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Abstract: Gene expression profiling has provided insights into different cancer types and revealed tissue-specific expression signatures. 
Alterations in microRNA expression contribute to the pathogenesis of many types of human diseases. Few studies have integrated all 
levels of gene expression, miRNA and methylation to uncover correlations between these data types. We performed an integrated profil-
ing to discover instances of miRNAs associated with a gene expression and DNA methylation signature across multiple cancer types. 
Using data from The Cancer Genome Atlas (TCGA), we revealed a concordant gene expression and methylation signature associated 
with the microRNA hsa-miR-142 across the same samples. In all cancer types examined, we found a signature of co-expression of a 
gene set R and methylated sites M, which correlate positively (M+) or negatively (M-) with the expression of hsa-miR-142. The set 
R consistently contains many genes, such as TRAF3IP3, NCKAP1L, CD53, LAPTM5, PTPRC, EVI2B, DOCK2, LCP2, CYBB and 
FYB. The signature is preserved across glioblastoma, ovarian, breast, colon, kidney, lung, uterine and rectum cancer. There is 28% 
overlap of methylation sites in M between glioblastoma (GBM) and ovarian cancer. There is 60% overlap of genes in R between GBM 
and ovarian (P = 1.3e−11). Most of the genes in R are known to be expressed in lymphocytes and haematopoietic stem cells, while M 
reflects membrane proteins involved in cell-cell adhesion functions. We speculate that the hsa-miR-142 associated signature may signal 
haematopoietic-specific processes and an accumulation of methylation events triggering a progressive loss of cell-cell adhesion. We also 
observed that GBM samples belonging to the proneural subtype tend to have underexpressed hsa-miR-142 and R genes, hypomethy-
lated M+ and hypermethylated M−, while the mesenchymal samples have the opposite profile.
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Introduction
Gene expression regulation through mechanisms that 
involve microRNAs and epigenetics (DNA methy-
lation) has attracted much attention recently.1 MiR-
NAs are a class of small RNA molecules that target 
mRNAs, causing translation repression. MiRNAs 
regulate genes associated with different biologi-
cal processes, such as apoptosis, stress response, or 
tumorigenesis.2 In the context of cancer, miRNAs 
have emerged as new molecular players involved in 
carcinogenesis. Deregulation of miRNAs has been 
shown in glioblastoma, colon and ovarian cancer.3,4 
Recently, it was shown that miR-10b is upregulated 
in gliomas, even though it is not expressed in healthy 
human brain tissue.5 Distinguishing cancer subtypes 
on the basis of miRNA expression may help to per-
sonalize therapies; this would enable doctors to better 
match a patient with the treatment the patient is likely 
to respond to with fewest side effects.6–11

Expression of genes is affected by miRNA expres-
sion and DNA methylation, which are known to 
regulate each other in both directions.12 MiRNAs are 
known to be targets of epigenetic regulation, as well as 
to target the epigenome, allowing for self-regulatory 
loops. One third of all human miRNA genes have a 
CpG island in the upstream region, suggesting epi-
genetic regulation of miRNA expression.13–15 On 
the other hand, several miRNAs are known to drive 
methylation signatures via interactions with DNA 
methyltransferases (DNMTs) and RBL2 proteins16,17 
DNMTs are responsible for the methylation of the 
CpG islands of genes in an RBL2-dependent manner. 
The over expression of DNA methyltransferases 
(DNMTs) is often a poor prognostic indicator for can-
cer, since they induce hypermethylation and under-
expression of tumor suppressors.18,19 It still remains 
largely unknown how, exactly, miRNAs affect 
genome methylation at the epigenetic level. The pre-
cise epigenetic mechanisms underlying the alteration 
of miRNA expression also remain largely unknown.

Few studies have performed an integrated analysis 
of gene expression, miRNA expression and methy-
lation using data from the same samples.2,20–24 In 
this study we explore relations of these three data 
types, in terms of their correlation to one another. 
Our goal was to identify particular miRNAs hav-
ing strong and consistent correlative relationships 
with gene expression and methylation. We focused 

on integrated cancer datasets that are available from 
The Cancer Genome Atlas (TCGA) repository. The 
TCGA Research Network was established to generate 
the comprehensive catalog of genomic abnormalities 
driving tumorigenesis.25,26 We found that hsa-miR-142  
is consistently associated with a gene expression and 
methylation signature in all cancer datasets.

Methods
Our analysis involved a computational method to 
identify miRNA, methylation sites and genes of 
potential importance in a set of samples, based on 
correlations among the different data types across 
samples.27 We performed an integrated correla-
tion analysis of the miRNA, methylation and gene 
expression data that is available for glioblastoma 
and ovarian cancer. Our method’s aim is to evalu-
ate the correlations between methylation-miRNA 
and mRNA-miRNA. For example, the correlation of 
miRNA Mi’s and gene Ri’s expression (across the 
samples for which both miRNA and gene expression 
are available) would show if there is a positive or 
negative correlation between Mi and Ri.28

We downloaded methylation, miRNA and 
gene expression data for glioblastoma and ovar-
ian cancer, which was available on The Cancer 
Genome Atlas (TCGA) repository in April 2011. 
We used the level 3 data from TCGA and filtered 
out the healthy samples, such that we considered 
only tumor samples. For gene and miRNA expres-
sion the level 3 data represent the expression for 
particular genes or miRNAs per sample. For methy-
lation the level 3 data represent the methylated sites/
genes per sample. Level 3 data was derived after 
the raw signals per probe (level 1) were normalized 
per probe set (level 2) and then averaged for a gene 
or miRNA. Supplementary file 6  shows the num-
ber of tumor samples that were available on TCGA 
for each combination of data types. Additionally, 
for breast, colon, kidney, uterine and rectum can-
cer we downloaded the sequencing-based RNASeq 
and miRNASeq level 3 data available on TCGA in 
November 2011. This data represents the calculated 
expression calls for genes and miRNAs per sample. 
It is derived after calculating the expression signal 
for all reads aligning to a particular gene or miRNA 
(level 1) and normalizing the reads with TMM nor-
malization (level 2).
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Discretization of gene expression, 
miRNAs and methylation
We performed a pair wise correlation analysis between 
the different data types, as Figure 1 shows. Initially, 
the algorithm compares the sample-specific methyla-
tion of each gene with the expression level of each 
miRNA, across all samples. To evaluate the pairwise 

Pearson correlation between different data types (gene 
expression, miRNA expression and methylation), we 
discretized all three data types. A gene’s expression 
(similarly, a methylation site’s or miRNA’s) took a 
discrete value of −1, 0, or 1 for a sample, represent-
ing underexpression (hypomethylation), moderate, 
or overexpression (hypermethylation) in the sample. 
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Figure 1. Preprocessing: We discretized the expression and methylation data to determine if a gene is under, over, or moderately (non-extremely) 
expressed/methylated in each sample. To turn a gene (or miRNA or methylation site) into a discrete vector over all tumor samples, we evaluated the gene 
expression’s mean value and standard deviation over all samples. Then, if the gene had value greater than the mean plus standard deviation in a sample, 
we represented it as 1 (over-expressed or hypermethylated). If the gene had value lower than the mean minus standard deviation in a sample, we repre-
sented it as −1 (under-expressed or hypomethylated). Otherwise, the gene was represented as 0 in the sample. We used the discrete vector representa-
tion of each miRNA’s expression and methylation over all samples (either gbm or ovarian) from the preprocessing step. Step 1: We evaluated the Pearson 
correlation between all pairs of miRNAs and methylation sites in glioblastoma and ovarian cancer. Then, we ranked all pairwise correlations in descending 
order, as shown. Step 2: We kept the top ranked miRNAs for ovarian and gbm. A condition was that the Bonferroni-corrected p-value, derived from a two-
tailed t-test that evaluated the Pearson correlation, should be less than 0.01. Step 3: We found the miRNAs appearing in the top ranks in both ovarian and 
gbm and we selected the best miRNA as representative. Step 4: Using the best miRNA as representative, we found the top correlated methylation sites 
and genes in gbm and ovarian. We refer to the resulting sets as M_gbm, M_ovarian (methylation sites) and R_gbm, R_ovarian (gene expression).
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The discretization is based on whether the gene’s (or 
methylation site’s) expression is at least one standard 
deviation away from the gene’s mean value over all 
samples. We represented a gene (or miRNA or meth-
ylation site) as a vector of discrete values across all 
samples. Discretization of the values serves the fol-
lowing two purposes: (1) it allows us to compare two 
data types on a common basis, ie, whether there is 
aberrant expression or methylation observed in the 
same samples. (2) It allows us to filter out high corre-
lations if there is moderate (non-extreme) expression/
methylation (0) in most or all of the samples.

Our analysis method differs from that of29 who used 
z-scores for discretizing the data. The z-scores indi-
cate how many standard deviations a value is above or 
below the mean; previous studies discretized a gene 
expression value if z-score .2 or ,−2. The study then 
used Fisher’s exact p-value to evaluate correlations 
between gene expression and mutations by assigning 
an exact p-value to a correlation, considering only up 
or only down regulation, and keeping P , 0.01. Pear-
son correlation, on the other hand, allows us to con-
sider both up and down regulation for a pair, offering 
us two benefits. Using the Pearson correlation allows 
us to find negative correlations, as well as positive 
ones, such as concordantly over- expressed genes and 
hypomethylated sites. Moreover, Pearson correlation 
allows us to find negative correlations and it allows 
us to find subclasses of samples defined by opposite 
expression/methylation patterns (such as, the M+ and 
M− patterns). Since we are not dealing with somatic 
mutations, we believe Pearson correlation is a more 
suitable choice than Fisher’s exact p-value for our 
analysis.

To evaluate the statistical significance of the 
Pearson correlation between miRNA and gene expres-
sion (or methylation) we used a two-tailed t-test. The 
t-test was based on the Student’s t-distribution with 
n-2  degrees of freedom, where n is the number of 
samples. The t-test was two-tailed since either posi-
tive or negative correlation may be of interest. We 
performed Bonferroni-correction by multiplying the 
P-value with the number of genes or methylation 
sites. We set a threshold of 0.01 for the Bonferroni-
corrected P-value. Additionally, we made one million 
random permutations of the samples and evaluated 
the correlation from the permutated data; a corre-
lation higher than the original is a false discovery. 

We applied a cutoff false discovery rate of 0.01, such 
that if the calculated FDR was greater than 0.01, the 
original correlation was rejected as false. In other 
words, the FDR was derived by counting how often 
the permutated absolute correlation was at least as 
high as the original correlation.

Association with gene ontology
Gene ontology enrichment was assessed using 
the Database for Annotation, Visualization, and 
Integrated Discovery—DAVID.30 We also used the 
Gene Set Enrichment Analysis tool by the Broad 
Institute to evaluate the annotation enrichment of 
M and R. The full results are given in Supplemen-
tary files 12 and 13.31

Association with proneural and 
mesenchymal GBM subclasses
We used the Suppl. Info from26 to associate R and M 
genes to different glioblastoma subclasses, as well 
as tumor samples to proneural, neural, classical or 
mesenchymal subclasses. We used Suppl. Table S3 to 
retrieve the genes highly expressed in different sub-
classes. We used Table S7 to retrieve samples with 
specific subclass associations.

Results
We first examined the relative significance of all miR-
NAs in the context of all miRNA-gene expression (or 
miRNA-methylation) Pearson correlation coefficient 
values. For this purpose, we first matched miRNA 
with gene expression data (or miRNA with methy-
lation data) on the same samples. Then, we created 
histograms covering all miRNA-gene expression and 
miRNA-methylation correlation values, including all 
17,814 genes and 27,578 methylation sites, over mul-
tiple cancers. We found that hsa-miR-142 stands out 
significantly among other miRNAs as having higher 
correlation values with more genes and methylation 
sites. Figure  2  shows the resulting histograms after 
averaging the correlation coefficients for miRNA-
gene expression and miRNA-methylation across all 
cancer types available. Highlighted in red color are the 
occurrences where the histogram involving hsa-miR-
142 lies outside the envelope of all other histograms. 
A significant amount of such histogram “tails” exist 
at the right side of the gene expression histograms 
(R), and at both sides of the methylation histograms 
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(M+ and M−). Supplementary files 1–2 give the lists of 
the highest and lowest correlations for hsa-miR-142-
methylation and hsa-miR-142-gene expression in all 
cancer types (corrected p-value ,0.01). Supplementary 
file 5  shows the miRNA-gene expression correlation 
histograms for individual cancer types.

Core of the signature: R and M
After we determined the significance of hsa-miR-142 in 
terms of high correlation with a set of genes and 
methylation sites across multiple cancer types, our 
aim is to define the sets of genes R and methylation 
sites M with which hsa-miR-142 is most frequently 
associated.

In glioblastoma and ovarian cancer, we derived the 
sets R and M by ranking the genes and methylation 
sites in descending order by their correlation with 
hsa-miR-142. We derived R for breast, colon, kidney, 
uterine and rectum cancer by correlating the RNASeq 
with the miRNASeq sequencing-based data available 
on TCGA. Then, R and M consisted of the genes or 
methylation sites with a Bonferroni-corrected p-value 
less than 0.01.

We derived M for breast, colon, kidney, uterine, 
rectum and lung cancer by using a metagene approach 
since sequencing-based methylation data was not 
available to correlate with the miRNASeq data. We 
first aggregated the 100  genes that had the highest 
average correlation with has-miR-142  in GBM and 
ovarian; the average value of these 100 genes over all 

samples in a cancer gave the first metagene. In each 
of 11 cancers, we ranked all genes based on their 
mutual information with the metagene. Then, we 
averaged the mutual information of the genes with 
the metagene across all 11 cancers and took the 15 
top genes to create a second metagene. We ranked the 
correlation of this second metagene to all methylation 
sites in breast, colon, kidney, lung, rectum and uterine 
cancer. Supplementary files 7–10 give the metagene 
and the derived M.

M and R signature and overlaps between 
cancers
Figure 3 illustrates the M+ and M− signatures in glio-
blastoma and ovarian cancer. Sites positively cor-
related with hsa-miR-142 are M+, while negatively 
correlated sites are M−. The M sets shown consist of 
the methylation sites that have a Bonferroni-corrected 
P-value of less than 0.01 with hsa-miR-142 over the 
samples. This heatmap is the result of step4 of our 
analysis (see Methods section).

Tables  1–2  show the overlaps of the R and M 
signatures between all cancer types considered. As 
shown, we found a significant overlap of M and R 
between different cancer types. We matched the pre-
cise probes of the methylation sites in M between dif-
ferent cancers.

We used P-values (matlab’s hygecdf function) to 
evaluate the significance of the overlap sizes of M 
and R between different cancer types, getting small 
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Figure 2. Left: Histogram of the miRNA-gene expression correlations for cancer types that had miRNA and gene expression data (RNASeq and miRNASeq) 
available. We matched the miRNA-gene expression data on the same samples. Since we did not find a significant negative miRNA-gene correlation, the 
left graph shows just positive values. Right: the miRNA-methylation correlations for GBM and ovarian cancer (the other TCGA cancer types lacked inte-
grated miRNA-methylation data). We matched the miRNA-methylation data on the same samples. We plotted the miRNAs that appear in all cancer types, 
which resulted in 680 miRNAs and 421 miRNAs, respectively. For each miRNA we included the correlation values for all 17,814 genes or 27,578 methyla-
tion sites. We averaged the correlations over all cancer types to determine if a correlation remains consistently high in all cancers. As shown, the miRNA 
hsa-miR-142 is highly correlated with a larger set of genes or methylation sites than other miRNAs.
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P-values near zero, as Tables  1–2  show. We also 
evaluated the significance of the correlations between 
miRNA, methylation and gene expression by using 
permutation-based P-values. This involved repeat-
edly shuffling the values of one of the data types over 
all samples and re-computing the correlations over 
one million trials; the p-values were always near zero, 
which points to the correlations’ significance.

We further evaluated whether the R and M 
associations were specific for the particular genes 
and methylation sites in GBM. For this purpose, we 
reversed roles by looking for any correlation of expres-
sion of M genes with methylation of R genes. When 
we looked for correlation of CX3CL1 gene expression 
(rather than methylation) with the methylation of any 
genes in R_GBM, there was always zero correlation. 
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Figure 3. Results of step4 of our analysis method (see Methods section). Left: The methylation sites that are most correlated with hsa-miR-142, either 
positively or negatively, in glioblastoma (M_gbm). Right: M_ovarian in ovarian cancer. We distinguish the signature M into the methylation sites hav-
ing positive correlation with hsa-miR-142 (M+) and those with negative correlation (M−). The overlap of methylation sites between M+_gbm (236) and 
M+_ovarian (471) is 76, while the overlap between M−_gbm (259) and M−_ovarian (126) is 63.

Table 1. Overlap of R between cancers. 

R_GBM R_COAD R_BRCA R_UCEC R_READ R_KIRC
R_OV (1338) 671 

P = 1.3e-11
224 
P = 1.7e-11

279 
P = 4e-11

382 
P = 5.4e-11

82 
P = 3.1e-11

629 
P = 3e-11

R_GBM (1106) – 155 
P = 0

194 
P = 0

271 
P = 2e-11

61 
P = 0

453 
P = 0

R_COAD (289) – – 197 
P = 1.8e-11

224 
P = 3.3e-11

85 
P = 2.2e-12

254 
P = 0

R_BRCA (404) – – – 305 
P = 4e-11

78 
P = 6.3e-12

368 
P = 0

R_UCEC (486) – – – – 87 
P = 3.7e-11

441 
P = 3.5e-11

R_READ (101) – – – – – 88 
P = 0

R_KIRC (1325) – – – – – –
Notes: The parentheses show the number of genes in R for each cancer type. The cells show the R overlap sizes between different cancer types and the 
p-values of the overlaps using the hypergeometric cumulative distribution function.
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This supports that the results are specific to M 
methylation and R gene expression and hsa-miR-142 
is a good representative of the signature.

R is enriched in glioblastoma 
mesenchymal subclasses
We found the signature profile to reflect two geneti-
cally distinct subclasses, which in glioblastoma tend 
to correspond to the previously identified proneural 
and mesenchymal subclasses. Table  3  shows how 
the miRNAs and expressed genes (R) are differen-
tially expressed between the different glioblastoma 
subclasses. The miRNA hsa-miR-142 and genes 
R were distinctly expressed between proneural-
mesenchymal glioblastoma subclasses. Our inte-
grated analysis revealed that the signature differs 
between glioblastoma subclasses in that the miRNA 
hsa-miR-142 and genes R are underexpressed in 

proneural and overexpressed in mesenchymal. The 
majority of samples with over-expressed R and 
hsa-miR-142 belong to the mesenchymal subclass 
and the P-value of the distributions illustrates the 
significance.

We examined the overlap of the R_GBM genes and 
the R_ovarian genes with the mesenchymal (216), 
classical (162), proneural (178) and neural (129) 
genes from (Verhaak and others 2010).26 182 of the 
R_GBM genes are found in the mesenchymal genes 
and 122 of the R_ovarian genes are found in the mes-
enchymal genes. There was significantly less overlap 
of R_GBM and R_ovarian with proneural genes (53 
and 15, respectively), neural genes (3 and 10) or clas-
sical genes (8 and 11). Therefore, the genes in R sig-
nificantly overlap with the genes in26 that distinguish 
between proneural vs. mesenchymal subtypes in glio-
blastoma. The p-values of the overlaps are ,0.0001.

Table 2. Overlap of M signatures between cancers.

M_GBM M_COAD M_BRCA M_UCEC M_READ M_KIRC M_KIRP M_LUSC
M_OV (597) 139 

P = 1e-11
341 
P = 4e-12

375 
P = 1e-11

143 
P = 1e-11

68 
P = 0

268 
P = 1e-11

8 
P = 0

351 
P = 0

M_GBM (495) – 190 
P = 1e-11

241 
P = 3e-12

55 
P = 3e-11

31 
P = 0

133 
P = 3e-12

4 
P = 1e-5

156 
P = 0

M_COAD (1749) – – 705 
P = 1e-11

143 
P = 1e-11

131 
P = 0

403 
P = 1e-11

9 
P = 1e-10

628 
P = 0

M_BRCA (1787) – – – 155 
P = 2e-11

98 
P = 0

466 
P = 1e-11

7 
P = 4e-7

709 
P = 0

M_UCEC (184) – – – – 39 
P = 0

121 
P = 4e-11

5 
P = 3e-9

149 
P = 3e-12

M_READ (131) – – – – – 73 
P = 0

4 
P = 9e-8

86 
P = 0

M_KIRC (866) – – – – – – 9 
P = 0

361 
P = 0

M_KIRP (10) – – – – – – – 7 
P = 4e-8

M_LUSC (1258) – – – – – – – –
Notes: The parentheses show the number of methylation sites in M for each cancer type. The cells show the M overlap sizes between different cancer 
types and the p-values of the overlaps using the hypergeometric cumulative distribution function.

Table 3. The distribution of glioblastoma samples between proneural, neural, classical and mesenchymal classes accord-
ing to R gene and miRNA expression. 

R genes and hsa-miR-142  
expression

proneural neural classical mesenchymal Multinomial 
probability

Over-expressed 2 4 2 25 5.49178E-09
Under-expressed 12 2 5 0 0.001937516
Notes: We observed a significant difference between the classes: in proneural R is under-expressed, while in mesenchymal R is over-expressed. 
The multinomial probability in the last column is the total probability under the null hypothesis that at least 25 out of 33 over-expressed samples (or at least 
12 out of 19 under-expressed samples) would have been classified in any one of the four classes.
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Table 4. The known functions of the top-ranked genes in R. 

SASH3  
(CXorf9)

Signaling adapter  
protein in lymphocytes

CD2 Cell adhesion molecule  
found on the surface of  
T cells and natural killer cells

CCL5 Regulated upon  
activation, normal  
T-cell expressed

CD37 Transmembrane protein,  
leukocyte antigen, may play a  
role in T-cell-B-cell interactions

FLJ21438 Proteins in B-cell  
exosomes

DOK3 Negative regulator of JNK  
signaling in B-cells

Rgr Membrane protein,  
retinal G-protein coupled  
receptor

PSCD4 Plasma membrane,  
regulation of cell adhesion

TLR2 Membrane protein,  
immune system signaling  
pathway

ITGB2 Leukocyte cell adhesion  
molecule

APBB1IP Peripheral membrane  
protein, mediates  
Rap1-induced adhesion

BTK Peripheral membrane protein,  
plays a crucial role in B-cell  
development (mature  
B lymphocytes)

DOCK2 Peripheral membrane  
protein, haematopoietic  
and lymphocyte  
cell-specific protein

CXCR3 Membrane protein, expressed  
primarily on activated  
T lymphocytes and NK cells,  
regulate leukocyte trafficking

ARHGAP9 Regulates adhesion  
of hematopoietic cells  
to the extracellular matrix

FYB Signaling transduction in  
T cells, modulates the  
expression of interleukin-2

LCP2 Lymphocyte protein  
promoting T cell  
development

PTPRC Required for T-cell activation.  
interleukin-12-dependent in  
activated lymphocytes

CD53 Leukocyte surface  
antigen, signal  
transduction in T cells

LAIR1 Leukocyte-associated  
receptor, found on NK cells,  
T cells, and B cells

TRAF3IP3 Gene expressed 
in t-lyphocytes

URP2 Cell adhesion in hematopoietic 
cells. Required for leukocyte  
adhesion to endothelial cells

CYBB Glycoprotein integral  
to plasma membrane

AIF1 Promotes the proliferation  
of T-lymphocytes. Enhances  
lymphocyte migration

NCKAP1L Membrane-associated  
haematopoietic protein

ITGB2 Leukocyte cell adhesion  
molecule

IL10RA Interleukin-10 receptor  
in membrane proteins,  
expressed in hemopoietic  
cells and lymphocytes

HAVCR2 T-cell membrane protein

LAPTM5 Transmembrane  
protein associated with  
lysosomes, may play  
a role in hematopoiesis

CD48 Ligand for CD2. Might  
facilitate interaction between  
activated lymphocytes.  
Probably involved  
in regulating T-cell activation

PLEK Hemopoietic progenitor 
cell differentiation

SLA Negatively regulates T-cell  
receptor (TCR) signaling

ARHGAP30 Rho GTPase activating  
protein 30

CCR5 Integral membrane protein,  
mainly expressed on T cells

ARHGAP25 Actin remodeling, cell  
migration

EVI2B Integral membrane protein, 
bone marrow and blood 
expression

Note: All of the genes are expressed in leukocytes, specifically lymphocytes, or haematopoietic stem cells.
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Table 5. Functional annotations of the methylation sites that overlap between M_GBM and M_ovarian. 

AFF3 (M-) Expressed in the lymphoid  
system, transcription regulation

LAPTM5 (M-) Transmembrane receptor 
associated with lysosomes

ALDH3A1 (M+) Metabolism of neurotransmitters LCP2 (M-) Lymphocyte protein 
promoting T cell development

ARHGAP25 (M-) Actin remodeling, cell migration LRP3 (M+) Integral membrane protein
BIN2 (M-) Breast cancer-associated LSM7 (M+) Ribonucleoprotein complex
C10orf27 (M-) Cell differentiation LY86 (M-) Inflammatoy response, 

apoptosis
C16orf54 (M-) Transmembrane protein MAMSTR (M+) Transcription regulation
C2orf40 (M-) Cancer-related augurin precursor MPHOSPH9 (M-) Peripheral membrane protein
C6orf25 (M-) Plasma membrane-bound cell  

surface receptor
MTMR11 (M+) Protein-tyrosine phosphatase

CARD8 (M-) Apoptotic protein NCF2 (M-) superoxide-generating 
NADPH oxidase activity

CCDC80 (M+) Promotes cell adhesion and matrix  
assembly

NCOR2 (M+) Transcriptional repression

CD101 (M-) Leukocyte surface membrane  
protein

OGG1 (M+) DNA repair enzyme

CD6 (M-) Plasma membrane protein involved  
in T-cell activation

OSM (M-) Tumor inhibitor

CD79B (M-) B lymphocyte receptor PAQR6 (M+) Integral membrane protein
CHRM1 (M+) G protein-coupled receptor  

membrane protein
PHKG1 (M+) Protein kinase activity

CX3CL1 (M+) T cell leukocyte adhesion and  
migration process at the endothelium

PLD4 (M-) Single-pass membrane 
protein

DAPP1 (M-) Peripheral membrane protein,  
B lymphocyte adapter protein

PLEKHA4 (M+) Peripheral Membrane protein

DAPK2 (M+) Cell apoptosis inducer POR (M-) ER membrane 
oxidoreductase

DDAH1 (M+) Regulator of nitric oxide generation PPP2R1A (M+) Protein phosphatase
DNAI1 (M+) Dynein intermediate chain,  

cytoplasmic
PRELP (M+) Extracellular matrix, collagen 

binding in connective tissue
FBN3 (M+) Extracellular matrix structural  

constituent, fibrillin.
PTGFRN (M+) Integral membrane protein, 

Single-pass type I membrane 
protein

FAM113B (M-) Hydrolase activity PTPRCAP (M-) Transmembrane 
phosphoprotein, plasma 
membrane, integral 
membrane protein

FAM78A (M-) Hypothetical protein RB1 (M-) Tumor suppressor, negative 
regulator of the cell cycle

FGR (M-) Cell migration and adhesion ROBO4 (M-) External side of plasma 
membrane

FUT3 (M+) Membrane protein, tumor  
metastasis and adhesion

RPE65 (M+) Plasma membrane protein

GGT1 (M+) Membrane protein RUNX1 (M-) Acute myeloid leukemia 1 
protein

GIPC1 (M+) Regulator cell surface receptor,  
trafficking

SEMA3B (M-) Extracellular membrane, 
Neuronal development, tumor 
suppression by apoptosis 
induction

GPX2 (M-) Glutathione peroxidase SHROOM1 (M-) Neuronal development
PLEK (M-) Hemopoietic progenitor cell  

differentiation
SLA (M-) Negative regulator T-cell 

receptor (TCR) signaling

(Continued)
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Discussion
Table  4  gives the functional annotations of the top-
ranked genes in R; we derived these genes as shown in 
Supplementary files 8–9. The genes R are all expressed 
in human hematopoietic stem cells or leukocytes. Many 
of these genes are involved in regulating T-cell activa-
tion; T-cell is a type of lymphocyte. The gene set R is 
particularly enriched in genes known to be preferen-
tially expressed in T-cell differentiation stages.32 Some 
of the R genes represent membrane proteins involved 
in cell-cell adhesion in leukocytes. Lymphocytes are 
known to play a role in cancer, but their role remains 
quite controversial.33 Lymphocytes are generally 
known to detect and eliminate cancer cells, but on the 
other hand infiltration of lymphocytes, such as B cells 
and T cells, into cancer can be an indication of poor 
prognosis (recurrence and metastasis). It was shown 
that lymphocytes that make the RANKL inflamma-
tory protein are critical for metastasis. No metastasis 
was found in mice without lymphocytes, but adding 
RANKL in mice restored the potential for metastasis 
compensating for the function of lymphocytes.34

Table 5. (Continued)

AFF3 (M-) Expressed in the lymphoid  
system, transcription regulation

LAPTM5 (M-) Transmembrane receptor 
associated with lysosomes

GRIP1 (M+) Glutamate receptor-interacting  
protein 1

SLC44A2 (M+) Plasma membrane protein

HKDC1 (M+) Hexokinase domain-containing  
protein 1

SNCG (M+) Breast cancer-specific gene 
1 protein

IL17RE (M-) Membrane protein, interleukin  
receptor

SSTR3 (M+) Plasma membrane protein

IL18BP (M-) Extracellular binding SSTR5 (M+) Plasma membrane protein
IL22RA1 (M+) Membrane protein, interleukin  

receptor
TMEM149 (M-) Transmembrane protein

INCA1 (M+) Inhibitor of CDK TNFAIP8L2 (M-) Tumor necrosis factor, 
immune homeostasis

INPP5J (M+) Plasma membrane protein TNKS1BP1 (M+) Tankyrase-1-binding protein, 
enzyme binding

KCNQ1 (M+) Potassium voltage-gated channel TRAF1 (M-) TNF receptor associated 
factor

KIAA0427 (M+) Regulation of translational initiation WFDC2 (M-) Extracellular region, 
proteolysis

KLHL34 (M-) Kelch-like protein 34 ZNF205 (M+) Zinc finger protein, 
transcription regulation

KLHL6 (M-) Protein binding, B-lymphocyte  
antigen receptor signaling

ZNF48 (M+) Zinc finger protein, 
transcription regulation

LAMB2 (M+) Basement membrane protein,  
attachment, migration and  
organization of cells into tissues  
during embryonic development

ZNF512B (M+) Zinc finger protein, 
transcription regulation

Notes: Many of the genes in R are also found in the M- set and the names of these genes are highlighted in bold.

Table 5 shows the methylation sites that appear in M 
for both ovarian cancer and GBM. Similar to R, most 
of M consists of trans-membrane proteins, which are 
related to cell-cell adhesion functions. For example, 
SSTR3, SSTR5, TMEM149, are all trans-membrane 
proteins with cell-cell adhesion functions. A few of the 
proteins are also involved in signal transduction. The 
most prominent correlation was between hsa-miR-142 
and the CX3CL1 methylation site, which was shown 
to control cell invasion in glioma.35 Many of the genes 
in R are also found in the M− set, which suggests that 
their undermethylation affects their expression. In 
recent work, hsa-miR-142 was shown to be expressed 
in hematopoietic and leukocytic cells, which supports 
the miRNA’s association with R and M.27,36–39

We examined the annotation enrichment of the 
139 M methylation sites and 671 R genes that over-
lap between ovarian cancer and GBM, using the 
Broad Institute’s Gene Set Enrichment Analysis 
tool. There was an overlap with several modules that 
were previously found to be implicated in cancer.40 
The enriched Gene Ontology annotations included 
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of our M+ signature in most cancers. DNMT3L was 
hypermethylated in mesenchymal GBM phenotype 
together with hsa-miR-142 overexpression. The 
miRNA hsa-miR-142 is known to target the DNA 
methyltransferases DNMT1 and DNMT3A, which are 
also regulated by DNMT3L.44 DNMT3L is a regula-
tory factor of DNA methyltransferases, which is essen-
tial for the function of DNMT3A and DNMT3B.45,46 
In previous studies, the coexpression of DNMT3L 
with DNMT3A resulted in a striking stimulation of de 
novo methylation by DNMT3A.47 Whether hsa-miR-
142 influences the methylation of M via its regulation of 
DNMTs remains to be determined in lab experiments. 
Additionally, hsa-miR-142 has CpG islands embedded 

Table 6. The top three functional annotation term clusters 
associated with the list of 671 R genes that overlap 
between R_ovarian and R_GBM. 

Gene ontology annotation Count P-value

GO:0006952∼defense response 81 3.31E-43
GO:0006954∼inflammatory  
response

47 4.55E-26

GO:0009611∼response  
to wounding

54 1.12E-22

disulfide bond 150 9.53E-37
disulfide bond 146 1.09E-35
topological domain:Extracellular 135 1.61E-30
glycoprotein 174 1.83E-30
glycosylation site:N-linked  
(GlcNAc...)

168 3.25E-29

topological domain:Cytoplasmic 147 1.20E-27
signal 137 3.38E-24
signal peptide 137 6.20E-24
membrane 202 9.05E-24
receptor 88 4.19E-22
GO:0005886∼plasma membrane 162 1.80E-21
transmembrane region 170 2.00E-21
transmembrane 170 4.00E-21
GO:0031224∼intrinsic to membrane 189 5.47E-15
GO:0016021∼integral to membrane 184 1.11E-14
GO:0005886∼plasma membrane 162 1.80E-21
GO:0005887∼integral to plasma  
membrane

81 3.86E-20

GO:0031226∼intrinsic to plasma  
membrane

81 1.52E-19

GO:0044459∼plasma  
membrane part

113 4.82E-19

Note: Annotations are clustered together if they have similar gene 
members; the more common genes annotations share, the higher the 
chance they will be grouped together. The count shows how frequently 
the particular annotation occurs in a cluster and the p-value shows 
the likelihood that such a count or a higher one would be observed in 
a random cluster. The p-value associated with each annotation term 
inside a cluster is statistically measured by Fisher Exact in DAVID 
system.

plasma membrane, response to wounding, cell-cell 
adhesion, extracellular space, cell-surface receptor 
signal transduction, inflammatory response, oxi-
doreductase activity. The P-values of the overlaps 
of M and R with these modules is ,1.0e-5. These 
results suggest the methylation of M+ and M−, as 
well as miRNA and gene expression, may play a role 
in progressive disruption of adhesion and junction 
molecules and loss of cell adhesion components. 
In several types of cancer, disruption of cell-cell 
adhesion molecules is a hallmark in phenotypes 
such as the epithelial-mesenchymal transition and 
invasion.41

Table  6  shows the top clusters for a functional 
annotation clustering of the 671 R genes that over-
lap between ovarian cancer and GBM, as derived 
with the DAVID tool.30 Inflammatory and defense 
response are the most significant annotations, which 
is consistent with the anti-inflammatory functions 
of the interleukin genes found in the top-ranked R 
genes (see Table 4). Integral membrane and trans-
membrane annotations are also among the most 
enriched annotations. Additionally, we examined the 
R genes in the Broad Institute’s Gene Set Enrich-
ment Analysis (GSEA) tool, finding that one third 
of the genes overlap with sets of known membrane 
proteins. Several subsets of these genes were previ-
ously implicated in breast cancer (74 up regulated 
and 43 down regulated), liver cancer (41), bladder 
cancer (59 up regulated) and thyroid cancer (38 up 
regulated). The p-values of the overlaps is low. Sup-
plementary files 12–13 give the complete functional 
annotation clusters for R as derived using DAVID, 
as well as the enriched annotations in M using the 
Broad Institute’s GSEA tool.

Several miRNAs are known to suppress methyla-
tion via interactions with DNMTs and RBL2 proteins. 
DNMTs are known to be responsible for the methy-
lation of the CpG islands of tumor suppressors in an 
RBL2-dependent manner.16,17 Therefore, miRNAs and 
their DNMT targets are known to cause epigenetic 
changes (or their reversal) that contribute to malignant 
transformation in human tumors.19 The aberrant expres-
sion of DNA methyltransferases (DNMTs) is often a 
poor prognostic indicator for cancer.42 We speculate 
that the M signature may be partially induced because 
hsa-miR-142 targets the DNA methyltransferases 
(DNMTs).31,43 Either DNMT3L or DNMT3B was part 
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in its promoter region.15 Genes associated with CpG 
islands are believed to be targeted by DNA methyl-
transferases and are known to be prone to methylation 
in cancer14 suggesting hsa-miR-142 may be regulated 
by epigenetics (see Supp. File 4).

Conclusion
By performing miRNA vs. gene expression and 
miRNA vs. methylation analysis, our work identi-
fied hsa‑miR-142 as the miRNA most strongly and 
consistently correlated with a set of genes and meth-
ylation sites. Our results show that miRNA expres-
sion is associated with altered expression profiles 
of genes in R and methylated sites in M. The hsa-
miR-142  miRNA is the best representative of this 
signature for all cancers (see Supp. Files 5 and 11). 
When  we used  hsa-miR-142 as a proxy in several 
cancers the resulting M and R overlapped signifi-
cantly between cancer types. The p-value of the 
resulting overlaps between cancer types  was close 
to 0. This signature appears to be associated with 
transformation from proneural to mesenchymal sub-
class in glioblastoma. The results suggest that  in 
the mesenchymal tumor subtypes R genes tend to 
be over-expressed, M+ is hypermethylated, M− is 
hypomethylated and hsa-miR-142 is over-expressed. 
In proneural subtypes, on the other hand, the gene and 
miRNA expression and methylation are the opposite. 
Our study is the first that associated this signature 
with several cancer types, showing distinct methyla-
tion and expression patterns between the proneural 
and mesenchymal subclasses.

All of the R genes are known to be expressed in 
leukocytes and haematopoietic stem cells. Many of 
the M genes represent membrane proteins related to 
cell-cell adhesion functions. We speculate that in can-
cer the signature may contribute to a progressive loss 
of cell-cell adhesion. We found either DNA methyl-
transferase DNMT3L or DNMT3B to be methylated 
and associated strongly with hsa-miR-142 expression 
in the cancer types examined. From a previous study, 
DNA methyltransferases were shown to be associated 
with the methylation of cell adhesion-related genes in 
carcinomas.41 Integrated microRNA and gene expres-
sion and methylation data for healthy human samples 
was unavailable at the time of analysis; in the future, 
a human dataset of healthy samples may provide 
additional insights.

List of Abbreviations Used
R_GBM, the R signature of gene expression for glio-
blastoma; R_OV, the R signature of gene expression 
for ovarian cancer; M_GBM, the M signature of 
methylation for glioblastoma; M_OV, the M signa-
ture of methylation for ovarian cancer; M_COAD, 
the M signature of methylation for colon cancer; 
M_BRCA, the M signature of methylation for breast 
cancer; M_UCEC, the M signature of methylation for 
uterine cancer; M_READ, the M signature of methy-
lation for rectum adenocarcinoma; M_KIRC, the M 
signature of methylation for kidney renal clear cell 
carcinoma; M_KIRP, the M signature of methylation 
for kidney renal papillary cell carcinoma; M_LUSC, 
the M signature of methylation for lung squamous 
cell carcinoma; M+, the methylation sites in M that 
are positively correlated with hsa-miR-142; M−, the 
methylation sites in M that are negatively correlated 
with hsa-miR-142; miRNA, microRNA; DNMT, 
DNA methyltransferase; GBM, glioblastoma.
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