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Improvements in a Mouse Model of Alzheimer’s Disease 
Through SOD2 Overexpression are Due to Functional  
and Not Structural Alterations
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Abstract: Oxidative stress and mitochondrial dysfunction have been implicated in the pathogenesis of Alzheimer’s disease. We and 
others have shown that over expression of the mitochondrial antioxidant superoxide dismutase 2 (SOD-2) can improve many of the 
pathologies in the Tg2576 mouse model of Alzheimer’s disease that harbors the Swedish mutation in the amyloid precursor protein. 
However, it is not clear if these improvements are due to functional improvements or structural/anatomical changes. To answer this 
question, we used diffusion tensor imaging (DTI) to assess the structural integrity of white matter tracts in the control mice, Tg2576 mouse 
and Tg2576 mice over expressing SOD-2. We observed minimal differences in diffusion parameters with SOD-2 over expression in 
this model indicating that the improvements we previously reported are due to functional changes and not any alterations to the white 
matter tractography.
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Introduction
Alzheimer’s disease (AD) is an age-related neurodegen-
erative disease that is currently the 6th leading cause of 
death among American adults.1 AD involves progres-
sive memory loss and cognitive decline.2 The hallmark 
histological findings of AD are extracellular deposits 
of amyloid-beta (Aβ) known as plaques and intracel-
lular aggregates of hyperphosphorylated tau known as 
neurofibrillary tangles.3 More recently, grey and white 
matter changes have been detected in both AD patients 
and some animal models of AD with diffusion tensor 
imaging.4–6 Although Aβ’s neurotoxic potential is well 
established,7 its exact role in the molecular mechanisms 
leading to the development of AD is unclear.

Oxidative stress has been strongly implicated in 
neurodegenerative diseases such as AD.8 Aβ can induce 
oxidation reactions,9,10 and in turn, a pro-oxidant state 
can increase the levels of Aβ.11 Mitochondria, as the 
powerhouses of the cell, produce significant amounts 
of reactive oxygen species (ROS) such as superoxide 
anion.12,13 Moreover, mitochondrial abnormalities and 
oxidative damage have been reported to be involved 
in the disease processes of AD.14,15

In the mitochondria, superoxide dismutase-2 
(SOD-2) is a scavenger of superoxide anions.16 AD 
mouse models with reduced expression of SOD-2 
have accelerated cognitive dysfunction and increased 
levels of Aβ in the brain.17,18 We and others have also 
shown that over expression of SOD-2 in an AD mouse 
model prevented memory impairments, reduced Aβ 
plaques, improved axonal transport and cerebral 
blood flow, and rescued hippocampal synaptic plas-
ticity.19–21 The question remains though, whether 
these improvements are due to functional improve-
ments or structural components or a combination of 
both. It is not known if the SOD-2 over expression 
that recovers axonal transport and synaptic plasticity 
is also associated with white matter changes. Using 
diffusion tensor imaging (DTI) to measured white 
matter integrity parameters (axonal diffusivity, frac-
tional anisotropy, and trace), we investigated whether 
SOD-2 over expression can alter white matter integ-
rity in the Tg2576 mouse model of amyloidosis.

Materials and Methods
Animal protocol
All experimental procedures were performed in 
accordance with the Institutional Animal Care and 

Use Committee of Baylor College of Medicine. 
The Tg2576 transgenic mice carrying the Swedish 
mutation human amyloid precursor protein (Tg2576), 
the mitochondrial superoxide dismutase over express-
ing (SOD2) transgenic mice, and the double trans-
genic SOD2/Tg2576 transgenic (SOD2/Tg2576) mice 
have already been described.19,22,23 15–21 month old 
SOD2/Tg2576, SOD2, Tg2576, and wildtype (WT) 
littermate mice were deeply anesthetized using a ket-
amine and zylazine cocktail. Fixed brains for MRI 
were prepared as described in Tyszka et al.24 Briefly, 
the mice were transcardially perfused with heparinized 
phosphate buffered saline (PBS) followed by fixation 
with 4% paraformaldehyde (PFA). Post perfusion, 
the head was removed. The skin, muscle, ears, nose 
tip, and lower jaw were removed to expose the skull. 
The head was fixed overnight in 4% PFA at 4 °C. The 
head was then transferred to 40 mLs of 0.01% sodium 
azide in PBS and rocked for 7 days at 4 °C. The head 
was transferred to a solution of 5  mM gadopentate 
dimeglumine (Bayer HealthCare Pharmaceuticals 
Inc., Wayne, NJ) and 0.01% sodium azide in PBS and 
rocked for 21–24 days at 4 °C. Incubation with gado-
pentate dimeglumine improved the signal-to-noise 
ratio. Prior to imaging, the head was equilibrated to 
room temperature for 6–8 hours.

Magnetic resonance protocol
All scans were acquired on a 9.4 T Bruker Avance 
Biospec Spectrometer, 21-cm bore horizontal scanner 
with 35  mm volume resonator (Bruker BioSpin, 
Billerica, MA) with Paravision 4.0 software (Bruker 
Biospin, Billerica, MA). An initial pilot scan was 
run to position the DTI scan. The 3D DTI scan 
parameters are as follows: Spin echo, b-value = 0 and 
1000s/mm2, 20 diffusion directions with one non-dif-
fusion weighted image, TR = 500 ms, TE = 14.8 ms, 
FOV = 1.5 × 1.0 × 2.0 cm, matrix = 164 × 96 × 96, 
NEX  =  1, δ  =  3  ms, ∆  =  7  ms. The acquisition 
time = ∼15 hrs.

Image processing
The MRI images were first processed on Amira 
(Visage Imaging, Inc., San Diego, CA) to remove skull 
and extraneous tissue from the images in preparation 
for alignment. The non-diffusion weighted image for 
each genotype was then aligned to one brain within 
each group using BUILD.25–27 The groups were 
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aligned together. DTI studio28 was used to calculate the 
trace, the primary eigenvalue (λII, often referred to as 
axial diffusivity), and fractional anisotrophy (FA) from 
six brain regions of interest (ROIs, Fig. 1). The ROI 
were defined for the corpus callosum (CC), cingulum 
(cg), external capsule (EC), dorsal hippocampal 
commissure (DHC), ventral hippocampal commissure 
(VHC), anterior commisure (AC). The 3D ROI were 
manually drawn on one brain and then the regions 
were applied to the native diffusion weighted images 
of the other brains using the alignment information.

Statistics
Brain ROIs were analyzed separately. Values for dif-
fusion were calculated as the mean of each measure 
across all of the voxels in a particular 3D ROI for 
each brain. One-way ANOVA was used to deter-
mine if there was a significant difference in diffu-
sion parameters between WT, SOD2, Tg2576, and 
SOD2/Tg2576 mice. P-values for diffusion data were 
adjusted for the multiple comparisions of trace, λII, 
and FA by using a P-value ,0.0167 as significant 
(0.05/3).

Results
Age and ROI
There was no significant difference in the mean age 
of mice from each group (P = 0.9345). The sizes of all 
of the ROIs were not significantly different between 
groups except the VHC (P  =  0.0114) where the 
SOD2 animals had a slightly larger VHC compared 
to Tg2576 (Bonferroni post test P , 0.05, Fig. 2).

Diffusion parameters
To perform quantitative comparison of the groups, 
the rotational invariant diffusion tensor parameters 

of fractional anisotropy (FA), primary eigenvalue 
(axial diffusivity), and the trace (total diffusivity) 
were calculated. There was no significant difference 
between the four groups in trace or axial diffusivity for 
any of the ROIs (Table 1) after a one-way ANOVA. The 
FA in the anterior commissure (AC) was significantly 
different (P = 0.0109; Fig. 3) and a Bonferroni post-
test showed that SOD2/Tg2576 mice had higher FA 
than both Tg2576 and SOD2 (Bonferroni post test, 
P , 0.05 and P , 0.01, respectively).

Discussion
In the Tg2576  mouse model of amyloidosis, we 
and others have shown that SOD-2 over expression 
can restore cerebral blood flow, reduce plaque load, 
decrease oxygen radical levels, improve behavioral 
outcomes, and recover axonal transport and synap-
tic plasticity.19–21 From our data presented here, the 
improvements from SOD-2 over expression appear 
to be functional rather than structural or anatomical 
changes in fixed brains from Tg2576 mice since the 
majority of diffusion parameters were not significantly 
different between groups. At the age point tested, 
approximately 18 months, SOD2/Tg2576 mice only 
showed a small increase in FA in the anterior commis-
sure compared to SOD2 mice with a non-significant 
trend toward higher FA compared to Tg2576  mice. 
There was a difference in VHC size. The reason for the 
differences in size of the VHC ROI is not clear. As has 
already been shown in this model, the Tg2576 mouse, 
although a model of human amyloid over expression, 
it does not exhibit the significant neuro degeneration 
that is seen in human Alzheimer’s patients.22,29

Other groups have reported minor differences in 
diffusion parameters in the Tg2576  mouse model 
and another mouse model of brain amyloidosis 

Figure 1. Regions of interest (ROI) for diffusion measurements. Non-diffusion weighted images of a mouse brain in (A). Coronoal view of brain with 
ROI for corpus callosum (red), external capsule (yellow), cingulum (white), and anterior commissure (purple) or (B). Horizontal view with ROI for dorsal 
hippocampal commissure (green) and ventral hippocampal commissure (blue).
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estimations of anisotrophy at least 20 diffusion 
directions are necessary.30 A more recent study by 
Harm et  al using fixed brains from Tg2576  mice 
with 20 diffusion directions found small reductions 
in relative anisotrophy (2%–6%) in the CC and VHC 
but these changes were not progressive with age.31 
They also found no significant differences in other 
diffusion parameters in the AC, posterior commis-
sure, fornix, and dorsal fornix.31

Our study was restricted to using perfusion fixed 
brains because of the time restraint imposed by the 
imaging time which was approximately 15 hours. It is 
not clear if there are differences between in vivo and 
ex vivo diffusion indices. Sun et al. reported preserva-
tion of relative anisotrophy with fixation since there 
was a proportional decrease in the diffusion coeffi-
cients in all directions equally.32,33 Another compari-
son of live versus fixed tissue anisotropy has found 
differences; however, the validity of the finding is 
questionable since the number of diffusion directions 
between the live versus fixed tissue was not the same 
(6 versus 20).6,31

Table 1. Diffusion measures.

WT (n = 4) SOD-2 (n = 4) Tg2576 (n = 5) SOD2/Tg2576 (n = 5)
CC
FA 0.496 ± 0.020 0.503 ± 0.056 0.471 ± 0.053 0.546 ± 0.028
λll 0.358 ± 0.072 0.429 ± 0.025 0.404 ± 0.046 0.422 ± 0.024
Trace 0.800 ± 0.053 0.842 ± 0.064 0.814 ± 0.129 0.756 ± 0.057
cg
FA 0.485 ± 0.015 0.494 ± 0.056 0.462 ± 0.045 0.507 ± 0.023
λll 0.339 ± 0.084 0.411 ± 0.030 0.394 ± 0.037 0.421 ± 0.023
Trace 0.742 ± 0.042 0.793 ± 0.048 0.789 ± 0.092 0.777 ± 0.053
DHC
FA 0.543 ± 0.018 0.520 ± 0.061 0.487 ± 0.020 0.530 ± 0.039
λll 0.421 ± 0.120 0.503 ± 0.024 0.481 ± 0.028 0.490 ± 0.025
Trace 0.875 ± 0.048 0.934 ± 0.045 0.918 ± 0.062 0.880 ± 0.033
VHC
FA 0.513 ± 0.043 0.488 ± 0.107 0.495 ± 0.072 0.517 ± 0.019
λll 0.379 ± 0.059 0.436 ± 0.057 0.407 ± 0.068 0.425 ± 0.019
Trace 0.822 ± 0.116 0.869 ± 0.194 0.786 ± 0.152 0.825 ± 0.039
EC
FA 0.370 ± 0.012 0.397 ± 0.057 0.377 ± 0.038 0.419 ± 0.026
λll 0.401 ± 0.073 0.432 ± 0.030 0.423 ± 0.020 0.429 ± 0.018
Trace 0.948 ± 0.063 0.914 ± 0.053 0.911 ± 0.071 0.870 ± 0.040
AC
FA 0.452 ± 0.017 0.411 ± 0.041 0.437 ± 0.018 0.475 ± 0.018
λll 0.408 ± 0.105 0.461 ± 0.032 0.392 ± 0.049 0.451 ± 0.041
Trace 0.915 ± 0.064 0.955 ± 0.085 0.794 ± 0.099 0.833 ± 0.056
Notes: Values are mean ± SD. All λll and trace values are 1 × 10-3 mm2/s.

P < 0.05
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Figure 2. The size of the ROI for the ventral hippocampal commissure is 
significantly different between groups.
Notes: Bonferroni post test reveals that the SOD2  group has a 
significantly larger VHC ROI than Tg2576 group (P , 0.05). Values are 
mean ± standard deviation.

(the PDAPP mouse); however these changes were 
not progressive and tended to be small.5,6 In addition, 
these studies were performed with 6 diffusion direc-
tions for calculating diffusion parameters; however, 
a Monte Carlo simulation study found that for robust 
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In conclusion, little to no diffusion changes were 
seen in the white matter tracts of the brains from WT, 
SOD2, Tg2576, and SOD2/Tg2576  mice. Only the 
anterior commissure in SOD2/Tg2576 had a small but 
significant increase in FA compared to SOD2 mice. 
This is consistent with only minor changes being 
detected in this same model with 20 diffusion 
direction DTI.31 SOD-2 over expression in the 
Tg2576 mouse model of amyloidosis has been shown 
to improve many of the pathological consequences 
and behavioral sequelae of amyloid over expression; 
however, the magnitude of these improvements can-
not be explained by the minor differences in diffusion 
parameters reported here. This suggests that SOD-2 
over expression and reduction of ROS may be more 
of a functional recovery instead of a structural or ana-
tomical improvement.
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