensional 
instances (DNA sequences that contain a promoter 
region) and DS− consisting of negative n-dimensional 
instances (DNA sequences that do not contain a pro-
moter region). These data sets are used in the training 
step of the PCRAR classifier and a classification model 
consisting of the discovered relational association rules 
is built. At the classification time, when a new instance 
(DNA sequence) S has to be classified, the model learned 
during the training step will be used for computing the 
probability that the sequence S is a positive or a negative 
instance, i.e., it contains or not a promoter region.

For classifying a DNA sequence as containing or 
not a promoter region, the following steps will be 
performed:

1)	Relations definition.
2)	Data pre-processing.
3)	Training/building the PCRAR classifier.
4)	Testing/classification.

In the following we will describe this steps.

Relations definition
This step is an important part of the classification 
process, it deals with defining the relations between 
the attributes values that will be used in the relational 
association rule mining process. More exactly, we are 
focusing on identifying relations between two nucle-
otides from a DNA sequence (A, T, G or C), relations 
that would be relevant for deciding if the sequence 
contains or not a promoter region, and consequently 
would be useful in the mining process.

The following two steps are performed in order to 
complete our task.

Step 1: First, we search for several computed chemi-
cal and physical properties that may characterize each 
nucleotide. Most of the properties we used were extracted 
from PubChem,16 which represents three linked data-
bases that provide information about small molecules. 
We selected the following measurable properties:

1)	Molar mass
2)	Density
3)	Topological Polar Surface Area
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4)	Heavy Atom Count
5)	Complexity
6)	Base composition

The last property, base composition, is one of the 
most fundamental features of a DNA sequence and it 
refers to the percentages of each of the four different 
nucleotides, on one strand of DNA. We computed 
the base composition for each nucleotide, using the 
complete genome of E. coli K-12, as catalogued in 
GenBank database.17

Consequently, we associate to each nucleotide 
(attribute value) a list of six numerical codes, rep-
resenting the values of the six above enumerated 
properties. As an example, for the first property-molar 
mass, we have the following values for the four nucle-
obases (according to PubChem): A (adenine)-135.13, 
C (cytosine)-111.1, G (guanine)-151.13, T (thymine)-
126.11. The associated properties, together with the 
corresponding normalized values are illustrated in 
Table 1.

As we are focusing in our approach on exploit-
ing relations between the four nucleotides, it can be 
observed that codes C1 and C4 are equivalent, as 
the way they rank the four nucleotides is the same. 
Another equivalence can be observed between codes 
C2 and C3.

Step 2: The second step is to identify which of 
the six types of codes associated to the attributes 
(C1–C6) would be relevant for the classification task. 
In this direction, a statistical analysis is performed on 
the training data sets DS+ and DS− to determine those 
codes that provide attributes highly correlated with 
the target output. We consider the target classification 

output to be 1 if a DNA sequence contains a promoter 
region, and 0 otherwise.

To determine the dependencies between attributes 
and the target output, the Spearman’s rank correla-
tion coefficient18 is used. A Spearman correlation of 
0 between two variables X and Y indicates that there 
is no tendency for Y to either increase or decrease 
when X increases. A Spearman correlation of 1 or -1 
results when the two variables being compared are 
monotonically related, even if their relationship is 
not linear.

Using the Spearman’s rank correlation coefficient 
between attributes and the target output, we reason as 
follows. For each of the six types of codes associated 
to the attributes, we compute the average correlation 
as the average of the absolute values of the correlation 
coefficients between each attribute (considering the 
given code as the attribute value) and the target output.
Only the codes that provide the highest average corre-
lations to the target output will be further considered 
in order to define the relations between attributes and 
to mine the interesting relational association rules. In 
order to select the relevant codes, firstly, we compute 
the mean value M of the average correlations between 
the six codes and the target classification output. 
Then, we consider that a code is likely to be relevant 
in the mining process only if its average correlation 
with the output is above M with at least γ, where γ is 
a small threshold (e.g., 0.005).

The computational process described above 
will be illustrated on a practical example in Section 
Experimental Evaluation, where we introduce the 
specific dataset used for performing the calculations. 
The same section will present, in detail, how we deter-
mined which of the six types of codes (C1–C6) are rel-
evant for our classification task, without using a priori 
biological knowledge about the connection between 
these properties and promoter sequences in the DNA.

Let us consider that following the statistical analy-
sis described above, from the set C = {C1, C2, …, C6} 
only a subset C′ ⊂ C was selected as containing types 
of codes that are relevant in defining the relational 
association rule model. Consequently, the relations 
between two nucleotides will be given as relation-
ships between their corresponding numerical codes. 
Considering a given type of code c ∈ C′, three relations 
between the nucleotides are defined: =c, ,c and .c 
(e.g., if s1 and s2 are two nucleotides then we consider 

Table 1. Codes representing measurable physical and 
chemical properties.

Code  
ID

Property  
name

A C G T

C1 Molar mass 0.8941 0.7351 1 0.8344
C2 Density 0.7272 0.7045 1 0.5590
C3 Topological  

Polar surface 
area

0.8367 0.7016 1 0.6049

C4 Heavy atom  
Count

0.9090 0.7272 1 0.8181

C5 Complexity 0.5644 0.7555 1 0.8666
C6 Base  

composition
0.9681 1 0.9976 0.9673
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that s1 ,c s2 iff c(s1) , c(s2); here by c(s) we mean 
the numerical value (code) associated to the nucleotide 
s considering the property indicated in Table 1 by the 
type of code c. As relation =  does not depend on a 
particular type of code c), the final set R of relations 
considered for the relational association rule mining 
task is considered as R c C c c= = ∪ < >∈ ′{ } { , }

.

Data pre-processing
After a set C′ containing types of codes that are 
relevant in defining the relational association rule 
model was identified (Subsection Relations Defini-
tion), another statistical analysis is carried out on 
the training data sets DS+ and DS− in order to find a 
subset of attributes that are correlated with the tar-
get output. The statistical analysis on the attributes 
is performed in order to reduce the dimensionality 
of the input data, by eliminating attributes which do 
not influence the output value.

To determine the dependencies between attributes 
and the target output, the Spearman’s rank correlation 
coefficient is used. The goal of this step is to remove 
from the attribute set A  =  (A1, A2, …, An) (Section 
Methodology) those attributes (nucleotides at a cer-
tain position, in our example) that have no significant 
influence on the target output, i.e., are slightly corre-
lated with it (the absolute value of the correlation is 
below a small positive threshold ε). A slight correla-
tion is indicated by a value that is very close to 0. We 
mention that the correlations between the attributes 
and the target classification are computed consider-
ing all the types of codes from the set C′.

Building the PCRAR classifier
The data sets, pre-processed as indicated in Subsection 
Data pre-processing, considering the set R of rela-
tionships between the attributes domains defined in 
Subsection Relations Definition, can now be used for 
building the relational association rule based classifi-
cation model.

At this step, the interesting relational association 
rules are discovered in the training data sets. As in 
an eager19 classification task, the classification model 
consisting of interesting relational association rules 
discovered in the training data sets will be further 
used to classify all test instances.

More exactly, the training consists of the follow-
ing steps:

•	 Determine from DS+, using the DRAR algorithm, 
the set RAR+ of relational association rules having 
a minimum support and confidence.

•	 Determine from DS−, using the DRAR algorithm, 
the set RAR− of binary relational association rules 
having a minimum support and confidence.

Classification using PCRAR
At the classification stage, after the training was com-
pleted and the PCRAR classifier was built, when a new 
DNA sequence S has to be classified, we calculate the 
probability P+ that S contains a promoter region and 
P− the probability that S does not contain a promoter 
region. From a Bayesian learning perspective, it is 
about determining the most probable classification 
(+ or -) of a new instance (DNA sequence), given the 
training data D DS DS= + −

. More exactly, we pro-
pose a simple method to compute the conditional prob-
abilities P(+|D) (denoted P+) and P(-|D) (denoted P- ), 
but instead of using a bayesian approach (e.g., Bayes 
theorem) we introduce a method to compute these 
conditional probabilities considering the sets of inter-
esting relational association rules that were identified 
in the training data (i.e., RAR+ and RAR- ). The way we 
propose to compute P+ and P- is simple, the accuracy 
of these computations being given in fact by the sets 
RAR+ and RAR-. We have started from the intuition 
that the more relevant the relational association rules 
detected in the training data, the more precise the prob-
abilities will be. That is why our main focus is toward 
identifying accurate and significant relations in the 
training data. This assumption was validated in the 
experimental part presented in Section Experimental 
Evaluation. Alternative methods to compute the prob-
abilities P+ and P− will be further investigated.

The steps that we propose for computing the con-
ditional probabilities are:

•	 Determine n+ the number of relational association 
rules from RAR+ that are verified in the sequence S. 
Consequently, the number m+ of relational associa-
tion rules from RAR+ that are not verified in the 
sequence S is m+ = |RAR+| - n+.

•	 Determine n− the number of relational associa-
tion rules from RAR− that are not verified in the 
sequence S. Consequently, the number m− of rela-
tional association rules from RAR− that are verified 
in the sequence S is m− = |RAR−| − n−.
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•	 Calculate the probability P+ to classify an instance 
as a positive one as n n

RAR RAR

+ + −

+ + −| | | |
. By |A| we 

     have denoted the cardinality of the set A.

If P+ $ P− then the instance S will be classified as 
a positive instance, otherwise it will classified as a 
negative instance.

At the classification stage, we can also compute 
the probability P− to classify an instance as a nega-
tive one as P

m m

RAR RAR
− = − + +

− + +| || |
. However, this step can be 

skipped as it can be easily proven that the results pro-
vided by the PCRAR classifier are logically consis-
tent, meaning that for a given instance S, P+ + P− = 1. 
We give below a lemma which proves that the sum 
of the probabilities of the two possible outcomes (an 
instance to be classified as positive or negative) is 1.

Lemma 1: Let P+ be the probability that a DNA 
sequence S is a promoter and let P− be the probability 
that S is a non-promoter, as reported by the PCRAR 
classifier. In this case, equality (1) holds:

	 P+ + P− = 1� (1)

We prove below Lemma 1.
Proof:

Using the considerations above, we have the 
following:

	
P

n n

RAR RAR+
+ -

+ -

= +
+| | | |

� (2)

and

	
P

m m

RAR RAR-
- +

- +

= +
+| | | |

� (3)

It is obvious that n+  +  m+  =  |RAR+| and 
n− + m− = |RAR−|.
Consequently, Equation (4) below holds.

	
P

RAR n RAR n

RAR RAR-
- - + +

- +

=
- + -

+
| | | |

| | | |
	 (4)

From Equations (2) and (4) it follows that:

	 P− = 1 − P+� (5)

So Lemma 1 is proved.
We give next the PCRAR algorithm, the classification  

technique that was introduced above.

Algorithm PCRAR is
Input:

-	 the data sets DS
+
 and DS

−
 containing DNA 

sequences
-	 the minimum support and confidence 

thresholds;
-	 a DNA sequence S to be classified.

Output:
-	 the probabilities P

+
 and P

−

Begin
@Determine from DS

+
 the set RAR

+
 of rules 

having a minimum support and confidence
@Determine from DS the set RAR

−
 of rules 

having a minimum support and confidence 
numberOfRules ← 0
For each r ∈ RAR

+
 do

	 If r is verified in S then 
	 numberOfRules ← numberOfRules + 1
	 EndIf 
EndFor
For each r ∈ RAR

−
 do

	 If r is not verified in S then 
	 numberOfRules ← numberOfRules + 1
	 EndIf
EndFor
Calculate the probability P

+
 as

	

numberOfRules

|RAR |+|RAR-|+
End.
Remark 1: Regarding the classification process, 

we remark the following:

•	 We remark that in computing the probability P+ to 
classify an instance as positive, only the number of 
rules that are verified/not verified in a data set is con-
sidered, without referring to the confidence of the rule. 
We have started with this simple computation mode, 
without considering the confidence and support of 
the rules, because we wanted to have a mathemati-
cal support for these computations (see Lemma 1). 
If the confidence and support of the rules would be 
considered too, P+ and P− would not be probabilities, 
meaning that Lemma 1 could not be proven.

•	 Consequently, considering that a certain rule with 
a length greater than two is verified if its binary 
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sub rules are verified, it is enough to generate only 
the binary interesting relational rules. Thus, the 
training time of PCRAR classifier is significantly 
reduced, as only binary rules are generated. This 
fast training is a major advantage of our proposal.

•	 If instead of using only the number of relational 
association rules that are verified/not verified in 
the training data we would also consider the con-
fidence of the generated rules, it is very likely 
that rules of any length should be generated, not 
only binary rules. Further improvements of our 
approach will investigate this situation.

Experimental Evaluation
In this section we aim at experimentally evaluating 
our approach for promoter sequences recognition 
using relational association rules, as well as providing 
a comparison with other existing similar approaches. 
The case study used in our experiment, the methodol-
ogy used, as well as the obtained results are presented 
in the following subsections.

Data set
The data set we used to test the efficiency of the PCRAR 
classifier is entitled “E. coli promoter gene sequences 
(DNA) with associated imperfect domain theory”. This 
data set was taken from the UCI Repository20 and con-
tains a set of 106 promoter and non-promoter instances. 
We have considered this data set in our experimental 
evaluation, despite the fact that it was built and used in 
researches before 1990, for two reasons: first, because 
information about this data set (including its previous 
usage) are publicly available; and second, as classifiers 
were already developed and validated on this data set, 
comparisons of our PCRAR classifier with the models 
existing in the literature can be conducted.

The task is to recognize promoters in the DNA of a 
bacterium called Escherichia coli (E. coli). This bac-
terium is often used as a model organism in microbi-
ology, being one of the first organisms that had their 
genome sequenced. This data set was developed to the 
purpose of evaluating a “hybrid” learning algorithm—
KBANN,7 and it has also been studied from a biologi-
cal perspective by Harley and Reynolds.21

The data set is composed of 106 DNA sequences, 
each having a length of 57 nucleotides. Half of the 
106 sequences represent positive instances, i.e, they 
contain promoter regions, while the other 53 are nega-

tive instances. The positive instances were aligned so 
that the transcription initiation site for each occurred 
seven nucleotides from the right edge of the window. 
For each instance, three types of information are 
given, in the following order:

1.	 “+/−”—indicating the class (“+” represents the 
promoters).

2.	 The name of the given instance.
3.	 The DNA sequence itself, a chain containing the 

four letters A, T, G and C, which represent the 
nucleotides composing the DNA (A-Adenine, 
T-Thymine, G-Guanine, C-Cytosine).22 The start-
ing position of the sequence is −50, while the end-
ing position is +7 (with respect to the site at which 
RNA polymerase binds to the DNA sequence).

Past usage of the data set: From a machine learning 
perspective, the data set was used in order to classify 
an instance as a promoter (positive instance—“+”) or 
non-promoter (negative instance—“−”).

As indicated above, the data set considered in our 
experiment, was previously used to evaluate a “hybrid” 
learning algorithm, named KBANN,7 which used exam-
ples to inductively refine preexisting knowledge. The 
authors of this study indicated that machine learning 
techniques, like neural networks,19 nearest neighbor,19 
decision tree,23 KBANN system performed as well/
better than classification based on canonical pattern 
matching24 (method used in the biological literature).

For evaluating the performance of the previously 
mentioned learning algorithms, a cross-validation25 
using a “leave-one-out” methodology was applied 
and the errors indicated in Table 2 were reported.7 
We mention that the error of a classifier indicates the 
percentage of misclassified instances, i.e, in Table 2 
an error of 4/106 indicates 4 misclassified instances 
from the total of 106 instances.

Table 2. Obtained errors.

System Error Comments
KB7 4/106 A hybrid ML system
BP 8/106 Neural network with one hidden layer
O’Neill26 12/106 Ad hoc technique from the biological  

literature
NN 13/106 A nearest-neighbor algorithm (k = 3)
ID3 19/106 Quinlan’s decision-tree builder
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Case study
In this section we illustrate how the PCRAR classi-
fier introduced in Section Methodology is applied for 
promoter sequences prediction, using the case study 
described in Subsection Data set. In the following we 
detail the steps described in Section Methodology 
used in order to build the relational association rule 
based classifier.

Relations definition: As mentioned in 
Section Methodology, the first stage of our approach 
consists in defining the relations between the attri-
butes values that will be used in the relational asso-
ciation rule mining process.

Each attribute is, in fact, represented by a 
nucleotide and, as mentioned in Subsection Relations 
Definition, each nucleotide may be characterized by 
a real value, representing a measurable chemical or 
physical property of the molecule. We used six types 
of codes, which were enumerated in the above men-
tioned subsection.

We aim to determine which of the six types of 
codes associated to the attributes provide high cor-
relations (considering the Spearman’s rank correla-
tion coefficient) with the target classification. As we 
have mentioned in Subsection Relations Definition, 
we are considering those codes whose average corre-
lation with the output is above the mean value with at 
least γ. In our current implementation the value of the 
threshold γ was selected 0.005. Further extensions of 
our approach will investigate methods to automatically 

determine, in a supervised learning manner, the value 
for the threshold γ. As a result of the above analysis, 
we concluded that the codes identified in Table 1 by  
C5 (Complexity) and C6 (Base composition), 
representing the values for Complexity and Base 
composition produce the highest average correlations 
to the target output (as the average correlation 
value for C5 is above the mean with 0.0083 and 
the average correlation value for C6 is above the 
mean with 0.0341) and therefore we decided to use 
a combination of these codes in order to define the 
relations between attributes and eventually to mine 
the interesting relational association rules. Figure  1 
illustrates the average degree of correlation to the 
target output of all of the six codes. Considering a 
particular code, the average correlation is computed 
as the average of the absolute values of the correla-
tion coefficients between each attribute (considering 
the given code as the attribute value) and the target  
output.

Consequently, for our case study, as we have pre-
sented in Subsection Relations Definition, five pos-
sible relations between the nucleotides are considered 
in the mining process: = , ,C5, ,C6, .C5 and .C6.

We observe in Figure 1 that codes C1 and C4, C2 
and C3, have the same average correlation with the 
output. This result is expected, considering that the 
way the equivalent codes rank the four nucleotides 
is the same. Further extensions of our work will con-
sider other ways to rank the four nucleotides, codes 
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that may provide higher correlations than the six 
codes selected in this paper.

Data  pre-processing: The next step is pre-processing 
the training data sets in order to remove the attributes 
that have a small correlation with the target output. 
Figures 2 and 3 show the correlations between the 57 
attributes characterizing a DNA sequence and the tar-
get classification output (promoter or non-promoter) 
computed using the Spearman’s rank correlation 
coefficient18 and the codes C5 and C6 identified at the 
previous step of our approach.

Considering the code C5, we identified that the 
smallest absolute value of the correlation between the 
attributes and the target output is 0.000319698, being 
obtained for Attribute 53, while the largest value for 
the correlation is 0.602350363 and is obtained for 
Attribute 17.

Considering the code C6, it can be observed that 
the smallest correlation of 0.004177312 is obtained 
for the Attribute 31 and the largest correlation 
between the attributes and the target classification is 
0.559814384 (in absolute value) and is obtained for 
Attribute 16.

In order to identify the set of attributes that pro-
vide the largest accuracy for the classification pro-
cess, we will use the preprocessing step as indicated 
in Subsection Data pre-processing. We aim at search-
ing for the attributes that have a very small correla-
tion with the target classification, i.e, the absolute 
value of the correlation (considering the codes C5 
and C6) is below a small positive threshold ε. In 
order to identify the optimal value of the thresh-
old ε, a grid search method was performed. A grid 
search makes repeated trials for the threshold across 

a specified interval using geometric steps. For each 
value of ε a cross-validation using a “leave-one-out” 
methodology is performed during the training phase, 
the best value of the threshold is indicated by the 
best accuracy (smaller error) obtained. We are using 
the following sequence for ε: ε = (10−3, 5 ⋅ 10−3, 10−2, 
5 ⋅ 10−2). For the considered case study, as will be 
mentioned in Subsection Results and discussion, 
the best value for the threshold ε identified using 
the grid search procedure described above was 
ε = 10−2. This means that the attributes whose cor-
relation with the target classification considering 
the two codes C5 and C6 was below the threshold 
ε were eliminated. The eliminated attributes are: 
Attribute 1 (C5), Attribute 3 (C6), Attribute 12 
(C5), Attribute 14 (C5), Attribute 31 (C6), Attri-
bute 35 (C5), Attribute 44 (C6), Attribute 49 (C5), 
Attribute 53 (C5).

For conducting our case study, we used a software 
framework that we have designed for binary classifi-
cation based on the discovery of interesting relational 
association rules. This interface implements DRAR 
algorithm (a variation of the DOAR algorithm13) 
developed for detecting relational association rules in 
a data set.

Results and Discussion
We executed the classification algorithm intro-
duced in Section Methodology with minimum sup-
port threshold smin = 0.9 and different values for the 
minimum confidence threshold cmin. For evaluating 
the performance of our approach, we have used the 
data set described in Subsection Data set and a cross-
validation using a “leave-one-out” methodology was 

Table 3. Obtained results.

Confidence  
threshold

Error Number of negative  
rules in DS-

Number of positive  
rules in DS+

Validation time  
(seconds)

0.6 4/106 4 240 51.693
0.55 5/106 19 386 53.471
0.52 6/106 70 577 55.481
0.5 6/106 134 690 55.533
0.48 6/106 262 844 56.025
0.47 3/106 431 1030 56.382
0.45 4/106 684 1226 57.846
0.42 3/106 1019 1434 63.511
0.4 2/106 1428 1689 64.430
0.38 3/106 1914 1973 69.852
0.36 6/106 2473 2292 79.395
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applied. Table  3 indicates the classification error 
obtained for different values for the minimum con-
fidence threshold, the number of discovered rules in 
the training data as well as the validation time (the 
overall time in which PCRAR classifier performs the 
validation). We mention that our experiments were 
carried out on a PC at 3 GHz with 4 GB of RAM 
and that the validation time includes the computation 
time of the grid search procedure performed in order 
to find the optimal value for the correlation threshold 
ε. Because the number of negative and positive rules 
differs at each step in the cross-validation process 
(as a sequence is left out), we decided to indicate in 
Columns 3 and 4 in Table 3 the number of negative 
and positive rules generated in the entire training data 
sets DS− and DS+. The number of rules indicated in 
Columns 3 and 4 represents the maximum number 
of rules that are generated at a given step in cross-
validation.

The number of discovered binary relational asso-
ciation rules are indicated in Table 3. The rules dis-
covered in the data set consisting of positive instances 
(belonging to the “+” class) will be referred to as 
positive rules and the rules discovered in the data set 
consisting of negative instances (belonging to the “−” 
class) will be referred to as negative rules.

As indicated in Table 3, the best result was obtained 
for a confidence threshold of 0.4, for which a classi-
fication error of 0.018867 (2/106) was reported after 
the validation was completed in 64.430 seconds. For 
the value 0.4 for confidence threshold the best value 
for the correlation threshold ε identified using the 

grid search procedure described above was ε = 10−2 
and this means that the attributes whose correlation 
with the target classification was below the thresh-
old ε were eliminated during the pre-processing  
step.

Compared to the classifiers already applied in 
the literature for promoter sequences recognition 
(see Table 2), the classifier introduced in this paper outper-
forms the best existing classifier for promoter sequences 
prediction: it is better than KB, ID3, O’Neill, NN and 
BP, considering the error of the classification. This 
comparison is illustrated in Figure 4. In this figure, the 
hatched bar indicates the performance of our PCRAR 
classifier.

Another advantage of our approach compared to the 
existing approaches is that the training step of PCRAR 
is very fast, as it is enough to discover only binary 
relational association rules. It is very likely that the 
time needed to train our classifier (less than 2 minutes) 
is less than the training time of KB classifier.

The results described above bring us to the conclu-
sion that applying relational association rule mining 
for promoter sequences prediction can lead to prom-
ising results and further improvements will, certainly, 
increase the accuracy of the obtained results.

Conclusions and Further Work
We have introduced in this paper a classification 
model based on relational association rules discovery 
for promoter sequences prediction. The experimental 
evaluation of the proposed model has shown that our 
classifier is better than the classifiers already applied 
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for the considered problem, indicating the potential 
of our proposal.

The good performance of the classification model 
introduced in this paper leads us to the conclusion that 
machine learning models and data mining techniques 
are significant soft computing tools that are able to 
detect and recognize patterns in biological data, that 
are hard to be identified using other conventional 
computational techniques.

Further work will be made in order to identify and 
consider in the relational association rules discovery 
different types of relations between the nucleotides 
from a DNA sequence (from a biological or chemi-
cal point of view).27 We will also investigate how the 
confidence of the relational association rules discov-
ered in the training data influences the accuracy of the 
classification task. Directions to hybridize our clas-
sification model, by combining it with other machine 
learning based predictive models19 will be further 
considered.
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