
Evolutionary Bioinformatics 2007:3 341–356 341

ORIGINAL RESEARCH

Correspondence: Gonzalo Giribet, Email: ggiribet@oeb.harvard.edu

Copyright in this article, its metadata, and any supplementary data is held by its author or authors. It is published under the
Creative Commons Attribution By licence. For further information go to: http://creativecommons.org/licenses/by/3.0/.

Effi cient Tree Searches with Available Algorithms
Gonzalo Giribet
Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard
University, 26 Oxford Street, Cambridge, MA 02138, U.S.A.

Abstract: Phylogenetic methods based on optimality criteria are highly desirable for their logic properties, but time-consuming
when compared to other methods of tree construction. Traditionally, researchers have been limited to exploring tree space
by using multiple replicates of Wagner addition followed by typical hill climbing algorithms such as SPR or/and TBR branch
swapping but these methods have been shown to be insufi cient for “large” data sets (or even for small data sets with a
complex tree space). Here, I review different algorithms and search strategies used for phylogenetic analysis with the aim
of clarifying certain aspects of this important part of the phylogenetic inference exercise. The techniques discussed here
apply to both major families of methods based on optimality criteria—parsimony and maximum likelihood—and allow the
thorough analysis of complex data sets with hundreds to thousands of terminal taxa. A new technique, called pre-processed
searches is proposed for reusing phylogenetic results obtained in previous analyses, to increase the applicability of the
previously proposed jumpstarting phylogenetics method. This article is aimed to serve as an educational and algorithmic
reference to biologists interested in phylogenetic analysis.

Rationale
In phylogenetic analysis, numerical methods are preferred over other methods because of their effi ciency
and repeatability. Within numerical methods, those based on optimality criteria are to be preferred
because they allow for hypothesis testing and tree comparisons based on objective measures. However,
methods based on optimality criteria are more time consuming than most other numerical methods (e.g.
UPGMA, neighbor-joining). The reason for this is simple, in order to choose an optimal solution,
multiple trees need to be compared. The two main optimality criteria are parsimony and maximum
likelihood1. While their limits on effi cient searches differ due to the computation requirements by each
method (e.g. Sanderson and Kim, 2000; Goloboff, 2003), the issues discussed in this article apply, at
least in principle, to both methodologies.

Finding the optimal tree(s) for a given optimality criterion—the so-called “tree search”—is a NP-
complete problem (Garey et al. 1977; Garey and Johnson, 1977; Chor and Tuller, 2005); a problem that
is unlikely to have a solution in polynomial time. Tree searches are diffi cult due to the exponential
growth of possible trees when increasing the number of terminals (OTUs) (Felsenstein, 1978). If a
method were to compare all the possible trees using an explicit enumeration technique, an optimality
value (tree length for parsimony or −lnL score for maximum likelihood) would be assigned to each tree
and those that optimize the selected criterion would be chosen. However, explicit enumeration is not a
very effi cient method and there are many algorithmic speedups that will fi nd the optimal solution with-
out the burden of evaluating all possible trees. An alternative solution to explicit enumeration is the use
of shortcuts that guarantee fi nding all optimal trees. The most common shortcut is the branch and bound
algorithm (Hendy and Penny, 1982). Although for teaching purposes explicit enumeration and branch
and bound do the trick, for most biologically interesting datasets these algorithms cannot be usefully
applied. Instead, most investigators use different types of heuristics to attempt achieving an optimal—
if not “the” optimal—solution by avoiding the intractability of exact methods. Heuristic methods can-
not guarantee fi nding the optimal solution, unlike exact methods, although convergence measures can
be used (see below) as indicators of the quality of the result.

Historically, the fi rst heuristic method of tree construction is the algorithm proposed by Wagner (1961)
and implemented by Farris (1970). Such trees were originally calculated by hand and used as fi nal results

1For the purpose of this discussion I will avoid other methods derived from the purely optimality criterion-based methods, such as Bayesian phylogenet-
ics or parsimony jackknifi ng, because they are based on repeating “quick-and-dirty” analyses a large number of times.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

342

Giribet

Evolutionary Bioinformatics 2007:3

to interpret a phylogeny. But it became evident that
in the presence of homoplasy Wagner trees were
suboptimal solutions. In order to obtain better solu-
tions it was necessary to do what we now know as
“branch swapping”, the exchange of branches on a
tree with the object of refi ning a previous solution.
The fi rst of such swappers, incorporated into the
program PHYSYS (Farris and Mickevich, 1980),
was named branch-breaking and later on referred
to as tree bisection and reconnection (Swofford and
Olsen, 1990). In subsequent years, nearest-neighbor
interchanges (known as NNI), subtree prunning
and regrafting (known as SPR; Fig. 1) and tree
bisection and reconnection (TBR; Fig. 2) became
the standard algorithms for branch swapping.
These common branch-swapping algorithms (often
simply referred to as swappers) are described in
every systematics treatise (e.g. Swofford et al.
1996; Page and Holmes, 1998; Schuh, 2000;
Felsenstein, 2004), and I will not explain them here.
Important issues with these common swappers are
the number of possible rearrangements (Allen and
Steel, 2001), as well as issues of greediness (level
of acceptance of a tree during the branch swapping
process) that may lead to faster searches. Specifi c
algorithms may be used for calculating tree scores
more rapidly (Goloboff, 1993; Gladstein, 1997;
Ronquist, 1998). Algorithmic shortcuts (e.g.
Kosakovsky, Pond and Muse, 2004; Stamatakis
et al. 2002) and the use of simple models to replace
more complex statistical models (Stamatakis,
2005c) can also be used for calculating the likeli-
hood of a tree more effi ciently.

Due to the large number of possible trees
(Felsenstein, 1978), there exists the possibility of
getting stuck in local optima (Maddison, 1991).
Heuristic procedures usually cope with this by
building many initial trees (e.g. Wagner trees using
a random addition sequence of taxa) and submitting
each one of these initial trees to a branch swap-
ping process; this is what we often refer to as
replicates (or RAS + swapping; Goloboff, 1999).

Heuristic methods using a combination of these
swapping algorithms and shortcuts can fi nd optimal
solutions for moderately sized problems (e.g.
below 100 taxa for pre-aligned datasets) for which
exact solutions can be calculated. More simply, for
most empirical datasets that can be analyzed
exhaustively, TBR will fi nd the same solution
orders of magnitude more quickly. A corollary of
this is that exact methods are of little interest to
most practicing systematists. Therefore, the focus

of this review is the different heuristic algorithms
and search strategies that aim to fi nd heuristic
solutions for optimality criterion-based phylogenetic
methods. The topic of effi ciency of algorithms will
be also briefl y discussed, at least in the context of
recent improvements. This is always done in the
mode of shortcuts that reduce the number of
mathematical operations that need to be performed
for a given action. For example, SPR branch
swapping requires t2 accommodations (where t is
the number of terminals) of clipped nodes while
TBR requires t3. An impressive speedup in TNT
performs quick TBR, whose execution time scales
on t2 instead of t3.

The Necessity of Refi ned Heuristic
Procedures
Collecting phylogenetic data—especially for
molecular analyses—has become easier and easier
following the technological developments of the
last two decades. Large data sets including several
hundreds of terminal taxa are becoming common
(e.g. Chase et al. 1993; Lipscomb et al. 1998; Soltis
et al. 2000). A few data sets already surpass the
1,000-taxon barrier (e.g. Källersjö et al. 1998;
Tehler et al. 2003; Hibbett et al. 2005; Williams
and Smith, 2006; McMahon and Sanderson, 2006),
and some bacterial datasets go beyond the 10,000-
taxon barrier (e.g. Ribosomal Database Project
[http://rdp.cme.msu.edu/index.jsp]). Under recent
broad funding initiatives, such as the US NSF
Assembling the Tree of Life project, several large
data sets (ranging between 500 and 10,000 taxa)
will be available for analysis in a matter of years.
In order to analyze these data sets, researchers can
follow two main strategies: (1) the analysis of the
complete data sets, or (2) conduct separate analy-
ses and combine the solutions using a supertree
technique (e.g. Sanderson et al. 1998; Bininda-
Emonds et al. 2002; Driskell et al. 2004). The focus
of this article is the analysis of complete data sets
(the supermatrix approach) and therefore we will
not discuss supertree techniques or their implica-
tions (for details on algorithmic implications and
supertree techniques see a recent review by
Goloboff, 2005). Data sets with large numbers of
taxa, however, are very hard to analyze using the
traditional algorithms and will require further
developments.

Students and researchers often wonder how
many replicates they need to run in order to conduct

343

Effi cient tree searches with available algorithms

Evolutionary Bioinformatics 2007:3

Figure 1. SPR branch swapping. An initial tree (0) gets broken into two subtrees (1). The red subtree is then inserted in each possible branch
of the blue subtree (arrows in step 2) and the resulting tree is evaluated (3).

A
B
C
D
F

E G
I

K

H
J

K
L
M

1. Generate two subtrees by
breaking an internal node

E G
I

K

A
B
C
D
F

H
J

K
L
M

A
B
C
D
F

H
J

K
L
M

2. Try to insert the red subtree
at each node of the blue subtree

E G
I

K

A
B
C
D
F

H
J

K
L
M

3. Evaluate the new tree
according to the optimality
criterion selected

0. Starting tree

344

Giribet

Evolutionary Bioinformatics 2007:3

A
B
C
D
F

E G
I

K

H
J

K
L
M

1. Generate two subtrees by
breaking an internal node and
re-rooting the subtree

E G
I

K

A
B
C
D
F

H
J

K
L
M

A
B
C
D
F

H
J

K
L
M

2. Try to insert all possible rooted red
subtrees at each node of the blue subtree

K I
G

E

A
B
C
D
F

H
J

K
L
M

3. Evaluate the new tree
according to the optimality
criterion selected

0. Starting tree

Figure 2. TBR branch swapping. An initial tree (0) gets broken into two subtrees (1). The red subtree is re-rooted on each possible internal
branch and inserted in each possible branch of the blue subtree (arrows in step 2) and the resulting tree is evaluated (3).

345

Effi cient tree searches with available algorithms

Evolutionary Bioinformatics 2007:3

a thorough tree search on a given data set, or
what heuristic algorithms will yield the best and
fastest result. The answers to these questions are
not trivial since tree searches depend not only on
the number of terminals, but also on the structure
of the analyzed data. The only good recipe one can
receive for performing tree searches would be data
set-specifi c, and therefore only by understanding
the algorithms involved will the researcher be able
to design a proper search strategy. Nonetheless,
certain techniques tend to work better than others
for most data sets, and this knowledge can be used
as a starting point for experimenting and fi ne-tuning
the algorithms. For example, genetic algorithms are
better employed after a population of near-optimal
candidate trees has been generated using hill-
climbing or simulated annealing algorithms.

The intention of this article is twofold. On the
one hand, I will review several algorithms and
search strategies that can be applied to a set of data
by the investigators. The algorithms and strategies
discussed here apply in general to both parsimony
and maximum likelihood searches, although some
techniques may have to be adapted to the different
methodologies. Not all strategies or algorithms are
available in all software packages, but one cautions
the reader that lack of implementation should not
be a reason for ignoring or dismissing more effi -
cient strategies. The fact that our favorite software
package does not incorporate algorithm X is not a
scientifi c reason for performing a defi cient tree
search and fail to analyze the data properly. As the
second objective of this review, I hope that it serves
to stimulate software developers to implement
some important recent algorithmic developments
and search strategies into their packages.

Heuristic Methods and Effi cient
Tree Searches—Algorithms
While discussing different algorithms, we will be
referring to specifi c software of general use by
systematists. Some of the packages more often
referred to are (alphabetically): PAUP* (Swofford,
2002), POY (Wheeler et al. 2002; Varón et al.
2007), RAxML-VI-HPC (Stamatakis, 2006;
Stamatakis et al. 2005) and TNT (Goloboff et al.
2003). Other software will also be referred to for
specifi c algorithms or implementations. By no
means I will attempt to refer to all software pack-
ages available in the market, and of course I
restrict myself to those that I know best, or more

importantly, to those that incorporate new or fast
algorithms to illustrate the points of this review.

Hill-climbing (“traditional”) algorithms
Traditional algorithms employed for tree searches
combine fast methods of tree building followed by
NNI, SPR or/and TBR branch swapping. The fi rst
step requires building a tree or selecting a random
tree, although the latter option is generally not very
effi cient. Typically, the initial tree can be obtained
by some sort of sequential addition of taxa, where
one starts with a tree with three taxa and the following
taxa are added sequentially. One could follow
alphabetical order, some sort of distance measure,
or by trying the new taxon in all possible branches
and selecting the optimal position for the taxon added
(the Wagner algorithm). This is called stepwise
addition (Swofford et al. 1996), sequential addition
(Felsenstein, 2004), or build (or multibuild if the
addition of taxa is done in parallel) (Wheeler et al.
2002) by different authors. Other algorithms, such
as star-decomposition (e.g. neighbor-joining; Saitou
and Nei, 1987) have little applicability in optimality
criterion-based methods.

The tree obtained after the initial build is
generally used for subsequent refi nement, as done
by SPR and TBR. It is assumed that by using many
starting trees where the order of addition of taxa
has been randomized (varying the seed number of
the software; most packages use a defi ned seed for
initializing the pseudorandom generator of num-
bers by default) the chance of avoiding local optima
increases. Therefore, any sensible search requires
repeating the initial tree building step followed by
branch swapping a number of times. This strategy
is what it has been referred to as conventional
search methods (Davis et al. 2005) or traditional
searches (Goloboff et al. 2003).

Obviously the different swappers tried will
affect the tree searches because the simplest ones
will attempt fewer taxon arrangements than the
more complex ones. In a typical search, NNI will
examine 2(t – 3) neighbors for t taxa, while SPR
branch swapping requires t2 accommodations of
clipped nodes and TBR requires t3. As mentioned
above TNT performs quick TBR, whose execution
time grows t2 instead of t3. In some maximum
likelihood implementations, SPR often works with
a more restricted neighborhood of promising
moves to avoid large numbers of intensive calcula-
tions (Hordijk and Gascuel, 2005).

346

Giribet

Evolutionary Bioinformatics 2007:3

In the case of static homology (morphological
matrices or pre-aligned sequence data) in parsi-
mony analyses, building the initial tree by the
Wagner algorithm can be very quick. Given that
Wagner trees can be obtained quickly one may
want to build multiple Wagner trees and continue
only with a set of the best Wagner trees to the
subsequent branch swapping steps.

In the case of ML implementations, different
programs do different things. Default settings in
PAUP* lead to re-optimizing every branch mul-
tiple times during Wagner addition of taxa. Pro-
grams such as RAxML-VI do not reoptimize every
branch during Wagner addition, and use parsimony
for this step, allowing adding thousands of taxa in
a matter of minutes to hours (based on a 25,000
taxon data set; Stamanakis, pers. comm.). This is
also an option in POY v. 4 (Varón et al. 2007).
Obviously, most of the time spent in ML calcula-
tions is employed in branch length optimization.

The basic swappers for the hill-climbing
algorithms are currently available in most software
packages. Some programs simply allow choosing
either SPR or TBR, while others allow searching by
using fi rst SPR and continuing with TBR, making
searches more effi cient. The reason for this higher
effi ciency is clear, SPR is much faster than TBR
(although it obviously depends on the implementation),
so it reaches a given solution in less time than TBR
does. Only after SPR cannot fi nd a better solution,
TBR continues with the search, speeding the global
search time for each replicate. This is illustrated by
the following example where a metazoan data set
(Giribet and Wheeler, 1999) is analyzed with TNT.
The analyses all start with the same random seed
(seed = 1), to make results comparable, and consist
of 100 replicates using (a) the Wagner algorithm,
(b) Wagner + SPR, and (c) Wagner + TBR. In all
cases the number of trees to swap per replicate is
limited to 10. All PC analyses were performed on a
Dell Precision 340, Pentium IV (2.00 GHz) with
512 Mb of RAM.

Algorithm steps trees exam sec
TNT-Wagner 7,078 1.39
TNT-SPR 7,030 1.6 × 108 82
TNT-TBR 7,029 7.4 × 108 129
The same analyses were repeated for the ‘Zilla’

data set (see Goloboff, 1999).
Algorithm steps trees exam sec
TNT-Wagner 16,376 9.33
TNT-SPR 16,229 1.9 × 108 44.89
TNT-TBR 16,227 2.0 × 108 61.19

As expected, tree length decreases dramatically
when using branch swapping algorithms with
respect to the Wagner tree. This Wagner tree could
be in some sense comparable to a tree obtained
under a method not dependent on an optimality
criterion, such as neighbor-joining. Tree length
decreases—to the expense of computation time—
when using more complex swappers. However, in
these cases the difference in execution time
between SPR and TBR is not spectacular (increase
of ca. 50%) due to the effi ciency of the TBR algo-
rithm. Certainly the use of shortcuts for complet-
ing a round of branch swapping has an infl uence
in the results. When the same ‘Zilla’ data set is
analyzed with a different random seed (seed = 2)
the results are rather different, with a 5-step
improvement between SPR and TNR branch
swapping.

Algorithm steps trees exam sec
TNT-Wagner 16,399 9.17
TNT-SPR 16,233 1.9 × 108 43.92
TNT-TBR 16,228 2.7 × 108 78.63
Many programs can go further in the utilization

of basic swappers, and allow using SPR, TBR, or
a combination of both by using SPR fi rst until no
improvement is achieved and continuing with
TBR. It also allows determining the number of
trees to be retained in SPR and TBR independently,
even if both algorithms are used in conjunction.
POY allows specifying not only the total number
of trees to retain for a given search, but also the
number of trees to retain during the SPR and TBR
steps. This allows the investigator to conduct more
thorough searches by for example building a
“quick” tree followed by fast SPR and swapping
with TBR from then on.

With the availability of TBR as the most effi -
cient swapper, and the concern of being able to
escape local optima, some authors opted for stor-
ing trees up to n steps longer than the most par-
simonious trees, as done with the command jump
n of Nona (Whiting et al. 1997; Giribet and
Ribera, 1998). However, this command was not
very effi cient and it wasted enormous amounts of
time swapping on large pools of suboptimal trees.
Most likely computation time could have been
used more efficiently by completing more
replicates.

These are basic principles to use the most com-
mon swappers effi ciently. To learn the specifi c
commands from each software package, the inves-
tigator should note the command descriptions.

347

Effi cient tree searches with available algorithms

Evolutionary Bioinformatics 2007:3

Also, the effect of using different size tree buffers
has been explored in detail in Davis et al. (2005).

Optimizing branch lengths
in ML analyses
While the only parameters that matter under the
parsimony criterion are the topology and cost of
the tree, other methods also take into account
branch lengths and model parameters (optimiza-
tion of parameters in complex models like GTR +
Γ + I can sometimes take up to 20% of total run
time; A. Stamatakis, pers. comm. 2007). An
obvious issue when conducting searches under the
maximum likelihood optimality criterion is the
time spent optimizing such branch lengths. Typi-
cally, branches are optimized one at a time in a
strictly hill climbing iterative fashion where all
non-optimal branch lengths are discarded. Branch
lengths are often optimized using the Newton-
Raphson method (Swofford et al. 1996), and for
example PAUP* allows multiple options for per-
formance tuning by controlling, among other
parameters, the number of smoothing passes and
the threshold at which improvement in total like-
lihood score is not accepted. A similar procedure
is used in fastDNAml (Olsen et al. 1994) and POY,
where each generated topology is evaluated by
exhaustive branch length optimizations. If one of
those alternative topologies improves the likeli-
hood score is updated accordingly and once again
all possible subtrees are rearranged. This process
of rearrangement steps is repeated until no better
topology is found.

While traditional likelihood programs optimize
all branch lengths whenever a rearrangement is tried,
faster algorithms introduce important speedups.
RAxML-III (also RAxML-II and previous versions)
only optimizes the three local branches adjacent to
the insertion point, and can do this by the slower
Newton-Raphson method or via a faster analytical
method before computing its new likelihood value
(Stamatakis et al. 2005). Since the likelihood of the
tree strongly depends on the topology per se, this
fast pre-scoring can be used to establish a small list
of potential alternative trees, which are very likely
to improve the score of the best tree. Another
alternative is to optimize topology and branch length
simultaneously, as it is done with the PHYML
package (Guindon and Gascuel, 2003).

Although branch length optimization is a fun-
damental issue in likelihood calculations, I will not

dedicate more space to it and I will rather concen-
trate in those aspects of tree searches that are of
general application to all methods based on opti-
mality criteria—topological calculations.

Accelerating searches using
ratcheting techniques
One of the most innovative search strategies using
(then) available swappers is the ratcheting technique
developed by Nixon (1999) and implemented in
software such as Winclada (Nixon, 2002)—which
uses Nona (Goloboff, 1994) as a subsidiary program
to do the actual searches—TNT, or POY. It can also
be used in PAUP* with the subsidiary programs
PRAP (Müller, 2004a, b) or PAUPRat (Sikes and
Lewis, 2001). The ratcheting strategy relies on
iterative perturbations of the tree landscape in order
to escape from local optima much faster. This is
done by generating a tree via standard algorithms
(e.g. Wagner tree + TBR) until the tree cannot be
improved (it is recommended to use small tree
buffers). The weight of a certain proportion of
characters is altered (different implementations use
different proportion of reweighted characters and
different weights) and the altered matrix is used to
continue swapping on the previous tree until no
further improvement is made. The weights then
revert to the original ones and branch swapping
continues. The whole process is repeated a given
number of times for each original replicate. This
strategy allows escaping from local optima much
more quickly than simple replicates of Wagner +
TBR do. Since its description, the ratchet has
been employed in numerous studies that deal
with complicated data sets (e.g. Giribet and
Wheeler, 1999; Goloboff, 1999; Nixon, 1999;
Quicke et al. 2001).

As discussed by Nixon (1999), ratcheting tech-
niques do not need to be restricted to parsimony,
hence a similar strategy has been extended to like-
lihood tree searches (Vos, 2003), although not
implemented in any software package. A recent
experimental implementation of a ratchet in
RAxML did not show any improvements compared
to the standard hill-climbing algorithm (A. Sta-
matakis, pers. comm. 2007).

Genetic algorithms
A new family of algorithms, based on the principle
of recombination among trees, have been described

348

Giribet

Evolutionary Bioinformatics 2007:3

by several authors (Matsuda, 1996; Lewis, 1998;
Moilanen, 1999, 2001; Goloboff, 1999; Zwickl,
2006). The principle of this family of methods is
to extend branch swapping of basic algorithms such
as SPR and TBR to exchanging branches among
different trees. So the basic algorithms (SPR and
TBR) could be described as intra-tree branch swap-
ping algorithms while the genetic algorithms refer
to inter-tree branch swapping.

The most common and effi ciently implemented
genetic algorithm is Goloboff’s tree fusing (TF)
algorithm (Goloboff, 1999, 2002), currently
implemented in TNT and POY. The method
compares different trees and exchanges compatible
clades among them. Tree fusing improves on
Moilanen’s algorithm, which exchanged one
randomly chosen subclade at a time, placing it in
a ramdomly chosen position. Goloboff’s TF
exchanges all the groups with a certain number of
taxa that can be specifi ed and that is found in the
consensus of both trees. The best result is obtained
when multiple trees are available to exchange
clades. Tree fusing has been used in several recent
studies that deal with large or complicated data sets
(Okusu et al. 2003; Edgecombe and Giribet, 2004;
Giribet et al. 2004; Lindgren et al. 2004; Wheeler
et al. 2004; Giribet et al. 2005). TF comes in
different fl avors and trees are fused in different
ways, exchanging subtrees in one or in both
directions and saving a different number of trees.
TF, as implemented in TNT, is extremely fast and
allows reaching a “nearly-optimal” solution in truly
short execution times, but it generally does not
suffi ce to fi nd an optimal solution without the aid
of other algorithms (Goloboff, 1999). Other
genetic algorithm implementations include the
Cooperative Rec-I-DCM3 (Williams and Smith,
2006), which have shown good performance
behavior when the number of cooperative trees is
not too small, although this is not available to the
public and therefore may be of little value to the
community.

Maximum likelihood implementations include
the metapopulation genetic algorithm found in
METAPIGA (Lemmon and Milinkovitch, 2002)
and the GAML algorithm (Lewis, 1998; Brauer
et al. 2002). The application of the genetic algo-
rithms family goes beyond the ones described here
or in the original papers; it effi ciently allows to
incorporate results from previous analyses for the
population of trees where exchanges are to be
performed (see below).

Divide and conquer algorithms
Another interesting set of algorithms are the
“divide and conquer” family of algorithms, which
aim at reducing the dimension of the solution space
by restricting a given problem to subsets of smaller
problems. A primitive divide and conquer method
is the quartet technique (Strimmer and von Hae-
seler, 1996), which divides the data in 4-taxon
trees, although this technique has been shown to
be a poor estimator of phylogeny.

More sophisticated divide and conquer strate-
gies are illustrated by two specifi c algorithms,
Goloboff’s sectorial searches (SS) (Goloboff,
1999, 2002) and the disc-covering family of meth-
ods (DCMs) (Nakhleh et al. 2001; Roshan et al.
2004). SS needs a tree as a starting point, and dif-
ferent sectors of the tree are reanalyzed separately;
if a better confi guration is found, the new sector
replaces the old one on the novel tree. These
reduced data sets can be analyzed quickly. Sectors
can be selected in different ways, randomly or
based on consensus (Goloboff, 1999).

The DCM family of methods also analyzes sec-
tors of a tree, but in this case it does it by contract-
ing the nodes in the remainder of the tree
rebuilding a new matrix. The logic behind these
methods is that it is much harder to achieve an
optimal confi guration for the entire tree than it is
for smaller sectors of this tree. DCM therefore
differs from SS in that SS use both OTUs and
HTUs while DCM only uses OTUs.

Ota and Li (2000, 2001) have also developed a
type of “divide and conquer” method that combines
neighbor-joining support and maximum likelihood
calculations.

Simulated annealing methods
In hard optimization problems, such as tree
searches, accepting suboptimal solutions with a
certain probability is generally known as simulated
annealing (Kirkpatrick et al. 1983). Earlier
implementations of simulated annealing meth-
ods in Metro (a program formerly included in
PHYLIP) performed poorly. Currently, Goloboff’s
tree-drifting (DFT) algorithm (Goloboff, 1999,
2002) is implemented in TNT and in POY, and
other less used implementations for parsimony
analysis also exist (Barker, 2004). DFT determines
the acceptability of a tree by using both its raw
length difference and the relative fi t difference
(RFD) (Goloboff and Farris, 2001). The algorithm

349

Effi cient tree searches with available algorithms

Evolutionary Bioinformatics 2007:3

is based on doing rounds of TBR, alternatively
accepting only optimal trees or optimal and
suboptimal trees. Then, as in the ratchet, the
suboptimal trees are discarded, until a new round
of drifting starts and the exercise is performed a
number of times. Tree drifting is almost as
effective as the ratchet at fi nding optimal trees
(Goloboff, 2002), with small differences depend-
ing on implementation.

The fi rst application of a simulated annealing
algorithm to maximum likelihood analyses was
presented by Salter and Pearl (2001), and more
recently an elegant implementation was added to
the RAxML family of programs. RAxML-SA
(Randomized Axelerated maximum Likelihood
with Simulated Annealing) combines hill-climbing
techniques with “backward steps” to slightly
improve scores of fi nal trees when compared to
those available in its predecessors (Stamatakis,
2005a). However, this strategy has been abandoned
in current releases due to its very slow inference
time (A. Stamatakis, pers. comm. 2007).

Heuristic Methods and Effi cient
Tree Searches—Strategies
In the paragraphs above, common algorithms and
several simple search strategies that can be used
in order to conduct more or less effi cient tree
searches are reviewed. In this section, the focus is
on a set of search strategies beyond those simple
ones. In fact, a wise utilization of tree buffer size,
number of replications, constrained searches, or
the methods for altering the tree landscape will
determine the effi ciency of tree searches. The focus
of this section centers in two main strategies,
(1) combination of algorithms described in the
previous one, and (2) the intelligent or “driven”
searches. A review of these aspects can be found
in Goloboff (2002).

Accelerating searches using tradi-
tional algorithms: tree buffers
In addition to the choice of swapping algorithm,
the number of trees to be retained per replicate
plays a fundamental role in the effi ciency of tree
searches (Giribet and Wheeler, 1999; Davis et al.
2005). Davis et al. (2005) discussed in detail the
effects of increasing the amount of swapping per
replicate (increasing the number of trees retained
per replicate from 1 to 5,000), and not surprisingly

they found that the more trees are retained, the
more times minimum tree length is found. But this
is done at the expense of computation time. How-
ever, they conclude that the limit of these conven-
tional analyses lays for matrices with up to 500–700
terminals.

It is beyond the objective of this article to discuss
specifi c commands for specifying the size of tree
buffers in the different software packages. As a
general rule, tree buffers can be specifi ed globally
for an entire search, per replicate, or even for the
different steps of a given search (e.g. specifying
different maxtrees for the SPR step, TBR step,
et cetera).

To illustrate the issue of the number of trees to
be retained per replicate, the metazoan data set
described above was analyzed under parsimony
using TNT in two ways. First, I analyzed the data
in the same conditions listed above, but retaining
100 trees per replicate instead of 10 trees per
replicate. Second, I ran the same data during 10
minutes (a) setting the number of trees per replicate
to 10,000 or (b) retaining 10 trees per replicate.
The fi rst analysis completed 6 replicates (5 × 109
trees examined) and found a minimum tree length
of 7,031 steps. The analysis retaining 10 trees per
replicate allowed completion of 739 replicates in
the same amount of time, examining an equivalent
number of trees, but resulted on trees 3 steps
shorter and radically different phylogenetic
hypothesis with respect to Ecdysozoa. Clearly, the
second strategy, by investing less effort on
each replicate, allowed exploring a broader tree
space, not wasting time swapping on trees from
the same suboptimal island. In addition, collapsing
rules may also have an important effect on
execution times.

Accelerating searches using tradi-
tional algorithms: constraints
Tree searches are complex because the number of
possible trees grows exponentially with the num-
ber of terminal taxa included in the analyses. An
easy way to ameliorate the problem of the large
number of trees is by decreasing the effective
number of terminals in an analysis. However, since
taxon sampling has been demonstrated to be a key
factor for phylogenetic accuracy (e.g. Wheeler,
1992; Hillis, 1996; Giribet and Carranza, 1999;
Pollock et al. 2002; Zwickl and Hillis, 2002;
Hedtke et al. 2006), decreasing the real number

350

Giribet

Evolutionary Bioinformatics 2007:3

of terminals is not a good idea, unless of course
they are redundant.

An easy way to decrease the effective number
of nodes to be swapped without decreasing the real
number of taxa (and character states observed
within those taxa) is by using constraints during
tree searches. Constraint searches are often used
for exploring topologies or testing hypotheses and
optimizing parameters. Constraints can be speci-
fi ed in some available software packages such as
GARLI, Nona, PAUP, POY, RAxML, or TNT,
however, the use of constraints needs to be care-
fully designed. Of course, the use of constraints
can have a direct effect on the fi nal topology if the
nodes being constrained were not present in the
true tree. For example, Giribet and Ribera (2000)
used jackknife frequencies above 95% as a con-
straint for a subsequent search in order to speed up
the analyses. As resampling techniques for meth-
ods based on optimality criteria can take an enor-
mous amount of time, other strategies could be
used, such as using some high threshold (100%)
for neighbor-joining bootstrapping. This trivial
strategy has been seldom used despite its logical
speedup of analyses, and it may depend on the
development of techniques for quick consensus
estimation (Goloboff and Farris, 2001). This
technique is related to divide and conquer
techniques.

Accelerating searches using tradi-
tional algorithms: previous searches
Another strategy that can be employed is the use
of trees obtained during previous analyses, not
necessarily by the investigator. These trees could
be obtained from a “tree database”. Systematists
tend to build upon previous work to further their
research so not all the information utilized in an
analysis needs to be generated de novo. The use of
molecular data from GenBank and other databases
is commonplace in molecular systematics. The
same applies to morphological systematics, where
researchers distill previously published morpho-
logical work and often refi ne, expand or merge
previous matrices to come up with a more perfected
hypothesis. This makes sense because generating
sequence data or morphological observations is
not a trivial process, and if other investigators have
invested resources and time to generate those
observations, why should we generate them again?
In an ideal world with error-free databases and data

matrices, generating data de novo at every step
would be insensible.

Generating trees also costs time and money
(Mecham et al. 2006). There are several published
articles praising on the computation effort invested
into generating trees and the use of computer clus-
ters for phylogenetic analyses is growing exponen-
tially because investigators need more sophisticated
analyses to avoid problems of local optima when
analyzing large data sets. However, there is little
use of previously generated phylogenetic hypoth-
eses as a starting point for a new phylogenetic
analysis. Here, recycling of previous analyses is
proposed as starting points for new phylogenetic
analysis, even if the previous analyses contain
fewer taxa than the newly analyzed data sets. This
strategy has been recently called “jumpstarting
phylogenetics” (Mecham et al. 2006).

Most programs allow initiating the swapping
process with an input tree, obtained randomly or
by reading it from a tree fi le. This strategy saves
time, especially in the case of traditional maximum
likelihood analyses because the initial tree for a
parsimony search is calculated much more rapidly
than building a tree for a maximum likelihood tree.
This is so because in addition to topologies, the
likelihood algorithm evaluates branch lengths
(Swofford et al. 1996; Goloboff, 2003). Some
programs have therefore incorporated this strategy
by initiating the likelihood searches from a tree
generated via parsimony or some clustering
method, since these trees are often more optimal
under the likelihood criterion than a random or a
Wagner tree are (Guindon and Gascuel, 2003;
Stamatakis et al. 2005). For example, RAxML-VI
can start with a reduced tree not containing all taxa
of an extended data set. Remaining taxa will be
added by Wagner parsimony addition and global
optimizations will then be performed via maximum
likelihood.

The use of previously generated trees is also
important when applying complex phylogenetic
algorithms such as iterative pass optimization
(Wheeler, 2003), which uses three nodes instead
of two for a given optimization problem and there-
fore is able to fi nd more parsimonious solutions
than those of direct optimization at the expense of
computation time. The use of direct optimization
trees as a source for continuing with the iterative
pass calculations is commonplace (Wheeler, 2003;
Faivovich et al. 2004; Smith and Wheeler, 2004;
Giribet and Edgecombe, 2006).

351

Effi cient tree searches with available algorithms

Evolutionary Bioinformatics 2007:3

However, except in these cases, few analyses use
results from previous searches to continue estimat-
ing phylogenetic hypotheses. I propose here to
utilize results from previous searches containing
fewer taxa using the same optimality criterion and
model as a starting point, continue adding taxa with
a random seed, and repeat this for a given number
of replicates. This will ensure that most nodes, which
had been optimized in a similar search in a previous
analysis (or series of analyses) and therefore remain
at a near-optimal confi guration, will give structure
to the analysis. In order to conduct this kind of
analysis, the phylogenetic software would need to
be able to read a tree with fewer taxa than the
existing data set, and continue with a Wagner addi-
tion for the taxa not included in the original tree.
This requires reading tree fi les with fewer taxa than
the data matrices stored in memory, and this is done
by comparing the tree fi le to a fi le that contains a
list of all the terminals to be analyzed2. While the
strategy discussed in the previous section could be
called constrained searches, the strategy described
here could be referred to as pre-processed searches.
Although this technique has been in use for a
number of years by POY users (since the incorpora-
tion of the command –terminalsfi le), it has also been
described in a more general context recently as a
mode of “jumpstarting” phylogenetic analyses
(Mecham et al. 2006) (see fl owchart for a pre-
processed search in Fig. 3).

Pre-processed searches are also very useful in
cases where new characters are added to the
previous runs, or in the common case of correcting
errors or adding missing data to a prior analysis. The
change of a few characters in a large analysis may
not pose a dramatic change to the previous trees
and therefore it may not be worth redoing an entire
analysis. Therefore using previous results as a
starting point for the search is a wise way to
proceed.

Accelerating searches using genetic
algorithms and pre-processed
searches
A special strategy involving genetic algorithms has
also been designed by providing a population of
trees obtained under different analytical parameters
via a sensitivity analysis (Wheeler, 1995; Giribet,
2003) and submitting those trees to tree fusing
(Wheeler et al. 2004). This strategy has been
termed sensitivity analysis tree fusing or SATF
(D’Haese, 2003; Wheeler et al. 2005) and has been
proven to increase both analytical speed and effi -
ciency for medium to large data sets (Boyer et al.
2005; Sørensen et al. 2005; Giribet et al. 2006).
The possibilities of SATF for maximum likelihood
analyses seem extremely promising.

Another strategy consists in generating an initial
population of trees via jackknifi ng (by using the
command –jackstart in POY), and proceeding to
tree fusing. Other methods, such as bootstrapping,
should give similar results. In some cases, trees
generated through a sensitivity analysis and jack-
knife trees could be combined to constitute the
population of trees to be fused by the genetic algo-
rithms.

Combining algorithms
While most of the algorithms described above are
effi cient under a range of conditions, they often
perform better when combined. Goloboff (1999)
clearly showed how certain algorithms decrease
tree length rapidly but others may be required to
actually fi nd the optimal solution (in his example
data sets). Combining these algorithms with intel-
ligent search strategies (ratcheting, drivers, con-
straint searches, pre-processed searches, and the
like) is likely to be a more effi cient phylogenetic
strategy, but unfortunately the entire family of
algorithms and strategies is only found in the par-
simony search program TNT (see a review of the
program in Giribet, 2005), and a subset of these
are incorporated in POY (see Wheeler et al. 2006).
Ratcheting and tree fusing (Lewis, 1998; Lemmon
and Milinkovitch, 2002; Vos, 2003; Wheeler et al.
2005) and simulated annealing (Stamatakis, 2005a)
are also incorporated in likelihood-based software,
but combinations of the different “new technology”
algorithms are not available in probabilistic
approaches.

While current software has improved tremen-
dously in the amount of taxa that can be handled,

2This option of the computer program POY has demonstrated to be
extremely useful in many situations, especially for selecting subsets of taxa
from a master fi le that contains a much larger number of terminals. Impor-
tant applications of this “terminals fi le” are for databasing and for combin-
ing partitions with different taxa in simultaneous (concatenated) analyses.
The same way that the “terminals fi le” adds missing taxa to a tree (or to a
data matrix, by including an “all missing data” terminal), it also can serve
to remove taxa not specifi ed in the “terminals fi le” (both, from input trees
or from data matrices). A nice possibility of such fi les could be the use of
synonyms for terminal names; e.g., Drosophilamelanogaster = Dmelano-
gaster = melano1, etc. would allow to use either name in different data sets
or input trees, simplifying the concatenation of data from different
sources.

352

Giribet

Evolutionary Bioinformatics 2007:3

ORIGINAL TREES FROM PREVIOUS
SEARCHES, TREE DATA BASES, ETC.

DATA SETS

DO THEY AGREE IN TAXON COMPOSITION?

YES NO

PROCEED TO REFINING TECHNIQUES:
SWAPPING, TREE FUSING, ETC.

REMOVE SUPERFLUOUS TAXA FROM TREES
ADD NEW TAXA TO TREES BY WAGNER ADDITION

READ DATA AND TREES

GENERATE TREE HYPOTHESIS

TIME INVESTED IN PREVIOUS
PHYLOGENETIC SEARCHES

Figure 3. Flowchart of the pre-processed search technique described here.

for both parsimony and maximum likelihood
analyses (Goloboff et al. 2003; Roshan et al. 2004;
Stamatakis, 2005a, b; Stamatakis et al. 2005), still
the amount of taxa that can be analyzed in reason-
able amounts of time is a limiting factor. For
example, a parallel version of TNT fi nds optimal
solutions in the zilla data set in a matter of seconds
and the sequential version of RAxML-VI was able

to fi nish a maximum likelihood replicate for 25,000
taxa in 4–5 days (Stamanakis pers. comm. 2007).

The algorithms described above can obviously
be combined in different ways. From an experi-
mental point of view and working with large data
sets in TNT, the best results are obtained when
multiple replicates of Wagner trees are swapped
using TBR and followed by sectorial searches, then

353

Effi cient tree searches with available algorithms

Evolutionary Bioinformatics 2007:3

drifting or ratcheting, followed by tree fusing
(Goloboff, 1999, 2002), at least in the case of the
zilla data set. Fine-tuning of each algorithm is
necessary for best performance and other strategies
could obviously be tried in other software pro-
grams. What seems clear is that multipe rounds of
Wagner addition to start the analyses are funda-
mental, as it is fi nishing them with tree fusing—at
least in the case of complex data sets. The algo-
rithms used in between (ratcheting, simulated
annealing, sectorial searches) may yield optimal
results depending on the data. In the case of POY,
the combination of multiple rounds of ratcheting
and tree fusing is commonly used, but little per-
formance testing has actually been done.

Another factor that has received little attention
in the literature is sequence length requirements
for accurate reconstruction of phylogenies (e.g.
Moret et al. 2002). This aspect will not be dis-
cussed further in this review.

When is a Search Good Enough?
One of the main issues when applying heuristic
algorithms to tree search is defi ning a stopping
rule. Historically, researchers defi ned the number
of Wagner random addition replicates a priori, and
in the best case, if the number of best solutions was
a small fraction of the total replicates, the search
would be extended to more replicates. In other
cases, searches were limited by execution time.
However, none of these methods allows for a sound
evaluation of the results of the heuristic search in
terms of convergence and reliability of results. An
alternative to this is the use of a specifi ed set of
stopping rules, the most well defi ned are called
“driven searches”.

Driven searches
The term Driven Searches is used in the computer
program TNT to designate a series of intelligent
searches where the user does not defi ne the number
of replicates to be performed, but instead uses
search strategies that continue searching until
achieving a certain goal (Goloboff, 1999, 2002;
Goloboff et al. 2003).

One of the fi rst analyses using some sort of driven
search is that of Giribet et al. (2001). This study used
POY in a way that the authors could defi ne a simple
search strategy such that it would do a number of
replicates (100 in that case), but it would stop the

search once minimal tree length had been found
three times after having performed at least 10 full
replicates (commands –replicates3 1000 –stopat
3 –minstop 10). However, it has been shown that
results often need more replicates to converge on a
stable consensus (D. Pol pers. comm. 2005).

More interesting driven searches are those
implemented in TNT. The most obvious driver is
to specify a fi xed number of times that a minimum
tree length has to be found during the search; for
example one can ask to keep searching and then
stop after minimum tree length (defi ned as the
minimum length the program is able to fi nd) is hit
5 times. This is based on the notion that conver-
gence in a solution may be a desirable property
when using heuristics.

Other more sophisticated drivers involve con-
sensus techniques, where one searches until mini-
mum tree length is found a certain number of times
and then a consensus is estimated. A second round
of searching starts and a new consensus is gener-
ated and compared to the previous one, and so on
until the consensus stabilizes. The number of hits
to minimum tree length as well as the times that
the consensus is stable, or can be defi ned by the
user. This method works extremely well for
data sets with thousands or millions of equally
parsimonious trees, as is typical of some morpho-
logical data sets with many missing data. The use
of such drivers allows achieving a stable consensus
after fi nding just a few trees, without the necessity
of expending computation resources in obtaining
all the MPTs, which will be collapsed anyway. The
drivers are thus another important component of
tree searches, although perhaps not as well known
as the incorporation of tree searching algorithms.
Consensus techniques have required advances on
quick collapsing methods (Goloboff and Farris,
2001) to make drivers a viable option.

Slightly related to the drivers is the “–fi tchtrees n”
command in POY (Wheeler et al. 2006). This is
based on an unpublished algorithm proposed by
W. Fitch, and affects the behavior of the tree buf-
fers (e.g. –holdmaxtrees n) by storing the most
diverse set of trees the program can fi nd instead of
the fi rst n trees specifi ed in the buffer. This should
contribute towards the goal of achieving a stable
consensus.

3In the original study of Giribet et al. (2001) the command “–random 100”
was used instead of “–replicates 100”, but this commands are identical,
involving only a name in the command.

354

Giribet

Evolutionary Bioinformatics 2007:3

Conclusion
Phylogenetic methods based on optimality criteria
are highly desirable for their inherent properties,
but slow when compared to other methods of tree
construction. Traditionally, researchers have been
limited to exploring tree space by using multiple
replicates of Wagner addition followed by SPR
or/and TBR branch swapping but these methods
have been shown to be insuffi cient for large data
sets or even for small data sets with a rugged tree
space. Other strategies not yet widely used, such
as constraint searches or the pre-processed search
technique here proposed could drastically decrease
computation time. But major progress comes from
recent new algorithms such as the ratchet (Nixon,
1999; Vos, 2003), genetic algorithms (Lewis, 1998;
Goloboff, 1999; Moilanen, 1999, 2001), divide and
conquer algorithms (Goloboff, 1999; Nakhleh et al.
2001; Roshan et al. 2004), and simulated annealing
methods (Goloboff, 1999; Stamatakis, 2005a).
Combination of clever search strategies, such as
driven searches, and new algorithms has drastically
increased the number of taxa that can be analyzed
in reasonable amounts of time. Finally, the addition
of parallelism to the developing toolkit of the
practicing systematist has also had a positive
impact, allowing the analysis of complicated data
sets, especially for the computationally intensive
direct optimization methods which consist of
several nested NP-complete problems, and holds
important promises for the future as more software
is currently being developed to work in parallel.

Acknowledgments
I would like to thank Diego Pol and Pablo Goloboff
for useful discussions on the different subjects
discussed in this article, which was inspired mostly
after my interactions with the many Harvard stu-
dents that took our systematics class. Ward Wheeler
and Alexis Stamatakis provided insightful and
valuable comments on an earlier version of this
manuscript.

References
Allen, B.L. and Steel, M. 2001. Subtree transfer operations and their

induced metrics on evolutionary trees. Annals of Combinatorics,
5:1–15.

Barker, D. 2004. LVB: Parsimony and simulated annealing in the search
for phylogenetic trees. Bioinformatics, 20:274–275.

Bininda-Emonds, O.R., Gittleman, J.L. and Steel, M.A. 2002. The
(super)Tree of Life: Procedures, problems, and prospects. Annual
Review of Ecology and Systematics, 33:265–289.

Boyer, S.L., Karaman, I. and Giribet, G. 2005. The genus Cyphophthalmus
(Arachnida, Opiliones, Cyphophthalmi) in Europe: a phylogenetic
approach to Balkan Peninsula biogeography. Molecular Phylogenet-
ics and Evolution, 36:554–567.

Brauer, M.J., Holder, M.T., Dries, L.A., Zwickl, D.J., Lewis, P.O. and Hil-
lis, D.M. 2002. Genetic algorithms and parallel processing in maxi-
mum-likelihood phylogeny inference. Molecular Biology and
Evolution, 19:1717–1726.

Chase, M.W., Soltis, D.E., Olmstead, R.G., Morgan, D., Les, D.H., Mishler,
B.D., Duvall, M.R., Price, R.A., Hills, H.G., Qiu, Y.-L., Kron, K.A.,
Rettig, J.H., Conti, E., Palmer, J.D., Manhart, J.R., Sytsma, K.J.,
Michaels, H.J., Kress, W.J., Karol, K.G., Clark, W.D., Hedrén, M.,
Gaut, B.S., Jansen, R.K., Kim, K.-J., Wimpee, C.F., Smith, J.F.,
Furnier, G.R., Strauss, S.H., Xiang, Q.-Y., Plunkett, G.M., Soltis,
P.S., Swensen, S.M., Williams, S.E., Gadek, P.A., Quinn, C.J.,
Eguiarte, L.E., Golenberg, E., Learn, G.H.J., Graham, S.W., Barrett,
S.C.H., Dayanandan, S. and Albert, V.A. 1993. Phylogenetics of seed
plants: An analysis of nucleic sequences from the plastid gene rbcL.
Annals of the Missouri Botanical Garden, 80:528–580.

Chor, B. and Tuller, T. 2005. Maximum likelihood of evolutionary trees:
Hardness and approximation. Bioinformatics, 21 Suppl 1:i97–i106.

D’Haese, C.A. 2003. Sensitivity analysis and tree-fusing: Faster, better.
Cladistics, 19:150–151.

Davis, J.I., Nixon, K.C. and Little, D.P. 2005. The limits of conventional
cladistic analysis. In: Albert,V.A., ed. Parsimony, phylogeny, and
genomics. Oxford University Press, Oxford, 119–147.

Driskell, A.C., Ane, C., Burleigh, J.G., McMahon, M.M., O’Meara B, C.
and Sanderson, M.J. 2004. Prospects for building the tree of life from
large sequence databases. Science, 306:1172–1174.

Edgecombe, G.D. and Giribet, G. 2004. Adding mitochondrial sequence
data (16S rRNA and cytochrome c oxidase subunit I) to the phylog-
eny of centipedes (Myriapoda, Chilopoda): an analysis of morphol-
ogy and four molecular loci. Journal of Zoological Systematics and
Evolutionary Research, 42:89–134.

Faivovich, J.P., Garcia, C., Ananias, F., Lanari, L., Basso, N.G. and Wheeler,
W.C. 2004. A molecular perspective on the phylogeny of the Hyla
pulchella species group (Anura, Hylidae). Molecular Phylogenetics
and Evolution, 32:938–950.

Farris, J.S. 1970. Methods for computing Wagner trees. Systematic Zoology,
19:83–92.

Farris, J.S. and Mickevich, M.F. 1980. PHYSYS.
Felsenstein, J. 1978. The number of evolutionary trees. Systematic Zoology,

27:27–33.
Felsenstein, J. 2004. Inferring Phylogenies. Sinauer Associates, Sunderland,

Massachusetts.
Garey, M.R., Graham, R.L. and Johnson, D.S. 1977. The complexity of

computing Steiner minimal trees. SIAM Journal on Applied Math-
ematics, 23:835–859.

Garey, M.R. and Johnson, D.S. 1977. The rectilinear Steiner tree prob-
lem is NP-complete. SIAM Journal on Applied Mathematics,
23:826–834.

Giribet, G. 2003. Stability in phylogenetic formulations and its relationship
to nodal support. Systematic Biology, 52:554–564.

Giribet, G. 2005. Book Reviews: TNT: Tree analysis using New Technology.
Systematic Biology, 54:176–178.

Giribet, G. and Carranza, S. 1999. What can 18S rDNA do for bivalve
phylogeny? Journal of Molecular Evolution, 48:256–261.

Giribet, G. and Edgecombe, G.D. 2006. Confl ict between data sets and
phylogeny of centipedes: an analysis based on seven genes and
morphology. Proceedings: Biological Sciences, 273:531–538.

Giribet, G., Edgecombe, G.D., Carpenter, J.M., D’Haese, C.A. and Wheeler,
W.C. 2004. Is Ellipura monophyletic? A combined analysis of basal
hexapod relationships with emphasis on the origin of insects. Organ-
isms, Diversity and Evolution, 4:319–340.

Giribet, G., Edgecombe, G.D. and Wheeler, W.C. 2001. Arthropod phylog-
eny based on eight molecular loci and morphology. Nature,
413:157–161.

355

Effi cient tree searches with available algorithms

Evolutionary Bioinformatics 2007:3

Giribet, G., Okusu, A., Lindgren, A.R., Huff, S.W., Schrödl, M. and
Nishiguchi, M.K. 2006. Evidence for a clade composed of molluscs
with serially repeated structures: Monoplacophorans are related to
chitons. Proceedings of the National Academy of Sciences of the
U.S.A, 103:7723–7728.

Giribet, G. and Ribera, C. 1998. The position of arthropods in the animal
kingdom: a search for a reliable outgroup for internal arthropod
phylogeny. Molecular Phylogenetics and Evolution, 9:481–488.

Giribet, G. and Ribera, C. 2000. A review of arthropod phylogeny: new data
based on ribosomal DNA sequences and direct character optimization.
Cladistics, 16:204–231.

Giribet, G., Richter, S., Edgecombe, G.D. and Wheeler, W.C. 2005. The
position of crustaceans within the Arthropoda — evidence from nine
molecular loci and morphology. In: Koenemann, S. and Jenner, R. A.,
eds. Crustacean Issues 16: Crustacea and Arthropod Relationships.
Festschrift for Frederick R. Schram. Taylor and Francis, Boca Raton,
307–352.

Giribet, G. and Wheeler, W.C. 1999. The position of arthropods in the
animal kingdom: Ecdysozoa, islands, trees, and the “parsimony
ratchet”. Molecular Phylogenetics and Evolution, 13:619–623.

Gladstein, D. 1997. Effi cient incremental character optimization. Cladistics,
13:21–26.

Goloboff, P.A. 1993. Character optimization and calculation of tree lengths.
Cladistics, 9:433–436.

Goloboff, P.A. 1994. Nona, version 1.5.1. American Museum of Natural
History.

Goloboff, P.A. 1999. Analyzing large data sets in reasonable times: solutions
for composite optima. Cladistics, 15:415–428.

Goloboff, P.A. 2002. Techniques for analyzing large data sets. In: DeSalle,
R., Giribet, G. and Wheeler, W., eds. Techniques in Molecular
Systematics and Evolution. Brikhäuser Verlag, Basel, 70–79.

Goloboff, P.A. 2003. Parsimony, likelihood, and simplicity. Cladistics,
19:91–103.

Goloboff, P.A. 2005. Minority rule supertrees? MRP, Compatibility,
and Minimum Flip may display the least frequent groups.
Cladistics, 21.

Goloboff, P.A. and Farris, J.S. 2001. Methods for quick consensus estima-
tion. Cladistics, 17:S26–S34.

Goloboff, P.A., Farris, J.S. and Nixon, K. 2003. TNT: Tree analysis using
New Technology. Version 1.0, version Beta test v. 0.2. Program and
documentation available at http://www.zmuc.dk/public/phylogeny/
TNT/.

Guindon, S. and Gascuel, O. 2003. A simple, fast, and accurate algorithm
to estimate large phylogenies by maximum likelihood. Systematic
Biology, 52:696–704.

Hedtke, S.M., Townsend, T.M. and Hillis, D.M. 2006. Resolution of phy-
logenetic confl ict in large data sets by increased taxon sampling.
Systematic Biology, 55:522–529.

Hendy, M.D. and Penny, D. 1982. Branch and bound algorithms to deter-
mine minimal evolutionary trees. Systematic Zoology ,
59:277–290.

Hibbett, D.S., Nilsson, R.H., Snyder, M., Fonseca, M., Costanzo, J. and
Shonfeld, M. 2005. Automated phylogenetic taxonomy: an example
in the homobasidiomycetes (mushroom-forming fungi). Systematic
Biology, 54:660–668.

Hillis, D.M. 1996. Inferring complex phylogenies. Nature, 383:130–131.
Hordijk, W. and Gascuel, O. 2005. Improving the effi ciency of SPR moves

in phylogenetic tree search methods based on maximum likelihood.
Bioinformatics, 21:4338–4347.

Källersjö, M., Farris, J.S., Chase, M.W., Bremer, B., Fay, M.F., Humphries,
C.J., Petersen, G., Seberg, O. and Bremer, K. 1998. Simultaneous
parsimony jackknife analysis of 2538 rbcL DNA sequences reveals
support for major clades of green plants, land plants, seed plants
and flowering plants. Plant Systematics and Evolution ,
213:259–287.

Kirkpatrick, S., Gellat, C. and Vecchi, M. 1983. Optimization by simulated
annealing. Science, 220:671–680.

Kosakovsky Pond, S.L. and Muse, S.V. 2004. Column sorting: rapid
calculation of the phylogenetic likelihood function. Systematic
Biology, 53:685–692.

Lemmon, A.R. and Milinkovitch, M.C. 2002. The metapopulation genetic
algorithm: An effi cient solution for the problem of large phylogeny
estimation. Proceedings of the National Academy of Sciences of the
U.S.A., 99:10516–10521.

Lewis, P.O. 1998. A genetic algorithm for maximum-likelihood phylogeny
inference using nucleotide sequence data. Molecular Biology and
Evolution, 15:277–283.

Lindgren, A.R., Giribet, G. and Nishiguchi, M.K. 2004. A combined
approach to the phylogeny of Cephalopoda (Mollusca). Cladistics,
20:454–486.

Lipscomb, D.L., Farris, J.S., Källersjö, M. and Tehler, A. 1998. Support,
ribosomal sequences and the phylogeny of the Eukaryotes. Cladistics,
14:303–338.

McMahon, M.M. and Sanderson, M.J. 2006. Phylogenetic supermatrix
analysis of GenBank sequences from 2228 papilionoid legumes.
Systematic Biology, 55:818–836.

Maddison, D.R. 1991. The discovery and importance of multiple islands of
most-parsimonious trees. Systematic Zoology, 40:315–328.

Matsuda, H. 1996. Protein phylogenetic inference using maximum likeli-
hood with a genetic algorithm. In: Hunter, L. and Klein, T.E., eds.
Pacifi c Symposium on Biocomputing ’96 . World Scientifi c, London,
512–523.

Mecham, J., Clement, M., Snell, Q., Freestone, T., S.K., and Crandall, K.
2006. Jumpstarting phylogenetic analysis. International Journal of
Bioinformatics Research and Applications, 2:19–35.

Moilanen, A. 1999. Searching for most parsimonious trees with simulated
evolutionary optimization. Cladistics, 15:39–50.

Moilanen, A. 2001. Simulated evolutionary optimization and local
search: Introduction and application to tree search. Cladistics,
17:S12–S25.

Moret, B.M., Roshan, U. and Warnow, T. 2002. Sequence-length require-
ments for phylogenetic methods. Algorithms in Bioinformatics,
2452:343–356.

Müller, K. 2004a. PRAP—computation of Bremer support for large data
sets. Molecular Phylogenetics and Evolution, 31:780–782.

Müller, K. 2004b. PRAP, Parsimony ratchet analyses with PAUP*, version
1.0. Program and documentation available at www.nees.uni-bonn.
de/downloads/PRAP/.

Müller, K. 2006. Incorporating information from length-mutational events
into phylogenetic analysis. Molecular Phylogenetics and Evolution,
38:667–676.

Nakhleh, L., Roshan, U., St. John, K., Sun, J. and Warnow, T. 2001. Design-
ing fast converging phylogenetic methods. Bioinformatics Sippl,
1:S190–S198.

Nixon, K.C. 1999. The Parsimony Ratchet, a new method for rapid parsi-
mony analysis. Cladistics, 15:407–414.

Nixon, K.C. 2002. Winclada, v. 1.00.08. Program and documentation avail-
able at www.cladistics.com.

Okusu, A., Schwabe, E., Eernisse, D.J. and Giribet, G. 2003. Towards a
phylogeny of chitons (Mollusca, Polyplacophora) based on combined
analysis of fi ve molecular loci. Organisms, Diversity and Evolution,
3:281–302.

Olsen, G.J., Matsuda, H., Hagstrom, R. and Overbeek, R. 1994. FastD-
NAml: a tool for construction of phylogenetic trees of DNA
sequences using maximum likelihood. Comput. Appl. Biosci.,
10:41–48.

Ota, S. and Li, W.H. 2000. NJML: a hybrid algorithm for the neighbor-join-
ing and maximum-likelihood methods. Molecular Biology and
Evolution, 17:1401–1409.

Ota, S. and Li, W.H. 2001. NJML+: an extension of the NJML method to
handle protein sequence data and computer software implementation.
Molecular Biology and Evolution, 18:1983–1992.

Page, R.D.M. and Holmes, E.C. 1998. Molecular evolution. A phylogenetic
approach. Blackwell Science, Boston.

356

Giribet

Evolutionary Bioinformatics 2007:3

Pollock, D.D., Zwickl, D.J., McGuire, J.A. and Hillis, D.M. 2002. Increased
taxon sampling is advantageous for phylogenetic inference. System-
atic Biology, 51:664–671.

Quicke, D.L., Taylor, J. and Purvis, A. 2001. Changing the landscape: a new
strategy for estimating large phylogenies. Systematic Biology,
50:60–66.

Ronquist, F. 1998. Fast Fitch-parsimony algorithms for large data sets.
Cladistics, 13:387–400.

Roshan, U., Warnow, T., Moret, B.M.E. and Williams, T.L. Year. Rec-I-
DCM3: a fast algorithmic technique for reconstructing large phylo-
genetic trees in Proceedings of the 2004 IEEE Computational Systems
Bioinformatics Conference (CSB 2004):12.

Salter, L.A. and Pearl, D.K. 2001. Stochastic search strategy for estimation
of maximum likelihood phylogenetic trees. Systematic Biology,
50:7–17.

Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method
for reconstructing phylogenetic trees. Molecular Biology and Evolu-
tion, 4:406–425.

Sanderson, M.J. and Kim, J. 2000. Parametric phylogenetics? Systematic
Biology, 49:817–829.

Sanderson, M.J., Purvis, A. and Henze, C. 1998. Phylogentic supertrees:
assembling the trees of life. Trends in Ecology and Evolution,
13:105–109.

Schuh, R.T. 2000. Biological systematics. Principles and applications.
Cornell University Press, Ithaca.

Sikes, D.S. and Lewis, P.O. 2001. beta software, version 1. PAUPRat: PAUP
implementation of the parsimony ratchet. Distributed by the authors.
Department of Ecology and Evolutionary Biology, University of
Connecticut.

Smith, W.L. and Wheeler, W.C. 2004. Polyphyly of the mail-cheeked fi shes
(Teleostei: Scorpaeniformes): evidence from mitochondrial and
nuclear sequence data. Molecular Phylogenetics and Evolution,
32:627–646.

Soltis, D.E., Soltis, P.S., Chase, M.W., Mort, M.E., Albach, D.C., Zanis,
M., Savolainen, V., Hahn, W.H., Hoot, S.B., Fay, M.F., Axtell, M.,
Swensen, S.M., Prince, L.M., Kress, W.J., Nixon, K.C. and Farris,
J.S. 2000. Angiosperm phylogeny inferred from 18S rDNA, rbcL,
and atpB sequences. Botanical Journal of the Linnean Society,
133:381–461.

Sørensen, M.V., Sterrer, W. and Giribet, G. 2005. Gnathostomulid phylog-
eny inferred from a combined approach of four molecular loci and
morphology. Cladistics, 21.

Stamatakis, A. 2005a. An effi cient program for phylogenetic inference using
simulated annealing. 8 pp.

Stamatakis, A. 2005b. RAxML-VI. Software and documentation available
at www.ics.forth.gr/~stamatak.

Stamatakis, A. 2005c. Phylogenetic models of rate heterogeneity: a high
performance computing perspective. In: Proceedings of IPDPS 2006,
Rhodos, Greece, 8 pp.

Stamatakis, A. 2006. AxML-VI-HPC: maximum likelihood-based phylo-
genetic analyses with thousands of taxa and mixed models. Bioin-
formatics, 22:2688–2690.

Stamatakis, A.P., Ludwig, T. and Meier, H. 2005. RAxML-III: a fast program
for maximum likelihood-based inference of large phylogenetic trees.
Bioinformatics, 21:456–463.

Stamatakis, A. P., T. Ludwig, H. Meier, and M. J. Wolf. 2002. Acccelerating
parallel maximum likelihood-based phylogenetic tree calculations
using subtree equality vectors. In: Proceedings of 15th IEEE/ACM
Supercomputing Conference (SC2002), Baltimore, Maryland.

Strimmer, K. and von Haeseler, A. 1996. Quartet puzzling: a quartet
maximum-likelihood method for reconstructing tree topologies.
Molecular Biology and Evolution, 13:964–969.

Swofford, D.L. 2002. PAUP* 4.0: Phylogenetic Analysis Using Parsimony
(*and Other Methods), version 4. Sinauer Associates.

Swofford, D.L. and Olsen, G.J. 1990. Phylogeny reconstruction. In: Hillis,
D.M. and Moritz, C., eds. Molecular systematics. Sinauer, Sunderland,
Massachusetts, 411–501.

Swofford, D.L., Olsen, G.J., Waddell, P.J. and Hillis, D.M. 1996. Phyloge-
netic inference. In: Hillis, D.M., Moritz, C. and Mable, B.K., eds.
Molecular Systematics, second edition . Sinauer Associates, Sunder-
land, 407–514.

Tehler, A., Little, D.P. and Farris, J.S. 2003. The full-length phylogenetic
tree from 1551 ribosomal sequences of chitinous fungi, Fungi. Myco-
logical Research, 107:901–916.

Varón, A., Vinh, L.S., Bomash, I. and Wheeler, W.C. 2007. POY 4.0 Beta
release 2205. American Museum of Natural History. Program and
documentation available at http://research.amnh.org/scicomp/proj-
ects/poy.php.

Vos, R.A. 2003. Accelerated likelihood surface exploration: the likelihood
ratchet. Systematic Biology, 52:368–373.

Wagner, W.H. 1961. Problems in the classifi cation of ferns. Recent Advances
in Botany, 1:841–844.

Wheeler, W.C. 1992. Extinction, sampling, and molecular phylogenetics.
In: Novacek, M.J. and Wheeler, Q.D., eds. Extinction and phylogeny.
Columbia University Press, New York, 205–215.

Wheeler, W.C. 1995. Sequence alignment, parameter sensitivity, and the
phylogenetic analysis of molecular data. Systematic Biology,
44:321–331.

Wheeler, W.C. 2003. Iterative pass optimization of sequence data. Cladistics,
19:254–260.

Wheeler, W.C., Aagesen, L., Arango, C.P., Faivovich, J., Grant, T., D’Haese,
C., Janies, D., Smith, W.L., Varón, A. and Giribet, G. 2005. Dynamic
homology and phylogenetic systematics: a unifi ed approach using
POY. American Museum of Natural History, New York.

Wheeler, W.C., Giribet, G. and Edgecombe, G.D. 2004. Arthropod system-
atics. The comparative study of genomic, anatomical, and paleonto-
logical information. In: Cracraft, J. and Donoghue, M.J., eds.
Assembling the Tree of Life. Oxford University Press, New York,
281–295.

Wheeler, W.C., Gladstein, D. and De Laet, J. 2002. POY version 3.0, version
Program and documentation available at ftp.amnh.org/pub/molecular.
American Museum of Natural History.

Whiting, M.F., Carpenter, J.M., Wheeler, Q.D. and Wheeler, W.C. 1997.
The Strepsiptera problem: phylogeny of the holometabolous insect
orders inferred from 18S and 28S ribosomal DNA sequences and
morphology. Systematic Biology, 46:1–68.

Williams, T.L. and Smith, M.L. 2006. The role of diverse populations in
phylogenetic analysis in The Genetic and Evolutionary Computation
Conference, GECCO’06, July 8–12, 2006, Seattle, Washington,
USA:8.

Zwickl, D.J. 2006. Genetic algorithm approaches for the phylogenetic
analysis of large biological sequence datasets under the maximum
likelihood criterion. PhD Thesis, The University of Texas at Austin,
Austin, 115 pp.

Zwickl, D.J. and Hillis, D.M. 2002. Increased taxon sampling greatly reduces
phylogenetic error. Systematic Biology, 51:588–598.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

