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Abstract: Molecular markers serve to assign individual samples to specific groups. Such markers should be easily identified and have 
a high discrimination power, being highly conserved within groups while showing sufficient variability between the groups that are 
to be distinguished. The availability of a large number of complete genomic sequences now enables the informed selection of genes 
as molecular markers based on the observed patterns of variability. We derived a new scoring system based on observed DNA poly-
morphic differences, and which uses the Bayes theorem as adapted by Wilcox. For validation, we applied this system to the problem 
of identifying individual species within a prokaryotic (Vibrio) and a eukaryotic (Diphyllobothrium) genus for validation. Top-scoring 
candidates genes Chromosome segregation ATPase and ATPase-subunit 6 showed better discrimination power in Vibrio and Diphyl-
lobothrium, respectively, as compared to standard molecular markers (recA, dnaJ and atpA for Vibrio, and 18s rRNA, ITS and COX1 
for Diphyllobothrium).
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Background
Molecular methods to assign biological samples to 
specific groups (eg, taxonomic groups) have largely 
replaced morphological comparisons, allowing 
hundreds or even thousands of characters to be 
compared across samples.1 Historically, numer-
ous DNA-based approaches encompassing random 
whole-genomic analysis have been used to discrim-
inate groups of organisms. These include meth-
ods like, among many others, restriction fragment 
length polymorphism (RFLP), or random ampli-
fication of polymorphic DNA (RAPD).2,3 Alterna-
tively, sequences from genes, usually selected by 
their conserved, housekeeping roles, can be used.2 
However, it is often the case that existing markers 
provide insufficient resolution or are confounded 
by homoplasy, homologous recombination and lat-
eral gene transfer.4,5 In recent years, thanks to great 
advances in sequencing technologies,6,7 the number 
and diversity of completely sequenced genomes is 
growing exponentially. This provides the basis for 
optimizing the selection of marker genes based on 
the analysis of the whole genetic complement of 
a given set of organisms. Earlier attempts to use 
whole-genome information to select marker genes 
that could best serve as predictors of phylogenetic 
relatedness include the use of scores based on the 
level of sequence identities from whole-genome 
alignments,8 or the selection of unique sequence 
signatures present in a few species.9 These meth-
ods, however, do not exploit the information from 
sequence variability within a species. Here we 
propose and evaluate an alternative algorithm for 
the selection of optimal genetic markers, which is 
based on the comparison of complete genomes. In 
brief, the basis of our strategy is to rank different 
genes according to the level of DNA polymorphism 
within and between defined taxonomic groups. 
More specifically, DNA polymorphism is measured 
as the average number of nucleotide differences per 
site,10 and a conditional probabilistic statistic based 
on Bayes’s Theorem as adapted by Willcox11 is used 
to prioritize genes, so that genes presenting higher 
levels of polymorphism between groups but lower 
variation within a group receive higher scores. 
In order to validate the methodology, we apply it to 
the problem of selecting marker genes for the iden-
tification of individual species within a prokaryotic 

(Vibrio) and a Eukaryotic (Diphyllobothrium) 
genus. Publicly available genomic sequences were 
analyzed to select high-scoring marker genes, which 
were subsequently amplified and sequenced in a 
set of additional, non-sequenced strains of these 
groups. The discrimination power (DP) of these 
newly obtained sequences was compared to that of 
traditional marker genes.

Methods
Sequence data
Complete genome sequences were downloaded from 
the National Center of Bioinformatics Information 
(NCBI) in Genbank (.GBK) format. These were: 
(i) chromosome I from the following Vibrio species 
and strains: V. cholerae (NC_002505), V. vulnificus 
(NC_004459), V. parahaemolyticus (NC_004603), 
V. harveyi (NC_009783), V. fischeri (NC_006840), 
Alivibrio salmonicida (NC_011312), V. splendidus 
(NC_011753), V. cholerae (NC_009457), V. cholerae 
(NC_012578), and V. cholerae (NC_012668); 
(ii) Whole mitochondrial genomes from Different 
Diphyllobothrium species and strains: D. latum 
(NC_008945), D. nihonkaiense (NC_009463), 
D. latum (AB269325) and D. latum (DQ985706).

Alignments, polymorphism analysis, and 
molecular marker score calculation
Genome sequences mentioned above were divided 
into four different groups: (1) VibrioDS, containing 
only one representative genome for each Vibrio spe-
cies, using the Vibrio cholerae strain (NC_002505); 
(2) VibrioSS, comprising the four different 
Vibrio cholerae strains; (3) DiphyllobothriumDS 
containing one genome per Diphyllobothrium spe-
cies using NC_008945 as D. latum representative; 
(4) DiphyllobothriumSS containing all D. latum 
strains. Each group was aligned using MAUVE 
v2.3.1 using the progressiveAligner option.12 Output 
files were re-formatted to Variscan—extended 
multi-FASTA (XMFA) format with a custom PERL 
Script (XMFA.pl) and analyzed using Variscan 
v2.0.13 The resulting files were used as an input for 
the molecular marker score calculation implemented 
in a custom PERL script (SCORE.pl), and using two 
different window sizes of 300pb and 500 pb, for Vibrio 
and Diphyllobothrium, respectively. The final output 
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consists of a plain text file listing the potential marker 
genes, sorted in a descending order of their scores.

Algorithm
The Bohle-Gabaldón (BG) score calculation is 
based on the level of DNA polymorphism in the 
Distinct Species (DS) group and Same Species (SS) 
groups, as inferred from the average of nucleotide 
differences per site (π̂ ). Not more than one SS group 
may be considered. The Bayes’s theorem as adapted 
by Willcox11 is used as follows. If the number of 
genome sequences in DS group is lower than 4 and 
there is no length constraint for the marker, formula 
(1) is used.

If molecular marker with specific size is required 
(Sref     ) formula (2) is used, Si is the nucleotides length 
of gene i. Also, if the amount of whole-genomes for 
DS group is 4 or more, is possible include Tajima’s 
D (Di) without specific size requirement (3) or with 
(4), which better account for the possibility of rare 
haplotypes. Based on Willcox conditions, higher π̂  
in Different Species (πi(DS)) and lower in Same Spe-
cies (πi(SS)) is better. For (Di(DS)) in DS group more 
negative values are preferred and, finally, the size 
of molecular marker (Sref) is arbitrary. In order to 
reduce sequencing costs we selected rather small 
sizes (300 pb–500 pb).

BG score using DNA polymorphism (less than 
4 genomes):

	 ( ) ( )ˆ ˆ(1 )i i DS i SSScore π π= − 	 (1)

Scoring using DNA polymorphism and Size (less 
than 4 genomes)

	
( ) ( )ˆ ˆ(1 )Size i

i i DS i SS
i ref i

SScore
S S S

π π+
 

= −   + − 
	 (2)

Scoring using DNA polymorphism and Tajima’s 
D14 (4 genomes and more):

	

( )
( ) ( )

ˆ
ˆ ˆ(1 )

2
Tajima
Size i DS

i i DS i SS

D
Score π π

+
−

 
= − − 

 
	 (3)

Scoring using DNA polymorphism, Tajima’s D 
and Size (4 genomes and more):

π π
+
− = −

  
× −     + −   

( ) ( )

( )

ˆ ˆ(1 )

ˆ

2

Tajima
Size

i i DS i SS

i DS i

i ref i

Score

D S

S S S

	 (4)

The maximum value for Score is 1 using πi(DS) = 1, 
πi(sS) = 0, Tajima’s D = −2 and Si = Sref  . The minimum 
value for Score is 0 considering πi(DS) = 0, πi(SS) = 1, 
Tajima’s D = +2 and Si ≠ Sref  .

Experimental validation analysis
Additional Vibrio sequences for the candidate genes 
were obtained from biological samples stored in the 
Collection of Aquatic Important Microorganism 
(CAIM) at the Center of Research for Nutrition 
and Development (Mexico). Collected strains 
were: V. ordalii CAIM608, V. aestuarianus CAIM592, 
V. orientalis CAIM332, V. tubiashii CAIM313, V. splendi-
dus CAIM319, V. cyclitrophicus CAIM 596, V. fortis 
CAIM629, V. parahaemolyticus CAIM320, V. harveyi 
CAIM513, V. rotiferianus CAIM577, V. mytili CAIM528, 
V. navarrensis CAIM609, V. fluvialis CAIM593, V. 
agarivorans CAIM615, V. mimicus CAIM602, V. 
metschnikovii CAIM317, V. vulnificus CAIM610, 
V. aerogenes CAIM906 and V. neptunius CAIM532. 
Similarly, additional sequences for candidate Diphyl-
lobothrium marker genes were obtained from samples 
fixed in ethanol at the Parasitology Institute of Biol-
ogy Center of the Czech Republic. These included the 
strains D. latum TS-07/17, D. pacificum TS-06/30a.b., 
D. dendriticum TS-04/39, D. nihonkaiense TS-06/236, 
D. polyrugosum TS-05/58 and D. ditremum TS-02/32.

DNA purification and amplification
Genomic DNA from Vibrio species was purified 
using E.Z.N.A. Bacterial DNA Kit (Omega Biotek, 
USA). Diphyllobothrium samples were diluted (1) in 
nuclease-free water, macerated with mortar, to sub-
sequently purify DNA using E.Z.N.A. Tissue DNA 
Kit (Omega Biotek, USA), following manufacturer’s 
instructions. The final volume for PCR were 50 µl 
with 5 µl Buffer 10x (20 nM Tris-HCl pH 8.0, 40 nM 
NaCl, 2  mM Sodium phosphate, 0.1  mM EDTA, 
1  mM DTT, stabilizers, 50% (v/v) glycerol), 1  µl 
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dNTPs (10 mM), 6 µl MgCl2 (50 mM), 1 µl primers 
(10  µM), 0.5  µl Platinum Taq DNA polymerase 
(2.5 U), 5 µl template DNA and 31.5 µl free nucle-
ase water. Primers for target gene amplification were 
designed based on the level of observed sequence 
conservation. The primers used for Vibrio were for-
ward 5′-ATG GTT TCA ATT AAN GGN TTR CCK 
CC-3′ and reverse 5′-TTA GAT GTA RAK ATC GAC 
MCC NA-3′ and for Diphyllobothrium target gene 
were forward 5′-ATG ATC TTT AGT GGT TAT TCA 
-3′ and reverse 5′-CTA ATG GTC CAC TGA AAA 
TGA TAA TAT-3′. The thermal profile used was the 
following: initial activation (2 min, 95 °C), followed 
by 35 cycles of denaturation (1 min, 95 °C), anneal-
ing (1 min, 55 °C) and extension (1 min, 72 °C), and a 
final extension (4 min, 72 °C). Electrophoresis agarose 
gel (1.5%) stained with Ethidium bromide was used 
to identify the PCR products from Vibrio (∼300 pb) 
and Diphyllobothrium (∼500 pb). PCR products were 
purified using Minielute gel extraction kit (QIAGEN, 
USA) and cloned using CloneJET PCR cloning kit 

(Fermentas, USA). This kit includes the positive 
selection cloning vector pJET1.2/blunt that contains 
a lethal gene which is disrupted by ligation of a DNA 
insert into the cloning site. As a result, only cells with 
recombinant plasmids are able to propagate. Finally, 
DNA from the E. coli top 10 colonies was purified 
using E.Z.N.A. bacterial DNA Kit (Omega Biotek, 
USA). Total DNA obtained from clones was amplified 
using primers pJET1.2 forward and reverse (Clone-
JET, Fermentas, USA) with BigDye Terminator v3.1 
Cycle sequencing Kit (Applied Biosystem, USA) 
using manufacturer’s instructions. The PCRs prod-
ucts were purified for Dyes using Dye Terminator 
Removal kit (Omega Biotek, USA) and sequenced 
using ABI PRISM 310 machine (Applied Biosystem, 
USA). The sequences obtained were edited, assem-
bled, aligned and compared using CLC Genomics 
Workbench v3.5.5 (CLC Bio, Denmark).

Molecular marker discrimination  
power analysis
To prioritize the markers, we developed a simple 
Discrimination Power (DP) score (5) based in Bayes’s 
Theorem adapted by Willcox11 which evaluates the 
maximum identity (∆Ii

max) for each species in each 
molecular marker gene (x) analyzed.

	
max

1
(1 )

n

x i
i

DP I
=

= − ∆∏ 	 (5)

The maximum value for DP is 1 (ie, perfect molec-
ular marker), if maximum difference of identity for 
the closest species in each species for each molecular 
marker tends to 0. The minimum value for DP is 0 

Table 1. 10 top-scoring marker genes for Vibrio species discrimination using Si = 300 pb.

Scorei Locus tag Size (pb) πi(DS) πi(SS) Tarima’s D(DS)

0.00308 VC1988 0.98387 0.03469 0.00000 -0.09022
0.00252 VC1954 0.33667 0.05809 0.00000 -0.12885
0.00238 VC2163 0.78667 0.03703 0.00000 -0.08185
0.00237 VC2354 0.47667 0.04847 0.00000 -0.10258
0.00233 VC2665 0.96667 0.03374 0.00000 -0.07132
0.00222 VC2189 0.59667 0.04396 0.00000 -0.08477
0.00212 VC1986 0.60653 0.04145 0.00000 -0.08437
0.00208 VC2658 0.82189 0.03318 0.00000 -0.07621
0.00207 VC2652 0.56667 0.03689 0.00000 -0.09897
0.00207 VC1534 0.59817 0.04150 0.00000 -0.08352

Table 2. 10 top-scoring marker genes o Diphyllobothrium 
species discrimination using Si = 500 pb.

Score Gen Size (pb) πi(DS) πi(SS)

0.01175 ATP6 509 0.01196 0.00013
0.01066 ND6 458 0.01156 0.00015
0.00733 ND3 356 0.00944 0.00019
0.00563 ND4L 260 0.00833 0.00028
0.00524 COX2 569 0.00596 0.00023
0.00479 ND2 878 0.00841 0.00015
0.00433 ND4 1250 0.01083 0.00017
0.00404 ND1 890 0.00719 0.00022
0.00355 ND5 1568 0.01115 0.00047
0.00230 COX1 1565 0.00720 0.00004
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when the level of identity of that marker in the closest 
species tends to 1 for each species.

Results
Automated prioritization of marker genes
Publicly available genomes from Vibrio and Diphyl-
lobothrium were downloaded and subjected to the 
selection of marker genes approach aforementioned. 
For each genus, a list of potential marker genes 
sorted in descending order of their BG scores was 
produced. For Vibrio species (Table  1), the best 
molecular marker is a protein-coding gene with 
locus tag VC1988 in chromosome 1 of the reference 
genome V. cholerae NC_002505. This gene encodes 
a chromosome segregation ATPase, a protein essen-
tial for cell division that forms part of a chromosomal 
segregation complex. In the case of Diphyllobot-
hrium, the analysis of completely sequenced mito-
chondrial genomes revealed the gene encoding the 
subunit 6 of the ATPase complex as the best poten-
tial marker gene (Table  2). This enzyme is part of 
the mitochondrial oxidative phosphorylation and is 
essential for the generation of ATP.15

Experimental Validation
In order to validate the effectiveness of our approach 
we amplified these marker genes from additional 
strains of known taxonomic assignment but with 
no current genomic sequences available. The 
effectiveness of the markers, as measured by the 
Discrimination Power score (DP) described above, 
was compared to that of common markers used pre-
viously for these species. These were atpA,16 dnaJ17 
and recA,18 for Vibrio and 18S rRNA, COX1 and 18s 
rRNA + ITS + 5.8s rRNA19,20 for Diphyllobothrium.

Twenty new sequences were obtained from the 
chromosome segregation ATPase gene in differ-
ent Vibrio species. Remarkably, this gene showed 
the best Discrimination Power value (Table  3) 
with a DP score of 6.3  ×  10−14. Standard markers 
showed lower discrimination powers: dnaJ (DPdnaJ 
= 3.5 × 10−19), atpA (DPatpA  =  1.1 × 10−26) finally 
recA (DPrecA  =  7.9  ×  10–27). In the case of Diphyl-
lobothrium, seven new sequences were obtained 
from ATPase-subunit 6 (ATP6) gene in different 
species. Again, the marker gene selected by our 
approach presented the highest Discrimination 
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power (DPATP6  =  7.9  ×  10–6), followed by COX1 
(DPCOX1 = 5.8 × 10–6), ITS rRNA(DPITS = 4.4 × 10–11) 
and 18s rRNA(DP18sRNA = 1.4 × 10–13) (Table 4).

Discussion
We have proposed and validated a novel approach 
for the informed selection of marker genes based on 
the observed levels of DNA polymorphism10 among 
whole genomic sequences. Our results indicate that 
our approach effectively selects marker genes for spe-
cies differentiation. Besides having greater discrimi-
nation powers than traditional markers, our markers 
also reduced the number of species that showed iden-
tical sequences for the marker. Nevertheless, in both 
genera studies, there are still some species that are 
too closely related to be differentiated with a single 
marker. The use of a combination of markers, or the 
selection of specific markers for that group of species 
within the genus would be required. Our approach 
has some minimal requirements. For instance, if the 
goal is to obtain marker genes for species differen-
tiation in a given genus, a minimum of three differ-
ent strain genomes belonging to two different species 
within the genus is required. Moreover, the design of 
primers may present problems if the sequences are 
too divergent, although this problem is shared with 
other approaches.

Our approach and scoring system method provides 
a new, powerful tool for the exploitation of available 
genome sequences to assist in the selection of marker 
genes. In both the eukaryotic and prokaryotic gen-
era tested, the theoretical analyses showed excellent 
correlation with empirical results and showed a bet-
ter performance than molecular markers previously 
proposed by different authors for the same species. 
The adaptation of Bayes theorem permitted the use 
of a conditioned statistic that prioritizes genes show-
ing low DNA polymorphism inside the same species 
(different strains), while displaying high DNA poly-
morphism between different species.
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Supplementary data
The scoring system and the necessary re-formatting scripts have been implemented in PERL. The PERL scripts (SCORE.
pl and XMFA.pl) and a user manual for Windows, Linux and Mac are available at http://www.bioinformatics.cl.
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