
Evolutionary Bioinformatics 2012:8 171–180

doi: 10.4137/EBO.S9131

This article is available from http://www.la-press.com.

© the author(s), publisher and licensee Libertas Academica Ltd.

This is an open access article. Unrestricted non-commercial use is permitted provided the original work is properly cited.

Open Access
Full open access to this and
thousands of other papers at

http://www.la-press.com.

Evolutionary Bioinformatics

O r i g i n A L r E S E A r c h

Evolutionary Bioinformatics 2012:8 171

A Lossy compression Technique enabling
Duplication-Aware sequence Alignment

Valerio Freschi and Alessandro Bogliolo
Department of Base Sciences and Fundamentals, University of Urbino, italy.
corresponding author email: valerio.freschi@uniurb.it

Abstract: In spite of the recognized importance of tandem duplications in genome evolution, commonly adopted sequence comparison
algorithms do not take into account complex mutation events involving more than one residue at the time, since they are not compliant
with the underlying assumption of statistical independence of adjacent residues. As a consequence, the presence of tandem repeats in
sequences under comparison may impair the biological significance of the resulting alignment. Although solutions have been proposed,
repeat-aware sequence alignment is still considered to be an open problem and new efficient and effective methods have been advo-
cated. The present paper describes an alternative lossy compression scheme for genomic sequences which iteratively collapses repeats
of increasing length. The resulting approximate representations do not contain tandem duplications, while retaining enough informa-
tion for making their comparison even more significant than the edit distance between the original sequences. This allows us to exploit
traditional alignment algorithms directly on the compressed sequences. Results confirm the validity of the proposed approach for the
problem of duplication-aware sequence alignment.

Keywords: duplications, sequence alignment, tandem repeat, compression

dx.doi.org/10.4137/EBO.S9131
http://www.la-press.com
http://www.la-press.com
http://www.la-press.com/evolutionary-bioinformatics-journal-j17
http://www.la-press.com
mailto:valerio.freschi@uniurb.it

Freschi and Bogliolo

172 Evolutionary Bioinformatics 2012:8

Introduction
Pairwise sequence alignment algorithms are based
on metrics derived from edit distance,1 which share
the assumption of statistical independence among the
single-nucleotide mutation events used to explain
the differences between the two sequences under
comparison.

Unfortunately, this assumption doesn’t hold in
case of tandem duplications which involve more than
one nucleotide at the time, resulting in the so-called
tandem repeats (TRs). The application of traditional
alignment algorithms to sequences containing TRs
might lead to alignments which are not biologically
sound.2 Since the impact of these events is not mar-
ginal, as short tandem duplications ranging from 1 to
100 base pairs account for the majority of insertion
events in human genome,3 it is mandatory to develop
sequence alignment methods capable of taking them
into account as underlying biological mechanisms.

Any TR is the effect of subsequent duplications of a
repeat unit, called motif. During the evolutionary pro-
cess, random mutation events can occur at any time
possibly affecting one or more repeat units, making
them different from the original motif. Mutated
repeat units are called variants, while TRs containing
more variants are called approximate TRs. The vari-
ability of TRs is not limited to the random mutations
of the motif, but it is also caused by DNA replication
 slippage which alters the number of repetitions.5,6 The
high instability of TRs is a well known fact which is
exploited by using polymorphic tandem repeat loci
(also known as variable number tandem repeats,
VNTR) as genetic markers.7 In spite of the worth
of taking into account multi-nucleotide duplications
during the comparison of biological sequences, even
the definition of TR is not universally accepted and
it is particularly controversial in case of approximate
TRs. The lack of a common agreed definition impacts
the detection of TRs and it has determined the devel-
opment of different detection algorithms4,8–11 leading
to different results.12 The regular structure of TRs can
be exploited to reduce the size of the representation.
For instance, Berard et al use macro-characters to
represent each motif (and its variants) and apply run-
length encoding (RLE) to the sequence of macro-
characters.7 In general, compression techniques have
the two-fold objective of reducing memory require-
ments and speeding up comparison.

There are two levels of granularity at which
repeat-aware sequence comparison can be performed.
The coarse-grained problem consists of aligning two
sequences that possibly contain TRs, the fine-grained
problem consists of aligning two TRs. The first problem
has been tackled by means of modified dynamic pro-
gramming algorithms13 with time complexity O(N5)
and space complexity O(N2) (or with time complexity
O(N4) and space complexity O(N3)), where N is the
length of the input strings. Solutions to the second
problem have been proposed that allow the com-
parison of TRs according to different evolutionary
events, including operations on single characters and
more complex operations on substrings of the given
sequences (eg, excisions and rearrangements).7,15 TRs
to be used as input for this category of algorithms are
usually represented as sequences of macro-characters
belonging to a super-alphabet which encode possible
variants of a given repeat (for instance, in the repre-
sentation of minisatellite maps obtained by means of
PCR-based methods).16 Within this framework, two
solutions have been proposed which differ in the type
of evolutionary model they handle which, in turn,
impacts algorithmic complexity. Berard et al proposed
an algorithm for the comparison of minisatellite maps
whose time complexity is O p p3 3+ ∑() ,where ∑ is
the alphabet, s and r are the original maps under com-
parison, s and r are their RLE compressed versions,
|.| denotes either the cardinality of a set or the length
of a sequence, p s r= ()max , , and p s r= ()max , .
Sammeth and Stoye introduced an algorithm with
time and space complexity exponential in the length
of input sequences s and r.15 The exponential com-
plexity is paid for accounting for a more complex
evolutionary model where several variants could be
duplicated in a single event. In summary, while solu-
tions to the coarse-grained problem incur heavy com-
putational burdens and make simplifying assumptions
on the mutation type and order; solutions to the fine-
grained problem are compatible with more accurate
evolutionary models but they rely on the availability
of predefined TRs.

Taking a different approach, a common practice
(called repeat masking)17 consists of pre-processing
the sequences under comparison in order to mask the
tandem repeats which might impair the biological
significance of the alignment. Traditional algorithms
based on edit distance can be applied downstream to

http://www.la-press.com

Lossy compression enabling duplication-aware sequence alignment

Evolutionary Bioinformatics 2012:8 173

the repeat-masked sequences, thus overcoming the
issue of repeat-aware alignment.

Since none of the proposed approaches clearly
outperforms the others in all possible contexts, a
methodology for driving the choice of the most
appropriate algorithm to be adopted to tackle a spe-
cific problem has been recently proposed.18 It makes
use of significance metrics which represent the evo-
lutionary likelihood of the results provided by the
candidate sequence alignment algorithms. A Monte
Carlo approach can be adopted in order to conduct a
sensitivity analysis in the parameter space.

This paper presents a new solution to the coarse-
grained problem which resembles repeat-masking
techniques, in that it addresses exactly the same
issues and it entails a lossy compression mechanism
which provides approximate representations of the
sequences under comparison. The algorithm aims at
reducing the original input sequences (that contain
repeats) into sequences without exact TRs (hereafter
also denoted as repeat-free sequences) by iterative
collapsing of repeats of increasing length. After the
overall procedure the sequences retain, up to a given
degree, enough informative content for the signifi-
cance of their comparison, while not being affected
by the problem of duplication (as they are repeat-free
by construction).

The proposed compression algorithm has O(N 3)
worst case time complexity and O(N 2) average case
time complexity. Experimental results show that the
new method outperforms both pure edit distance
and repeat-masking techniques in terms of quality
 metrics18 when applied to the alignment of sequences
highly affected by duplication events.

Repeat collapsing Algorithm
This section introduces an iterative algorithm which
provably turns a sequence containing TRs into a
sequence which doesn’t contain any. This opens the
way to a new (approximate) representation of the orig-
inal sequences that can be then compared by means of
traditional alignment algorithms, thus circumventing
the problem of statistical independence in duplication-
rich regions. After having settled preliminary defini-
tions, the repeat collapsing algorithm is outlined and
its correctness and complexity are proved. In the fol-
lowing we use TR to implicitly denote, with a slight
abuse of notation, exact tandem repeats.

Given a string s, a substring s’ of s with length l
and position p is denoted by s’ = s[p, p + l -1]. A TR
with n repeat units of size l starting from position
p in s is denoted by TR(s, l, p, n). In symbols

t TR s l p n

t s p p n l

s p p l s p k l p k l l

=

⇔
= + ⋅ -

+ - = + ⋅ + ⋅ + -
∀

(, , ,)

[,]

[,] [,]

1

1 1

kk n∈ -

 [,]1 1 (1)

The k-th repeat unit of t is tk = t[k l,
k l + l - 1] = s[p + k l, p + k l + l - 1]. Repeat unit t0
is the template of t. TR t is said to be the first TR with
template of length l in s, denoted by fTR(s, l), if there
are no TRs of size l in s with position lower than p.

Definition: The collapsing of TR t = TR(s, l, p, n)
is the transformation of string s into a shorter string s′
(hereafter called residual string) obtained by excising
all the repeat units of t but the template. In symbols:

s i
s i
s i l n

i p l
i p l

i N l n
,
[]

[]
[()]

[, ()]= + ⋅ -
< +
≥ + ∀ ∈ - ⋅ - -{ 1

0 1 1

 (2)

Definition: The size-l collapsing of string s is the
transformation of string s into a string s’ with no TRs
of size l, obtained by iteratively collapsing TRs of
size l.

An algorithm for performing the size-l collapsing
of a string is shown in Figure 1. The algorithm spans
the original string (s) with a sliding window of size l,
which points out, at each iteration, the substring to
be considered as the putative template of a size-l TR.
The putative template at position i is then compared
with the substring starting at i + l. If they match, a
TR is found and the algorithm looks forward to count
the number of occurrences of the repeat unit after the
template (k) until a mismatch is encountered. The i-th
character of s is then copied in the output string s’, and
the sliding window is shifted from i to i + 1 + k *l. If a
TR was found, then k . 0 and the window is moved to
the second character of the last occurrence of the repeat
unit, thus causing a single occurrence of the template
to be copied in s’, according to the collapsing rules of
Equation 2. If no TR was found in position i, then the
window is shifted by 1 position only. The correctness

http://www.la-press.com

Freschi and Bogliolo

174 Evolutionary Bioinformatics 2012:8

and complexity of the algorithm are assessed by the
following theorem.

Theorem: Algorithm collapse(s,l) of Figure 1
performs a size-l collapsing of string s with worst-case
complexity O(N l) and average-case complexity O(N),
where N is the length of the original string and l is the
size of the repeats to be found and collapsed.
Proof [Correctness]. The size-l collapsing of a string
s could be iteratively performed by collapsing its first
TR of size l, fTR(s, l), and by repeating the process
on the residual string until it contains no more TRs.
If we denote by s(h) the residual string obtained after
h iterations, and by p(h) the position of fTR(s(h), l),
than it can be easily shown that p(h) . p(h-1) for any
h . 0. In fact, the collapsing of a TR in position p
cannot cause the emergence of TRs in the previous
substring. Hence, the first p(h-1) characters of residual
string s(h) do not need to be processed at step h since
they have been collapsed at previous steps. According
to this observation, the iterative process outlined at
the beginning of this proof can be implemented by
parsing the string only once. This is exactly what the
collapse(s,l) algorithm does.
Proof [Complexity]. The algorithm spans the origi-
nal string and performs, at each position, a compari-
son between two substrings of size l. Since substring
comparison stops as soon as a difference is encoun-
tered, the number of steps involved in each compari-
son ranges from 1 to l, depending on the length (w)
of the coincident prefixes of the substrings under
comparison. If the two substrings are identical, the
comparison takes O(l). However, this is not the worst
case for the collapse algorithm, since when-
ever a TR is encountered, the loop counter is incre-
mented by l, saving l iterations. As a consequence,

the O(l) complexity of substring comparison can be
regarded as distributed over the l skipped iterations,
bringing to a constant average complexity per itera-
tion. The true worst case occurs when there are no
TRs and the first difference between the two sub-
strings under comparison is found, on average, after
l/2 characters, leading to an overall complexity of
O(N l).

Average-case complexity of the comparison between
strings of size l can be computed by taking into account
the probability of finding the first mismatch in posi-
tion w, that can be expressed as a function of the prob-
ability p of finding two matching characters, under the
simplifying assumption of base independence:

C strncmp w w w p p
w

l
w

w

l

() Pr() ()= ⋅ = ⋅ ⋅ -
=

-

=
∑ ∑

1

1

1

1 (3)

where Pr(w) denotes the probability of finding the
first mismatch in position w. If we extend to infinity
the summation of Equation 3 and we exploit its known
sum we obtain a constant upper bound for the com-
plexity of strncmp:

C strncmp
p

p
w p

p

p
w p

p

p

p

p p

w

w

l w

w

()

()

= - ⋅ < - ⋅

= -
-

=
-

= =

∞

∑ ∑1 1

1

1

1

1

1 1

2

(4)

Since the average case complexity of the inner loop
has a constant upper bound, the overall collapse
algorithm executes in linear time O(N).

Definition: A string s is said to be a TR-free string
if it contains no TRs of any size.

Algorithm collapse_all of Figure 2 iteratively
invokes collapse(s,l) to remove TRs of
increasing size l. The following theorem states that
the output it returns is a TR-free string.

char* collapse(s,l)
1 N = strlen(s);
2 i = 0;
3 i1 = 0;
4 while (i <= N - 2*l)
5 k = 0;
6 while ((i+l*(k+2) <= N) &&
7 (!strncmp(&(s[i]),&(s[i+l*(k+1)]),l)))
8 k++;
9 s1[i1] = s[i];
10 i += l*k+1;
11 i1++;
12 return s1

Figure 1. Algorithm for obtaining a size-l collapsing of a given string s.

collapse_all(s)
1 l = 1;
2 while (l <= strlen(s)/2)
3 s = collapse(s,l);
4 l++;
5 return s;

Figure 2. Algorithm for the obtaining a Tr-free string version of a given
string s.

http://www.la-press.com

Lossy compression enabling duplication-aware sequence alignment

Evolutionary Bioinformatics 2012:8 175

Theorem: Algorithm collapse_all(s) of
Figure 2 always returns a TR-free string, with worst-
case complexity O(N 3) and average-case complexity
O(N 2), where N is the length of s.
Proof [correctness]. Since we know, from Theorem 2,
that collapse(s,l) produces a string with no TRs
of size l and it is invoked by collapse all(s) for
increasing values of l, here we need only to prove that
the execution of collapse(s,l) doesn’t cause the
emergence of TRs of size j , l in the residual string if
the input string contains no TRs shorter than l.

Let’s assume, by contradiction, that the input string
of collapse(s,l) contains no TRs shorter than l,
while the output string contains a TR (denoted by tX) of
size j , l. Since tX was not present in the input string,
its occurrence has to be regarded as the effect of the
collapsing of some TR of size l (say, tY). Let’s use X
and Y to denote the templates of tX and tY, respectively.
Without loss of generality, we consider X as composed
of three substrings: α, β, and γ. Using the dot to denote
string concatenation we can write X = α.β.γ.

According to our assumption, the output string
contains a substring of the form X.X = α.β.γ. α.β.γ.
that was not in the input string because of the presence
of tY . Since the collapsing of tY has the only effect of
reducing a substring of the form Y.Y.....Y to a sub-
string of the form Y, we start from the result of col-
lapsing (i.e. X.X) and we look for a suitable template
Y the duplication of which has the effect of masking tX.

Notice that Y has to be contained in X.X in order for
the collapsing of tY to affect tX. Hence, we restrict our
search of Y among the substrings of X.X. Moreover,
we know that Y is longer than X. The only candidate
solution is Y = β.γ.α.β, which may cause an original
string containing a substring of the form α.Y.Y.γ to
become X.X after collapsing:

α γ
α β γ α β β γ α β γ

α γ
α β γ α β

. . .

.(. . .).
(,)

. .

.

Y Y

Y

→

→

collapse s l

γγ α β γ α β γ=
X X.

.

of which can cause the emergence of a TR of size
j , l starting from a string with no TRs shorter
than l.

Hence, if collapse(s,l) is first invoked for
l = 1 and then iteratively invoked for increasing
lengths, the result is a TR-free string.
Proof [complexity]. Worst-case and average-
case complexities come from those of
collapse(s,l), which is repeatedly invoked
by collapse all(s) for l ranging from 1 to
the maximum size of the possible repeat units,
which is upper bounded by N/2.

In the worst case, no TRs are found and the inner
procedure is invoked N/2 times, so that the overall
complexity is given by the following sum:

N l N

N N

l

N

⋅ = +

=
∑

1

2 2 2 1

2

/ / (/)

which is O(N3).
In the average case, some TRs are found, so

that the length of the residual string decreases over
time and the number of iterations of the main loop
is lower than N/2. However, both the length of the
residual strings (which determines the average-
case complexity of collapse(s,l) according
to Theorem 2) and the number of iterations are still
proportional to N, so that the overall complexity is
O(N 2). The behavior of algorithm collapse_all
is exemplified in Figure 3A, which shows a sequence
of 36 bases containing several nested repeats, which
is reduced to a repeat-free sequence of 11 bases in
three collapsing steps for repeat lengths ranging
from 1 to 3.

Figure 3B shows, for comparison, the result that
would be achieved by invoking the collapse
algorithm in reverse order, ie, for repeat length
decreasing from 3 to 1. It is apparent that the resulting
string is not repeat-free. In fact, it is of 17 bases and it
contains three replicas of the acg motif.

Even starting from a longer repeat length the reverse
collapsing procedure does not guarantee to remove
all tandem repeats. This is shown in Figure 3C, which
starts from repeat length 5 (which is the length of
the longer motif found in the original sequence) to
achieve a collapsed sequence of 14 bases with two
replicas of the acg motif.

Notice, however, that the input string contains two
adjacent copies of substring β, which form a TR of
size |β| , l: a contradiction.

Since the above example is representative of all
possible cases, there are no size-l TRs the collapsing

http://www.la-press.com

Freschi and Bogliolo

176 Evolutionary Bioinformatics 2012:8

Observation
We point out here that the identification of exact TRs
could be solved by means of suffix trees data struc-
tures very efficiently with O(N2logN), being N the
length of the string and z the number of occurrences
of the TRs.19 In principle, our approach could also be
extended to take advantage of these results. Notice
however that we need to collapse tandem repeats iter-
atively, starting from the shortest ones, and the search
for longer TRs has to be repeated at each step (in fact,
collapsing of short TRs can determine the emergence
of longer ones). Hence, the benefits coming from the
usage of suffix trees could be exploited only within
the collapse procedure, which is invoked O(N)
times within the inner loop of collapse all,
leading to an overall time complexity of O(N 2logN),
which is better than the worst-case complexity of the
proposed algorithm, but worse than its average-case
complexity.

It is also worth noticing that the computational effi-
ciency of collapsing is not the main concern, since in
a database search setting entries could be compressed
off-line once and for all, thus reducing the impact
of collapsing algorithm on runtime performance.
 Notably, an interesting by-product of our approach is
the possibility of reducing the complexity of a query
search in the database by virtue of compression.

Results and Discussion
The compression algorithm described so far has been
conceived to be applied as a pre-processing step in
order to increase the performance of traditional align-
ment algorithms based on edit distance when applied
to sequences rich of TRs. The combined application
of repeat collapsing and edit distance is hereafter
denoted by RC.

The benefits of the RC approach have been evalu-
ated by following a specific methodology recently
introduced to assess the quality of repeat-aware align-
ment algorithms.18 In particular, three metrics have
been used to quantify the biological-significance of
the results provided by the alignment algorithm:

• significance ratio (R), which is the ratio between
the number of aligned bases/residues coming from
the same base/residue of a common ancestor,
and the length of the shortest of the two sequences
under alignment;

• selectivity (S), which is defined as the probabil-
ity for a database entry se to be ranked first by the
alignment algorithm used to search among the M
entries of a database with a query string sq, provided
that se is the only entry in the database homologous
to sq;

• ranking error (E), which is the normalized
position of se in the ranking produced by the
alignment algorithm when sq is used as a query:
E = (rank(se) - 1)/(M - 1).
The three metrics are to be evaluated on a set of

synthetic benchmarks randomly generated by means
of a Monte Carlo approach which simulates the evo-
lution process according to the following statisti-
cal parameters: the probability of single-nucleotide
insertion (pins), deletion (pdel), and mutation (pm), the
probability of duplication (pd), the probability of
extension of an existing TR (pe), the maximum size of
a repeat unit (L), the number of evolution epochs (T),
the number of known ancestors generated at each run
(M), and their average length (N).

In order to test the proposed RC approach against a
significant set of Monte Carlo experiments, we applied
all the settings that were originally used to test the
sensitivity of the quality metrics.18 In particular, we
run 200 Monte Carlo experiments in the neighborhood
of a representative point of the parameter space
(hereafter called baseline) summarized in Table 1. It

1. aCcgtacgagagagacgagacgacgacgacgCctcg
2. ac gtacGAgagagacGAgacgacgacgacgc tcg
3. ac gtACGa cga cgacgacgacgc tcg

tcgcgcatgca>-

A

3. accgtacgagagagacgaGACgacgacgacgcctcg
2. accgtacGAgagagacGAgac gcctcg
1. aCcgtacga cga c gCctcg
- > ac gtacg a cga c gc tcg

C

B

5. accgtacgagaGAGACgagacgacgacgacgcctcg
4. accgtacGAGAgagac gacgacgacgcctcg
3. accgtacgagA C Gacgacgacgcctcg
2. accgtacGAga c g cctcg
1. aCcgtacg a c g Cctcg
- > ac gtacg a c g c tcg

Figure 3. Example of repeat collapsing performed by: (A) algorithm
collapse_all of Figure 2, (B) algorithm collapse of Figure 1 itera-
tively invoked for repeat lengths ranging from 3 to 1, and (c) algorithm
collapse iteratively invoked for lengths ranging from 5 to 1.

http://www.la-press.com

Lossy compression enabling duplication-aware sequence alignment

Evolutionary Bioinformatics 2012:8 177

is worth noticing that the computation of the quality
metrics entailed 8,000,000 pairwise alignments of
sequences of about 200 bases each.

The adoption of this experimental setup provides
the additional advantage of making our results directly
comparable with those of the alternative approaches
used as a case study in the paper were the quality met-
rics were originally introduced,18 namely, bare edit
distance (ED) and different flavors of repeat masking
(RM) performed by mreps.9

Comparative results are provided in Tables 2–4.
Column labeled “RC” refers to the proposed
approach, column “ED” refers to bare edit distance,
while column “Best RM” refers to the repeat masking
technique which provided the best results according
to previous work.18 In order to enable a thorough
evaluation of the sensitivity of the results from the
parameters adopted to run Monte Carlo simulations,
Pearson correlations were also computed and reported
in the results tables.

Table 2 shows that RC significantly outperforms
both ED and Best RM in terms of significance ratio
(0.73 on average for RC versus 0.58 and 0.67 of ED
and RM respectively). Best RM in Table 2 refers to
the masking obtained by filtering out all exact TRs
including the small ones (mreps parameter settings
res = 0 and allowsmall = true, denoted by
m.0).18,9 The higher robustness of RC against TRs
is also demonstrated by its lower sensitivity to the
probabilities of duplication (pd) and extension (pe).
On the other hand, the quality of the results provided
by RC is highly affected by mutation probability (pm)
since it might reduce the effectiveness of collapsing by
changing exact TRs into approximate ones which are
not targeted by the proposed approach. Notice however
that the high sensitivity to mutation probability is
common to all repeat-aware techniques, including RM
which shows a correlation to pm higher than ED.

Table 3 shows that the selectivity (S) of RC is
remarkably higher than that of ED and slightly
higher than that of Best RM (0.89 on average for RC
 versus 0.75 and 0.87 for ED and RM, respectively).
In this case Best RM refers to the masking obtained
by filtering out all approximate TRs up to resolution
2 but the small ones (this corresponds to mreps
settings res = 2 and allowsmall = false,
denoted by m.n2).18,9 From the correlation analysis
we can observe that the spread between RC, ED, and
Best RM in terms of sensitivity grows as duplication
and extension probabilities increase (pd, pe), while
it reduces for larger values of mutation probability
(pm).

Finally, Table 4 shows that RC significantly out-
performs ED in terms of ranking error (E), while it
performs slightly better than Best RM, which refers
to the same masking strategy which was used as a
term of comparison in Table 3. As already mentioned
for R and S, RC has the lowest sensitivity to the prob-
abilities of duplication (pd) and extension (pe), while
it is more sensitive to mutation probability (pm). In
this case it is also worth noticing a lower sensitivity
to the number of evolutionary epochs (T).

The results presented in this section clearly provide
the evidence of the improved quality of RC-based
alignments in terms of R, S, and E. Interestingly, RC
is a lossy compression technique which can also pro-
vide benefits in terms of computational and memory
complexity. Most important, the improved quality
of the alignments obtained from TR-free sequences
demonstrates that the compression technique has the
capability of retaining the substrings which are more
significant for the alignment.

Statistical significance
The statistical significance of the comparative results
provided in Tables 2–4, was assessed by performing

Table 1. ranges of the parameters used for Monte carlo simulations.

parameters
M T pins pdel pd pe pm L N

Min 160 40 0.00008 0.00008 0.0008 0.004 0.0008 12 80
Max 240 60 0.000012 0.000012 0.0012 0.006 0.0012 18 120
Avg 200 50 0.000010 0.000010 0.0010 0.005 0.0010 15 100
Abbreviations: M, number of ancestral DnA sequences; T, number of epochs considered as evolution time; pins/pdel /pd /pe/pm, insertion/deletion/duplication/
extension/mutation probabilities; L, maximum size of a repeat unit; N, length of the ancestral DnA sequences.

http://www.la-press.com

Freschi and Bogliolo

178 Evolutionary Bioinformatics 2012:8

Table 3. Average and standard deviation of selectivity (S)
and correlations between S and the parameters of Monte
carlo simulations.

Rc eD Best RM: m.n2
Results baseline: selectivity

Avg. 0.89 0.75 0.87
st.D. 0.03 0.02 0.03

Results Monte carlo: selectivity
Avg. 0.89 0.73 0.87
st.D. 0.05 0.09 0.06

correlations: selectivity
M -0.16 -0.12 -0.12
T -0.61 -0.68 -0.71
pd -0.20 -0.30 -0.32
pe -0.02 -0.18 -0.13
pm -0.31 -0.02 -0.08
pins -0.01 0.02 0.04
pdel -0.06 -0.03 -0.09
L -0.46 -0.44 -0.37
N 0.33 0.22 0.22

Table 4. Average and standard deviation of ranking error
(E) and correlations between E and the parameters of
Monte carlo simulations.

Rc eD Best RM: m.n2
Results baseline: Ranking error

Avg. 0.03 0.10 0.03
st.D. 0.01 0.01 0.01

Results Monte carlo: Ranking error
Avg. 0.03 0.10 0.04
st.D. 0.02 0.4 0.02

correlations: Ranking error
M 0.10 0.12 0.08
T 0.54 0.61 0.60
pd 0.25 0.29 0.32
pe 0.07 0.21 0.10
pm 0.22 -0.01 0.11
pins 0.00 -0.05 -0.05
pdel 0.06 0.04 0.14
L 0.52 0.46 0.48
N -0.26 -0.21 -0.21

Table 5. results of Wilcoxon signed rank test.

Metrics eD vs. Rc RM vs. Rc
R 1.432E-34 1.432E-34
S 1.434E-34 2.253E-11
E 1.436E-34 3.297E-19

Table 2. Average and standard deviation of significance
ratio (R) and correlations between R and the parameters
of Monte carlo simulations.

Rc eD Best RM: m.0
Results baseline: Significance ratio

Avg. 0.72 0.57 0.66
st.D. 0.01 0.01 0.01

Results Monte Carlo: Significance ratio
Avg. 0.73 0.58 0.67
st.D. 0.05 0.06 0.06

Correlations: Significance ratio
M -0.12 -0.05 -0.08
T -0.77 -0.76 -0.74
pd -0.16 -0.38 -0.32
pe -0.05 -0.18 -0.06
pm -0.40 -0.04 -0.20
pins -0.05 -0.01 -0.04
pdel -0.08 -0.06 -0.08
L -0.24 -0.25 -0.35
N -0.10 -0.15 -0.10

the Wilcoxon signed rank test14 on the outcomes of
the 200 Monte Carlo experiments. The test returns a
so-called P-value which represents the probability for
the pairwise difference between two approaches (as
returned by the Monte Carlo experiments) to be only
explained by random sampling rather than by the
actual difference in the distributions of their parent
populations. Hence, the lower the P-value the higher
the statistical significance of the comparative results.

The results of the Wilcoxon test are reported
in Table 5. All the P-values were lower than 10–19,
demonstrating the statistical significance of the
experiments.

Further evidence of the different performance of
the three methods is provided by the scatter plots
of Figures 4–6, which report, for each metric, the
value achieved by ED and RM, plotted against those
achieved by RC. The solid line in each graph repre-
sents the bisector of the Cartesian plane, plotted as
a reference, while dashed lines represent the linear
regressions of the corresponding sets.

Figure 4 clearly shows the superior quality of RC
in terms of significance ratio, since all the points are
well below the bisector. Figure 5 confirms that the
selectivity of RC is much higher than that of ED (the
points of which are all below the bisector) and slightly,
but consistently higher than that of RM. Finally,
Figure 6 shows that the ranking error of RC is much
lower than that of ED (the points of which are all above
the bisector) and slightly lower than that of RM.

http://www.la-press.com

Lossy compression enabling duplication-aware sequence alignment

Evolutionary Bioinformatics 2012:8 179

In order to evaluate the quality of the phyloge-
netic trees we computed their Robinson-Foulds
distance (RFd)23 from the gold standard adopted
by Ferragina et al21 for the same data set. The RFd
is a metric commonly used in computational phy-
logenetics for the topological comparison of trees.
The value it takes is defined between 0 and 4n - 10,
where n is the number of taxa of the trees under
comparison and 0 corresponds to isomorphic trees.
For our benchmark RFd was defined in the [0,50]
interval and was computed by means of the tree-
dist-sym-dif.pl Perl script provided in the
Kolmogorov Library.21 The distance from the gold
standard resulted to be 3 for RC-tree and 9 for ED-
tree, confirming the capability of the collapsing
strategy to reduce the noise (caused by the improper
assumption of statistical independence of adjacent
bases) which might impair the results of sequence
alignment in presence of TRs.

It is worth noticing that RFd = 3, which is the par-
tition distance from the gold standard achieved by
the RC-tree, is in line with the best results achieved
by compression-based techniques.21 In particular,
only 2 out of the 75 techniques tested by Ferragina
et al obtained RFd = 3, while all others obtained
 partition distances between 5 and 23 (see Table 6 of
Ferragina et al).21

Needless to say, this is a simple case study which
doesn’t provide any general validation. Rather, it
complements the results already obtained in terms of
significance metrics computed on synthetic bench-
marks, as discussed in Section 3.

0.80.70.6
0.4

0.6

0.8

ED vs. RC
RM vs. RC

Significance ratio

Figure 4. Scatterplot of ED vs. RC and RM vs. RC in terms of signifi-
cance ratio.
note: Solid line represents the bisector, dashed lines represent the linear
regressions of given points.

0.4
0.7 0.8 0.9 1

0.6

0.8

1

ED vs. RC
RM vs. RC

Selectivity

Figure 5. Scatterplot of ED vs. rc and rM vs. rc in terms of selectivity.
note: Solid line represents the bisector, dashed lines represent the linear
regressions of given points.

Biological dataset experiments
In order to evaluate the capability of the proposed
approach of leading to significant alignments between
biological sequences, we also tested it on real data.
To this purpose we used a dataset commonly adopted
for benchmarking,20,21 composed of the mitochon-
drial DNA sequences of 15 species with lengths
ranging from 16295 bp (Mus musculus) to 16797 bp
 (Halichoerus grypus). Both the RC and ED alignment
methodologies (as defined in Section 3) were applied
to compute the pairwise distances among all the
15 sequences. The resulting distance matrices were
then used to derive phylogenetic trees by means of
Neighbor Joining.22 In the following we use RC-tree
and ED-tree to denote the results obtained with and
without repeat collapsing.

0 0.025 0.05 0.075 0.10

0.05

0.1

0.15

0.2

ED vs. RC
RM vs. RC

Ranking error

Figure 6. Scatterplot of ED vs. rc and rM vs. rc in terms of ranking
error.
note: Solid line represents the bisector, dashed lines represent the linear
regressions of given points.

http://www.la-press.com

Freschi and Bogliolo

180 Evolutionary Bioinformatics 2012:8

conclusions
This paper has presented a new approach to the
problem of duplication-aware sequence alignment.
The proposed method hinges upon a preprocessing that
takes original sequences and computes a repeat-free
version of them. Directly working on such approximate
representation provides the attractive advantage of
speeding up comparison while increasing edit- distance
significance because of the enhanced properties of
statistical independence between adjacent residues
(which is usually impaired by duplication events).

An efficient algorithm for repeat collapsing has
been presented and its properties have been formally
proved. The capability of the proposed approach to
enhance the quality of pairwise alignments has been
evaluated in terms of the significance metrics recently
introduced to assess the quality of duplication-aware
alignment algorithms. Comparative results obtained
from Monte Carlo simulations have confirmed the
effectiveness of the proposed approach, which has
also proved its effectiveness in reconstructing a phy-
logenetic tree starting from a biological dataset.

Author contributions
Conceived and designed the experiments: VF, AB.
Analysed the data: VF, AB. Wrote the first draft of
the manuscript: VF, AB. Contributed to the writing
of the manuscript: VF, AB. Agree with manuscript
results and conclusions: VF, AB. Jointly developed
the structure and arguments for the paper: VF, AB.
Made critical revisions and approved final version:
VF, AB. All authors reviewed and approved of the
final manuscript.

Disclosures and ethics
As a requirement of publication author(s) have pro-
vided to the publisher signed confirmation of com-
pliance with legal and ethical obligations including
but not limited to the following: authorship and
contributorship, conflicts of interest, privacy and
confidentiality and (where applicable) protection of
human and animal research subjects. The authors
have read and confirmed their agreement with the
ICMJE authorship and conflict of interest criteria.
The authors have also confirmed that this article is
unique and not under consideration or published in
any other publication, and that they have permission

from rights holders to reproduce any copyrighted
material. Any disclosures are made in this section.
The external blind peer reviewers report no conflicts
of interest.

References
 1. Gusfield D. Algorithms on Strings, Trees and Sequences: Computer Science

and Computational Biology. Cambridge University Press, UK, 1997.
 2. Morgenstern B, Prohaska S, Pohler D, Stadler P. Multiple sequence align-

ment with user-defined anchor points. Algorithms for Molecular Biology.
2006;1(1):6.

 3. Messer PW, Arndt PF. The majority of recent short DNA insertions in the
human genome are tandem duplications. Molecular Biology and Evolution.
2007;24:1190–7.

 4. Delgrange O, Rivals E. STAR: an algorithm to search for tandem approxi-
mate repeats. Bioinformatics. 2004;20(16):2812–20.

 5. Dieringer D, Schlotterer C. Two distinct modes of microsatellite mutation
processes: Evidence from the complete genomic sequences of nine species.
Genome Res. 2003;13:2242–51.

 6. Pearson CE, Edamura KN, Cleary JD. Repeat instability: mechanisms of
dynamic mutations. Nature Reviews Genetics. 2005;6:729–42.

 7. Berard S, Nicolas F, Buard J, Gascuel O, Rivals E. A fast and specific
alignment method for minisatellite maps. Evolutionary Bioinformatics.
2006;2(1):327–44.

 8. Benson G. Tandem repeats finder: a program to analyze DNA sequences.
Nucleic Acids Res. 1999;27(2):573–80.

 9. Kolpakov R, Bana G, Kucherov G. Mreps: Efficient and flexible detection
of tandem repeats in DNA. Nucleic Acids Res. 2003;31(13):3672–8.

 10. Landau GM, Schmidt JP, Sokol D. An algorithm for approximate tandem
repeats. J Comput Biol. 2001;8:1–18.

 11. Wexler Y, Yakhini Z, Kashi Y, Geiger D. Finding approximate tandem
repeats in genomic sequences. J of Comput Biol. 2005;12(7):928–42.

 12. Leclercq S, Rivals E, Jarne P. Detecting microsatellites within genomes: sig-
nificant variation among algorithms. BMC Bioinformatics. 2007;8(1):125.

 13. Benson G. Sequence alignment with tandem duplication. J Comp Biol.
1997;4:351–67.

 14. Rosner B, Glynn RJ, Lee MLT. The wilcoxon signed rank test for paired
comparisons of clustered data. Biometrics. 2006;62(1):195–92.

 15. Sammeth M, Stoye J. Comparing tandem repeats with duplications and
excisions of variable degree. IEEE/ACM Transactions on Computational
Biology and Bioinformatics. 2006;3(4):395–407.

 16. Jeffreys AJ, MacLeod A, Tamaki K, Neil DL, Monck-ton DG. Minisatellite
repeat coding as a digital approach to DNA typing. Nature. 1991;354:
204–9.

 17. Claverie JM. Computational methods for the identification of genes in
vertebrate genomic sequences. Human Molecular Genetics. 1997;6(10):
1735–44.

 18. Freschi V, Bogliolo A. A monte carlo method for assessing the quality of
duplication-aware alignment algorithms. Evolutionary Bioinformatics.
2011;(7):31–40.

 19. Stoye J, Gusfield G. Simple and flexible detection of contiguous repeats
using a suffix tree. Theoretical Computer Science. 2002;270:843–56.

 20. Apostolico A, Comin M, Parida L. Mining, compressing and classifying
with extensible motifs. Algorithms for Molecular Biology. 2006;1(1):4.

 21. Ferragina P, Giancarlo R, Greco V, Manzini G, Va-liente G. Compression-
based classification of biological sequences and structures via the Universal
Similarity Metric: experimental assessment. BMC Bioinformatics.
2007;8(1):252.

 22. Durbin R, Eddy S, Krogh A, Mitchinson G. Biological Sequence Analysis.
Cambridge University Press, UK, 1998.

 23. Robinson DF, Foulds LR. Comparison of weighted labelled trees. In:
Proc. 6th Australian Conf. Combinatorial Mathematics, Lecture Notes
 Mathematics. 1979:119–26.

http://www.la-press.com

