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Abstract: In spite of the recognized importance of tandem duplications in genome evolution, commonly adopted sequence comparison 
algorithms do not take into account complex mutation events involving more than one residue at the time, since they are not compliant 
with the underlying assumption of statistical independence of adjacent residues. As a consequence, the presence of tandem repeats in 
sequences under comparison may impair the biological significance of the resulting alignment. Although solutions have been proposed, 
repeat-aware sequence alignment is still considered to be an open problem and new efficient and effective methods have been advo-
cated. The present paper describes an alternative lossy compression scheme for genomic sequences which iteratively collapses repeats 
of increasing length. The resulting approximate representations do not contain tandem duplications, while retaining enough informa-
tion for making their comparison even more significant than the edit distance between the original sequences. This allows us to exploit 
traditional alignment algorithms directly on the compressed sequences. Results confirm the validity of the proposed approach for the 
problem of duplication-aware sequence alignment.

Keywords: duplications, sequence alignment, tandem repeat, compression

dx.doi.org/10.4137/EBO.S9131
http://www.la-press.com
http://www.la-press.com
http://www.la-press.com/evolutionary-bioinformatics-journal-j17
http://www.la-press.com
mailto:valerio.freschi@uniurb.it


Freschi and Bogliolo

172 Evolutionary Bioinformatics 2012:8

Introduction
Pairwise sequence alignment algorithms are based 
on metrics derived from edit distance,1 which share 
the assumption of statistical independence among the 
single-nucleotide mutation events used to explain 
the differences between the two sequences under 
comparison.

Unfortunately, this assumption doesn’t hold in 
case of tandem duplications which involve more than 
one nucleotide at the time, resulting in the so-called 
tandem repeats (TRs). The application of traditional 
alignment algorithms to sequences containing TRs 
might lead to alignments which are not biologically 
sound.2 Since the impact of these events is not mar-
ginal, as short tandem duplications ranging from 1 to 
100 base pairs account for the majority of insertion 
events in human genome,3 it is mandatory to develop 
sequence alignment methods capable of taking them 
into account as underlying biological mechanisms.

Any TR is the effect of subsequent duplications of a 
repeat unit, called motif. During the evolutionary pro-
cess, random mutation events can occur at any time 
possibly affecting one or more repeat units,  making 
them different from the original motif. Mutated 
repeat units are called variants, while TRs containing 
more variants are called approximate TRs. The vari-
ability of TRs is not limited to the random mutations 
of the motif, but it is also caused by DNA replication 
 slippage which alters the number of repetitions.5,6 The 
high instability of TRs is a well known fact which is 
exploited by using polymorphic tandem repeat loci 
(also known as variable number tandem repeats, 
VNTR) as genetic markers.7 In spite of the worth 
of taking into account multi-nucleotide duplications 
during the comparison of biological sequences, even 
the definition of TR is not universally accepted and 
it is particularly controversial in case of approximate 
TRs. The lack of a common agreed definition impacts 
the detection of TRs and it has determined the devel-
opment of different detection algorithms4,8–11  leading 
to different results.12 The regular structure of TRs can 
be exploited to reduce the size of the  representation. 
For instance, Berard et al use macro-characters to 
represent each motif (and its variants) and apply run-
length encoding (RLE) to the sequence of macro-
characters.7 In general, compression techniques have 
the two-fold objective of reducing memory require-
ments and speeding up comparison.

There are two levels of granularity at which 
repeat-aware sequence comparison can be performed. 
The coarse-grained problem consists of aligning two 
sequences that possibly contain TRs, the fine-grained 
problem consists of aligning two TRs. The first problem 
has been tackled by means of modified dynamic pro-
gramming algorithms13 with time complexity O(N5) 
and space complexity O(N2) (or with time complexity 
O(N4) and space complexity O(N3)), where N is the 
length of the input strings. Solutions to the  second 
problem have been proposed that allow the com-
parison of TRs according to different evolutionary 
events, including operations on single characters and 
more complex operations on substrings of the given 
sequences (eg, excisions and rearrangements).7,15 TRs 
to be used as input for this category of algorithms are 
usually represented as sequences of macro-characters 
belonging to a super-alphabet which encode possible 
variants of a given repeat (for instance, in the repre-
sentation of minisatellite maps obtained by means of 
PCR-based methods).16 Within this framework, two 
solutions have been proposed which differ in the type 
of evolutionary model they handle which, in turn, 
impacts algorithmic complexity. Berard et al proposed 
an algorithm for the comparison of minisatellite maps 
whose time complexity is O p p3 3+ ∑( ) ,where ∑ is 
the alphabet, s and r are the original maps under com-
parison, s and r  are their RLE compressed versions, 
|.| denotes either the cardinality of a set or the length 
of a sequence,   p s r= ( )max , , and p s r= ( )max  , .
Sammeth and Stoye introduced an algorithm with 
time and space complexity exponential in the length 
of input sequences s and r.15 The exponential com-
plexity is paid for accounting for a more complex 
evolutionary model where several variants could be 
duplicated in a single event. In summary, while solu-
tions to the coarse-grained problem incur heavy com-
putational burdens and make simplifying assumptions 
on the mutation type and order;  solutions to the fine-
grained problem are compatible with more accurate 
evolutionary models but they rely on the availability 
of predefined TRs.

Taking a different approach, a common practice 
(called repeat masking)17 consists of pre-processing 
the sequences under comparison in order to mask the 
tandem repeats which might impair the biological 
significance of the alignment. Traditional algorithms 
based on edit distance can be applied downstream to 
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the repeat-masked sequences, thus overcoming the 
issue of repeat-aware alignment.

Since none of the proposed approaches clearly 
outperforms the others in all possible contexts, a 
methodology for driving the choice of the most 
appropriate algorithm to be adopted to tackle a spe-
cific problem has been recently proposed.18 It makes 
use of significance metrics which represent the evo-
lutionary  likelihood of the results provided by the 
candidate sequence alignment algorithms. A Monte 
Carlo approach can be adopted in order to conduct a 
sensitivity analysis in the parameter space.

This paper presents a new solution to the coarse-
grained problem which resembles repeat-masking 
techniques, in that it addresses exactly the same 
issues and it entails a lossy compression mechanism 
which provides approximate representations of the 
sequences under comparison. The algorithm aims at 
reducing the original input sequences (that contain 
repeats) into sequences without exact TRs (hereafter 
also denoted as repeat-free sequences) by iterative 
collapsing of repeats of increasing length. After the 
overall procedure the sequences retain, up to a given 
degree, enough informative content for the signifi-
cance of their comparison, while not being affected 
by the problem of duplication (as they are repeat-free 
by construction).

The proposed compression algorithm has O(N  3) 
worst case time complexity and O(N  2) average case 
time complexity. Experimental results show that the 
new method outperforms both pure edit distance 
and repeat-masking techniques in terms of quality 
 metrics18 when applied to the alignment of sequences 
highly affected by duplication events.

Repeat collapsing Algorithm
This section introduces an iterative algorithm which 
provably turns a sequence containing TRs into a 
sequence which doesn’t contain any. This opens the 
way to a new (approximate) representation of the orig-
inal sequences that can be then compared by means of 
traditional alignment algorithms, thus circumventing 
the problem of statistical independence in duplication-
rich regions. After having settled preliminary defini-
tions, the repeat collapsing algorithm is outlined and 
its correctness and complexity are proved. In the fol-
lowing we use TR to implicitly denote, with a slight 
abuse of notation, exact tandem repeats.

Given a string s, a substring s’ of s with length l 
and position p is denoted by s’ = s[p, p + l -1]. A TR 
with n repeat units of size l starting from position 
p in s is denoted by TR(s, l, p, n). In symbols

t TR s l p n

t s p p n l

s p p l s p k l p k l l

=

⇔
= + ⋅ -

+ - = + ⋅ + ⋅ + -
∀

( , , , )

[ , ]

[ , ] [ , ]

1

1 1

kk n∈ -
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The k-th repeat unit of t is tk = t[k  l, 
k  l + l - 1] = s[p + k  l, p + k  l + l - 1]. Repeat unit t0 
is the template of t. TR t is said to be the first TR with 
template of length l in s, denoted by fTR(s, l ), if there 
are no TRs of size l in s with position lower than p.

Definition: The collapsing of TR t = TR(s, l, p, n) 
is the transformation of string s into a shorter string s′ 
(hereafter called residual string) obtained by excising 
all the repeat units of t but the template. In symbols:
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Definition: The size-l collapsing of string s is the 
transformation of string s into a string s’ with no TRs 
of size l, obtained by iteratively collapsing TRs of 
size l.

An algorithm for performing the size-l collapsing 
of a string is shown in Figure 1. The algorithm spans 
the original string (s) with a sliding window of size l, 
which points out, at each iteration, the substring to 
be considered as the putative template of a size-l TR. 
The putative template at position i is then compared 
with the substring starting at i + l. If they match, a 
TR is found and the algorithm looks forward to count 
the number of occurrences of the repeat unit after the 
template (k) until a mismatch is encountered. The i-th 
character of s is then copied in the output string s’, and 
the sliding window is shifted from i to i + 1 + k *l. If a 
TR was found, then k . 0 and the window is moved to 
the second character of the last occurrence of the repeat 
unit, thus causing a single occurrence of the template 
to be copied in s’, according to the collapsing rules of 
Equation 2. If no TR was found in  position i, then the 
window is shifted by 1 position only. The  correctness 
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and complexity of the algorithm are assessed by the 
following theorem.

Theorem: Algorithm collapse(s,l) of Figure 1 
performs a size-l collapsing of string s with worst-case 
complexity O(N  l ) and average-case complexity O(N),  
where N is the length of the original string and l is the 
size of the repeats to be found and collapsed.
Proof [Correctness]. The size-l collapsing of a string 
s could be iteratively performed by collapsing its first 
TR of size l, fTR(s, l), and by repeating the process 
on the residual string until it contains no more TRs. 
If we denote by s(h) the residual string obtained after 
h iterations, and by p(h) the position of fTR(s(h), l), 
than it can be easily shown that p(h) . p(h-1) for any 
h . 0. In fact, the collapsing of a TR in position p 
cannot cause the emergence of TRs in the previous 
substring. Hence, the first p(h-1) characters of residual 
string s(h) do not need to be processed at step h since 
they have been collapsed at previous steps.  According 
to this observation, the iterative process outlined at 
the beginning of this proof can be implemented by 
parsing the string only once. This is exactly what the 
collapse(s,l ) algorithm does.
Proof [Complexity]. The algorithm spans the origi-
nal string and performs, at each position, a compari-
son between two substrings of size l. Since substring 
comparison stops as soon as a difference is encoun-
tered, the number of steps involved in each compari-
son ranges from 1 to l, depending on the length (w) 
of the coincident prefixes of the substrings under 
comparison. If the two substrings are identical, the 
comparison takes O(l). However, this is not the worst 
case for the collapse algorithm, since when-
ever a TR is encountered, the loop counter is incre-
mented by l, saving l iterations. As a consequence, 

the O(l) complexity of substring comparison can be 
regarded as distributed over the l skipped iterations, 
bringing to a constant average complexity per itera-
tion. The true worst case occurs when there are no 
TRs and the first difference between the two sub-
strings under comparison is found, on average, after 
l/2 characters, leading to an overall complexity of 
O(N  l).

Average-case complexity of the comparison between 
strings of size l can be computed by taking into account 
the probability of finding the first mismatch in posi-
tion w, that can be expressed as a function of the prob-
ability p of finding two matching characters, under the 
simplifying assumption of base independence:

C strncmp w w w p p
w

l
w

w

l

( ) Pr( ) ( )= ⋅ = ⋅ ⋅ -
=

-

=
∑ ∑

1

1
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where Pr(w) denotes the probability of finding the 
first mismatch in position w. If we extend to infinity 
the summation of  Equation 3 and we exploit its known 
sum we obtain a constant upper bound for the com-
plexity of strncmp:
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Since the average case complexity of the inner loop 
has a constant upper bound, the overall collapse 
algorithm executes in linear time O(N).

Definition: A string s is said to be a TR-free string 
if it contains no TRs of any size.

Algorithm collapse_all of Figure 2 iteratively 
invokes collapse(s,l) to remove TRs of 
increasing size l. The following theorem states that 
the output it returns is a TR-free string.

char* collapse(s,l)
1 N = strlen(s);
2 i = 0;
3 i1 = 0;
4 while (i <= N - 2*l)
5 k = 0;
6 while ((i+l*(k+2) <= N) &&
7 (!strncmp(&(s[i]),&(s[i+l*(k+1)]),l)))
8 k++;
9 s1[i1] = s[i];
10 i += l*k+1;
11 i1++;
12 return s1

Figure 1. Algorithm for obtaining a size-l collapsing of a given string s.

collapse_all(s)
1 l = 1;
2 while (l <= strlen(s)/2)
3 s = collapse(s,l);
4 l++;
5 return s;

Figure 2. Algorithm for the obtaining a Tr-free string version of a given 
string s.

http://www.la-press.com


Lossy compression enabling duplication-aware sequence alignment

Evolutionary Bioinformatics 2012:8 175

Theorem: Algorithm collapse_all(s) of 
Figure 2 always returns a TR-free string, with worst-
case complexity O(N   3) and average-case complexity 
O(N   2), where N is the length of s.
Proof [correctness]. Since we know, from  Theorem 2, 
that collapse(s,l ) produces a string with no TRs 
of size l and it is invoked by collapse all(s) for 
increasing values of l, here we need only to prove that 
the execution of collapse(s,l ) doesn’t cause the 
emergence of TRs of size j , l in the residual string if 
the input string contains no TRs shorter than l.

Let’s assume, by contradiction, that the input string 
of collapse(s,l ) contains no TRs shorter than l, 
while the output string contains a TR (denoted by tX) of 
size j , l. Since tX was not present in the input string, 
its occurrence has to be regarded as the effect of the 
collapsing of some TR of size l (say, tY). Let’s use X 
and Y to denote the templates of tX and tY, respectively. 
Without loss of generality, we consider X as composed 
of three substrings: α, β, and γ. Using the dot to denote 
string concatenation we can write X = α.β.γ.

According to our assumption, the output string 
contains a substring of the form X.X = α.β.γ. α.β.γ. 
that was not in the input string because of the presence 
of tY . Since the collapsing of tY has the only effect of 
reducing a substring of the form Y.Y.....Y to a sub-
string of the form Y, we start from the result of col-
lapsing (i.e. X.X ) and we look for a suitable template 
Y the duplication of which has the effect of masking tX.

Notice that Y has to be contained in X.X in order for 
the collapsing of tY to affect tX. Hence, we restrict our 
search of Y among the substrings of X.X. Moreover, 
we know that Y is longer than X. The only candidate 
solution is Y = β.γ.α.β, which may cause an original 
string containing a substring of the form α.Y.Y.γ  to 
become X.X after collapsing:

α γ
α β γ α β β γ α β γ

α γ
α β γ α β

. . .

. . . . .( . . . ).
( , )

. .

. . . . .

Y Y

Y

→

→

collapse s l

γγ α β γ α β γ=
X X.

. . . . .

of which can cause the emergence of a TR of size 
j , l starting from a string with no TRs shorter 
than l.

Hence, if collapse(s,l ) is first invoked for 
l = 1 and then iteratively invoked for increasing 
lengths, the result is a TR-free string.
Proof [complexity]. Worst-case and average-
case complexities come from those of 
collapse(s,l), which is repeatedly invoked 
by collapse all(s) for l ranging from 1 to 
the maximum size of the possible repeat units, 
which is upper bounded by N/2.

In the worst case, no TRs are found and the inner 
procedure is invoked N/2 times, so that the overall 
complexity is given by the following sum:

 
N l N

N N

l

N

⋅ = +

=
∑

1

2 2 2 1

2

/ / ( / )

which is O(N3).
In the average case, some TRs are found, so 

that the length of the residual string decreases over 
time and the number of iterations of the main loop 
is lower than N/2. However, both the length of the 
residual strings (which determines the average-
case complexity of collapse(s,l) according 
to Theorem 2) and the number of iterations are still 
proportional to N, so that the overall complexity is 
O(N 2). The behavior of algorithm collapse_all 
is exemplified in Figure 3A, which shows a sequence 
of 36 bases containing several nested repeats, which 
is reduced to a repeat-free sequence of 11 bases in 
three collapsing steps for repeat lengths ranging 
from 1 to 3.

Figure 3B shows, for comparison, the result that 
would be achieved by invoking the collapse 
algorithm in reverse order, ie, for repeat length 
decreasing from 3 to 1. It is apparent that the resulting 
string is not repeat-free. In fact, it is of 17 bases and it 
contains three replicas of the acg motif.

Even starting from a longer repeat length the reverse 
collapsing procedure does not guarantee to remove 
all tandem repeats. This is shown in  Figure 3C, which 
starts from repeat length 5 (which is the length of 
the longer motif found in the original sequence) to 
achieve a collapsed sequence of 14 bases with two 
replicas of the acg motif.

Notice, however, that the input string contains two 
adjacent copies of substring β, which form a TR of 
size |β| , l: a contradiction.

Since the above example is representative of all 
possible cases, there are no size-l TRs the collapsing 
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Observation
We point out here that the identification of exact TRs 
could be solved by means of suffix trees data struc-
tures very efficiently with O(N2logN), being N the 
length of the string and z the number of occurrences 
of the TRs.19 In principle, our approach could also be 
extended to take advantage of these results. Notice 
however that we need to collapse tandem repeats iter-
atively, starting from the shortest ones, and the search 
for longer TRs has to be repeated at each step (in fact, 
collapsing of short TRs can determine the emergence 
of longer ones). Hence, the benefits coming from the 
usage of suffix trees could be exploited only within 
the collapse procedure, which is invoked O(N) 
times within the inner loop of collapse all, 
leading to an overall time complexity of O(N  2logN), 
which is better than the worst-case complexity of the 
proposed algorithm, but worse than its average-case 
complexity.

It is also worth noticing that the computational effi-
ciency of collapsing is not the main concern, since in 
a database search setting entries could be compressed 
off-line once and for all, thus reducing the impact 
of collapsing algorithm on runtime performance. 
 Notably, an interesting by-product of our approach is 
the possibility of reducing the complexity of a query 
search in the database by virtue of compression.

Results and Discussion
The compression algorithm described so far has been 
conceived to be applied as a pre-processing step in 
order to increase the performance of traditional align-
ment algorithms based on edit distance when applied 
to sequences rich of TRs. The combined application 
of repeat collapsing and edit distance is hereafter 
denoted by RC.

The benefits of the RC approach have been evalu-
ated by following a specific methodology recently 
introduced to assess the quality of repeat-aware align-
ment algorithms.18 In particular, three metrics have 
been used to quantify the biological-significance of 
the results provided by the alignment algorithm:

• significance ratio (R), which is the ratio between 
the number of aligned bases/residues coming from 
the same base/residue of a common ancestor, 
and the length of the shortest of the two sequences 
under alignment;

• selectivity (S), which is defined as the probabil-
ity for a database entry se to be ranked first by the 
alignment algorithm used to search among the M 
entries of a database with a query string sq, provided 
that se is the only entry in the database homologous 
to sq;

• ranking error (E), which is the normalized 
position of se in the ranking produced by the 
alignment algorithm when sq is used as a query: 
E = (rank(se) - 1)/(M - 1).
The three metrics are to be evaluated on a set of 

synthetic benchmarks randomly generated by means 
of a Monte Carlo approach which simulates the evo-
lution process according to the following statisti-
cal parameters: the probability of single-nucleotide 
insertion (pins), deletion (pdel), and mutation (pm), the 
probability of duplication (pd), the probability of 
extension of an existing TR (pe), the maximum size of 
a repeat unit (L), the number of evolution epochs (T), 
the number of known ancestors generated at each run 
(M), and their average length (N).

In order to test the proposed RC approach against a 
significant set of Monte Carlo experiments, we applied 
all the settings that were originally used to test the 
sensitivity of the quality metrics.18 In particular, we 
run 200 Monte Carlo experiments in the neighborhood 
of a representative point of the parameter space 
(hereafter called baseline) summarized in Table 1. It 

1. aCcgtacgagagagacgagacgacgacgacgCctcg
2. ac gtacGAgagagacGAgacgacgacgacgc tcg
3. ac gtACGa cga cgacgacgacgc tcg

tcgcgcatgca>-

A

3. accgtacgagagagacgaGACgacgacgacgcctcg
2. accgtacGAgagagacGAgac gcctcg
1. aCcgtacga cga c gCctcg
- > ac gtacg a cga c gc tcg

C

B

5. accgtacgagaGAGACgagacgacgacgacgcctcg
4. accgtacGAGAgagac gacgacgacgcctcg
3. accgtacgagA C Gacgacgacgcctcg
2. accgtacGAga c g cctcg
1. aCcgtacg a c g Cctcg
- > ac gtacg a c g c tcg

Figure 3. Example of repeat collapsing performed by: (A) algorithm 
collapse_all of Figure 2, (B) algorithm collapse of Figure 1 itera-
tively invoked for repeat lengths ranging from 3 to 1, and (c) algorithm 
collapse iteratively invoked for lengths ranging from 5 to 1.
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is worth noticing that the computation of the quality 
metrics entailed 8,000,000 pairwise alignments of 
sequences of about 200 bases each.

The adoption of this experimental setup provides 
the additional advantage of making our results directly 
comparable with those of the alternative approaches 
used as a case study in the paper were the quality met-
rics were originally introduced,18 namely, bare edit 
distance (ED) and different flavors of repeat masking 
(RM) performed by mreps.9

Comparative results are provided in Tables 2–4. 
Column labeled “RC” refers to the proposed 
approach, column “ED” refers to bare edit distance, 
while  column “Best RM” refers to the repeat  masking 
technique which provided the best results according 
to previous work.18 In order to enable a thorough 
evaluation of the sensitivity of the results from the 
parameters adopted to run Monte Carlo simulations, 
Pearson correlations were also computed and reported 
in the results tables.

Table 2 shows that RC significantly outperforms 
both ED and Best RM in terms of significance ratio 
(0.73 on average for RC versus 0.58 and 0.67 of ED 
and RM respectively). Best RM in Table 2 refers to 
the masking obtained by filtering out all exact TRs 
including the small ones (mreps parameter settings 
res = 0 and allowsmall = true, denoted by 
m.0).18,9 The higher robustness of RC against TRs 
is also demonstrated by its lower sensitivity to the 
probabilities of duplication (pd) and extension (pe). 
On the other hand, the quality of the results provided 
by RC is highly affected by mutation probability (pm) 
since it might reduce the effectiveness of collapsing by 
changing exact TRs into approximate ones which are 
not  targeted by the proposed approach. Notice  however 
that the high sensitivity to mutation probability is 
common to all repeat-aware techniques, including RM 
which shows a correlation to pm higher than ED.

Table 3 shows that the selectivity (S) of RC is 
remarkably higher than that of ED and slightly 
higher than that of Best RM (0.89 on average for RC 
 versus 0.75 and 0.87 for ED and RM, respectively). 
In this case Best RM refers to the masking obtained 
by filtering out all approximate TRs up to resolution 
2 but the small ones (this corresponds to mreps 
settings res = 2 and allowsmall = false, 
denoted by m.n2).18,9 From the correlation analysis 
we can observe that the spread between RC, ED, and 
Best RM in terms of sensitivity grows as duplication 
and extension probabilities increase (pd, pe), while 
it reduces for larger values of mutation probability 
(pm).

Finally, Table 4 shows that RC significantly out-
performs ED in terms of ranking error (E), while it 
performs slightly better than Best RM, which refers 
to the same masking strategy which was used as a 
term of comparison in Table 3. As already mentioned 
for R and S, RC has the lowest sensitivity to the prob-
abilities of duplication (pd) and extension (pe), while 
it is more sensitive to mutation probability (pm). In 
this case it is also worth noticing a lower sensitivity 
to the number of evolutionary epochs (T).

The results presented in this section clearly provide 
the evidence of the improved quality of RC-based 
alignments in terms of R, S, and E. Interestingly, RC 
is a lossy compression technique which can also pro-
vide benefits in terms of computational and memory 
complexity. Most important, the improved quality 
of the alignments obtained from TR-free sequences 
demonstrates that the compression technique has the 
capability of retaining the substrings which are more 
significant for the alignment.

Statistical significance
The statistical significance of the comparative results 
provided in Tables 2–4, was assessed by performing 

Table 1. ranges of the parameters used for Monte carlo simulations.

parameters
M T pins pdel pd pe pm L N

Min 160 40 0.00008 0.00008 0.0008 0.004 0.0008 12 80
Max 240 60 0.000012 0.000012 0.0012 0.006 0.0012 18 120
Avg 200 50 0.000010 0.000010 0.0010 0.005 0.0010 15 100
Abbreviations: M, number of ancestral DnA sequences; T, number of epochs considered as evolution time; pins/pdel /pd /pe/pm, insertion/deletion/duplication/
extension/mutation probabilities; L, maximum size of a repeat unit; N, length of the ancestral DnA sequences.
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Table 3. Average and standard deviation of selectivity (S) 
and correlations between S and the parameters of Monte 
carlo simulations.

Rc eD Best RM: m.n2
Results baseline: selectivity

Avg. 0.89 0.75 0.87
st.D. 0.03 0.02 0.03

Results Monte carlo: selectivity
Avg. 0.89 0.73 0.87
st.D. 0.05 0.09 0.06

correlations: selectivity
M -0.16 -0.12 -0.12
T -0.61 -0.68 -0.71
pd -0.20 -0.30 -0.32
pe -0.02 -0.18 -0.13
pm -0.31 -0.02 -0.08
pins -0.01 0.02 0.04
pdel -0.06 -0.03 -0.09
L -0.46 -0.44 -0.37
N 0.33 0.22 0.22

Table 4. Average and standard deviation of ranking error 
(E) and correlations between E and the parameters of 
Monte carlo simulations.

Rc eD Best RM: m.n2
Results baseline: Ranking error

Avg. 0.03 0.10 0.03
st.D. 0.01 0.01 0.01

Results Monte carlo: Ranking error
Avg. 0.03 0.10 0.04
st.D. 0.02 0.4 0.02

correlations: Ranking error
M 0.10 0.12 0.08
T 0.54 0.61 0.60
pd 0.25 0.29 0.32
pe 0.07 0.21 0.10
pm 0.22 -0.01 0.11
pins 0.00 -0.05 -0.05
pdel 0.06 0.04 0.14
L 0.52 0.46 0.48
N -0.26 -0.21 -0.21

Table 5. results of Wilcoxon signed rank test.

Metrics eD vs. Rc RM vs. Rc
R 1.432E-34 1.432E-34
S 1.434E-34 2.253E-11
E 1.436E-34 3.297E-19

Table 2. Average and standard deviation of significance 
ratio (R) and correlations between R and the parameters 
of Monte carlo simulations.

Rc eD Best RM: m.0
Results baseline: Significance ratio

Avg. 0.72 0.57 0.66
st.D. 0.01 0.01 0.01

Results Monte Carlo: Significance ratio
Avg. 0.73 0.58 0.67
st.D. 0.05 0.06 0.06

Correlations: Significance ratio
M -0.12 -0.05 -0.08
T -0.77 -0.76 -0.74
pd -0.16 -0.38 -0.32
pe -0.05 -0.18 -0.06
pm -0.40 -0.04 -0.20
pins -0.05 -0.01 -0.04
pdel -0.08 -0.06 -0.08
L -0.24 -0.25 -0.35
N -0.10 -0.15 -0.10

the Wilcoxon signed rank test14 on the outcomes of 
the 200 Monte Carlo experiments. The test returns a 
so-called P-value which represents the probability for 
the pairwise difference between two approaches (as 
returned by the Monte Carlo  experiments) to be only 
explained by random sampling rather than by the 
actual difference in the distributions of their parent 
populations. Hence, the lower the P-value the higher 
the statistical significance of the comparative results.

The results of the Wilcoxon test are reported 
in Table 5. All the P-values were lower than 10–19, 
demonstrating the statistical significance of the 
experiments.

Further evidence of the different performance of 
the three methods is provided by the scatter plots 
of Figures 4–6, which report, for each metric, the 
value achieved by ED and RM, plotted against those 
achieved by RC. The solid line in each graph repre-
sents the bisector of the Cartesian plane, plotted as 
a reference, while dashed lines represent the linear 
regressions of the corresponding sets.

Figure 4 clearly shows the superior quality of RC 
in terms of significance ratio, since all the points are 
well below the bisector. Figure 5 confirms that the 
selectivity of RC is much higher than that of ED (the 
points of which are all below the bisector) and slightly, 
but consistently higher than that of RM. Finally, 
Figure 6 shows that the ranking error of RC is much 
lower than that of ED (the points of which are all above 
the bisector) and slightly lower than that of RM.
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In order to evaluate the quality of the phyloge-
netic trees we computed their Robinson-Foulds 
distance (RFd)23 from the gold standard adopted 
by  Ferragina et al21 for the same data set. The RFd 
is a metric commonly used in computational phy-
logenetics for the topological comparison of trees. 
The value it takes is defined between 0 and 4n - 10, 
where n is the number of taxa of the trees under 
comparison and 0 corresponds to isomorphic trees. 
For our benchmark RFd was defined in the [0,50] 
interval and was computed by means of the tree-
dist-sym-dif.pl Perl script provided in the 
Kolmogorov Library.21 The distance from the gold 
standard resulted to be 3 for RC-tree and 9 for ED-
tree, confirming the capability of the collapsing 
strategy to reduce the noise (caused by the improper 
assumption of statistical independence of adjacent 
bases) which might impair the results of sequence 
alignment in presence of TRs.

It is worth noticing that RFd = 3, which is the par-
tition distance from the gold standard achieved by 
the RC-tree, is in line with the best results achieved 
by compression-based techniques.21 In particular, 
only 2 out of the 75 techniques tested by Ferragina 
et al obtained RFd = 3, while all others obtained 
 partition distances between 5 and 23 (see Table 6 of 
Ferragina et al).21

Needless to say, this is a simple case study which 
doesn’t provide any general validation. Rather, it 
complements the results already obtained in terms of 
significance metrics computed on synthetic bench-
marks, as discussed in Section 3.
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0.8

ED vs. RC
RM vs. RC

Significance ratio

Figure 4. Scatterplot of ED vs. RC and RM vs. RC in terms of signifi-
cance ratio. 
note: Solid line represents the bisector, dashed lines represent the linear 
regressions of given points.
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Selectivity

Figure 5. Scatterplot of ED vs. rc and rM vs. rc in terms of  selectivity. 
note: Solid line represents the bisector, dashed lines represent the linear 
regressions of given points.

Biological dataset experiments
In order to evaluate the capability of the proposed 
approach of leading to significant alignments between 
biological sequences, we also tested it on real data. 
To this purpose we used a dataset commonly adopted 
for benchmarking,20,21 composed of the mitochon-
drial DNA sequences of 15 species with lengths 
ranging from 16295 bp (Mus musculus) to 16797 bp 
 (Halichoerus grypus). Both the RC and ED alignment 
methodologies (as defined in Section 3) were applied 
to compute the pairwise distances among all the 
15 sequences. The resulting distance matrices were 
then used to derive phylogenetic trees by means of 
Neighbor Joining.22 In the following we use RC-tree 
and ED-tree to denote the results obtained with and 
without repeat collapsing.

0 0.025 0.05 0.075 0.10

0.05

0.1

0.15

0.2

ED vs. RC
RM vs. RC

Ranking error

Figure 6. Scatterplot of ED vs. rc and rM vs. rc in terms of ranking 
error. 
note: Solid line represents the bisector, dashed lines represent the linear 
regressions of given points.
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conclusions
This paper has presented a new approach to the 
problem of duplication-aware sequence alignment. 
The proposed method hinges upon a preprocessing that 
takes original sequences and computes a repeat-free 
version of them. Directly working on such approximate 
representation provides the attractive advantage of 
speeding up comparison while increasing edit- distance 
significance because of the enhanced properties of 
statistical independence between adjacent residues 
(which is usually impaired by duplication events).

An efficient algorithm for repeat collapsing has 
been presented and its properties have been formally 
proved. The capability of the proposed approach to 
enhance the quality of pairwise alignments has been 
evaluated in terms of the significance metrics recently 
introduced to assess the quality of duplication-aware 
alignment algorithms. Comparative results obtained 
from Monte Carlo simulations have confirmed the 
effectiveness of the proposed approach, which has 
also proved its effectiveness in reconstructing a phy-
logenetic tree starting from a biological dataset.
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