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Abstract
Aim: To assess plasma zinc and copper concentration in individuals with autism and correlate these levels with symptom severity.
Subjects and methods: Plasma from 102 autistic individuals, and 18 neurotypical controls, were tested for plasma zinc and copper 
using inductively-coupled plasma-mass spectrometry. Copper and zinc levels and Cu/Zn were analyzed for possible correlation with 
severity of 19 symptoms.
Results: Autistic individuals had elevated plasma levels of copper and Cu/Zn and lower, but not significantly lower, plasma Zn com-
pared to neurotypical controls. There was a correlation between Cu/Zn and expressive language, receptive language, focus attention, 
hyperactivity, fine motor skills, gross motor skills and Tip Toeing. There was a negative correlation between plasma zinc concentration 
and hyperactivity, and fine motor skills severity.
Discussion: These results suggest an association between plasma Cu/Zn and severity of symptoms associated with autism.
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Introduction
Autism is a complex, behaviorally defined neurode-
velopmental disorder characterized by social  deficits, 
language impairments, and repetitive behaviors. 
There has been a dramatic increase in the diagnosis 
of autism over the past decade.1,2

The etiology of this complex disease is highly heri-
table, but likely involves environmental factors.3 Twin 
studies demonstrate concordance rates of 82%–92% 
in monozygotic twins and 1%–10% concordance rate 
in dizygotic twins.1 Sibling recurrence risk (6%–8%) 
is 35 times the population prevalence.1,4

Genetic analysis suggests that as many as 15 genes 
might be involved in autism spectrum disorders 
(ASD), including variants on chromosomes 2q, 7q, 
15q, and 17q.5–8

Children with ASD frequently have accompany-
ing gastrointestinal, immunological, or nonspecific 
neurological symptoms.9–15

Zinc has a unique and extensive role in biologi-
cal processes. Since the discovery of this element as 
an essential nutrient for living organisms,16–18 many 
diverse biochemical roles for it have been identified. 
These include roles in enzyme function,19 nucleic 
acid metabolism,20,21 cell signaling22 and apoptosis.23 
Zinc is essential for physiological processes includ-
ing growth and development,24 lipid metabolism,25 
brain and immune function.24,26

Dietary factors that reduce the availability of 
zinc are the most common cause of zinc deficiency. 
 However, inherited defects can also result in reduced 
zinc. Both nutritional and inherited zinc deficiency 
produce similar symptoms, such as dermatitis, 
 diarrhea, alopecia and loss of appetite.27 With more 
prolonged deficiency causing growth impairment and 
neuropsychological changes such as emotional insta-
bility, irritability and depression.28–31

Deficiency of zinc in man has now been recog-
nized to occur not only as a result of nutritional fac-
tors, but also in various disease states, including 
malabsorption syndromes, acrodermatitis entero-
pathica, Crohn’s disease, alcoholism and cirrhosis of 
the liver.59,60

Low intracellular zinc has been found to be associ-
ated with DNA damage, oxidative stress, antioxidant 
defenses, and DNA repair,32,33 and zinc may serve as 
an important anti-oxidant.34

Copper (Cu), a trace metal, is also an essential 
element for living cells. It plays an important role in 
redox reactions because of its easy conversion from 
Cu+ to Cu++. Copper is transported mainly by ceru-
loplasmin, a copper-binding antioxidant protein that 
is synthesized in several tissues, including brain.35,36

Copper levels are low in Menke’s kinky hair syn-
drome37 malnutrition38 and Malabsorption.39  Elevated 
copper levels are associated with infections,40 
inflammation,41 trauma,42 Wilson’s disease,43  excessive 
dietary intake44 systemic lupus erythematosus,45 as 
well as autism.46

Because of the potential association between Zn 
and Cu levels and autism, we tested patients with 
autism for plasma concentration of these elements 
and then compared those levels with severity of dis-
ease symptoms.

Materials and Methods
Subjects
experimental and control
Plasma from consecutive individuals with diag-
nosed autism and neurotypical controls was obtained 
from patients presenting consecutively at the Health 
Research Institute/Pfeiffer Treatment Center. These 
individuals meet the DSM-IV criteria and many were 
diagnosed using The Autism Diagnostic Interview-
Revised—ADI-R before presenting for treatment at 
the Pfeiffer Treatment Center, Warrenville, Il.*

Patient consent was obtained from all patients 
involved in this study and this study was approved 
by the IRB of the Health Research Institute/Pfeiffer 
Treatment Center.

Severity of disease
An autism questionnaire was used to evaluate 
 symptoms. The questionnaire (Pfeiffer  Questionnaire) 
asked parents or caregivers to assess the severity of 
the following symptoms: Awareness, Expressive 
 Language, Receptive Language, (Conversational) 
Pragmatic Language, Focus, Attention,  Hyperactivity, 
Impulsivity, Perseveration, Fine Motor Skills, Gross 
Motor Skills, Hypotonia (low muscle tone), Tip 
Toeing, Rocking/Pacing, Stimming, Obsessions/
Fixations, Eye Contact, Sound Sensitivity, Light 
 Sensitivity, Tactile Sensitivity, Pica/eats dirt, metal, 
Tics and Seizures. The symptoms were rated on a 
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scale of 0–5 (5 being the highest severity) for each of 
these behaviors.

serum/plasma
All experimental and control plasmas were treated in 
an identical fashion—refrigerated (4C) immediately 
after collection and cell/serum separation, then used 
within 4 hours for inductively-coupled plasma-mass 
spectrometry.

statistics
Inferential statistics were derived from t-test with 95% 
confidence intervals and correlation data was obtained 
using Pearson Product Moment Correlation.*

Results
Autistic individuals had elevated plasma  levels 
of  copper (108.9 µg/dL) compared to controls 
(86.5 µg/dL) (P = 0.003) (Fig. 1) and elevated Cu/Zn 
(1.41) compared to controls (1.19) (P = 0.06), but not 
significantly lower plasma Zn (80.5 µg/dL) compared 
to neurotypical controls (84.7 µg/dL) (P = 0.4).

In 452 random individuals presenting to the 
Health Research Institute, we found no significant 

differences between the copper (P = 0.24) or zinc 
(P = 0.52) levels in 6 different age groups (0–19; 
20–29; 30–39; 40–49; 50–59; and above 60 years 
old), and in this same group, we found no difference 
in copper (P = 0.78) and zinc (P = 0.63) associated 
with gender.

We found a correlation between Cu/Zn and 
expressive language [r = 0.3, n = 45, P = 0.05], 
receptive language [r = 0.4, n = 43, P = 0.01], focus 
attention [r = 0.23, n = 84, P = 0.03], hyperac-
tivity [r = 0.3, n = 79, P = 0.01], fine motor skills 
[r = 0.32, n = 74, P = 0.004], gross motor skills 
[r = 0.41, n = 68, P = 0.0004] and Tip Toeing [r = 0.3, 
n = 71, P = 0.03]. There was a negative correlation 
between plasma zinc concentration and hyperactivity 
[r = −0.3, n = 79, P = 0.02], and fine motor skills 
severity, [r = −0.3, n = 74, P = 0.005]. Figures 2 and 
3 show correlation between Hyperactivity and Cu/Zn 
and plasma zinc concentration, respectively.

Discussion
There is much support for the role of GABA in the 
etiology of autism. Alterations in levels of GABA 
and GABA receptors in autistic patients indicate that 

*The Pfeiffer Treatment Center is a comprehensive treatment and research  
center, specializing in the care of with neurological disorders, including autism.
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Figure 1. Plasma copper concentration was significantly higher in autistic individuals compared to controls.
note: P = 0.003.
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the GABAergic system, which is responsible for syn-
aptic inhibition in the adult brain, may be involved 
in autism.47–49

Zinc has been found to be associated with GABA 
and glutamate regulation, particularly through anxi-
olytic activity, modulating GABAergic inhibition and 
seizure susceptibility.50–52 Zinc deficiency has also been 
found to be associated with GABAergic impairment.53

Copper, on the other hand, has been found to be 
a potent inhibitor of GABA-evoked responses, par-
ticularly in Purkinje cells. Copper toxicity, notably in 
Wilson’s disease, could result, to some extent, from 
chronic GABAA receptor blockade.54 Data strongly 
suggest that Cu and Zn might interact with each other 
with GABAA receptor complex and participate in 
modulation of synaptic transmission.55

Dopamine-β-hydroxylase (DBH) is a neurotrans-
mitter, synthesizing enzyme, which catalyzes the 

formation of norepinephrine from dopamine. Copper 
is a co-factor required for this enzyme’s activity.57,58 
Increased norepinephrine levels have been found in 
autistic individuals,56 which, at least in part, could 
be explained by excess copper.

Our lab has also found that Cu/Zn SOD is decreased 
in autistic children, as well as in individuals with 
ADHD,61,62 and that in ADHD, lower Cu/Zn SOD is 
associated with increased copper.62 This suggests that 
increased copper in autism may also be associated 
with increased oxidative stress.

Our study shows that autistic individuals have 
lower levels of zinc and significantly higher levels of 
copper when compared to neurotypical controls, and 
copper/zinc correlates with selected symptom sever-
ity in autistic children.

It is tempting to suggest that plasma copper con-
centration and/or copper/zinc could be used as a  
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Figure 2. Severity of hyperactivity correlated significantly with Cu/Zn [r = 0.3, n = 79, P = 0.01] in autistic individuals.
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biomarker for diagnosis of autism, but copper and 
zinc levels are altered in many other disease states 
and nutritional deficiencies.

We suggest that low zinc and high copper may 
modulate GABA receptors, ultimately changing 
transmitter concentration. High copper may also be 
associated with high norepinephrine found in autistic 
children, and high epinephrine may, in turn, manifest 
as excitability and hyperactivity associated autistic 
symptoms. To evaluate this relationship, future stud-
ies will assess more patients with autism and evaluate 
GABA and norepinephrine levels, as they are associ-
ated with Cu and Zn levels.
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Figure 3. Severity of hyperactivity correlated significantly with decreased Zn [r = −0.3, n = 79, P = 0.02] in autistic individuals.
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