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Abstract: This paper analyzes the survival of breast cancer patients, exploring the role of a metastasis variable in combination with 
clinical and gene expression variables. We use the hypertabastic model in a detailed analysis of 295 breast cancer patients from the 
Netherlands Cancer Institute given in.1 In comparison to Cox regression the increase in accuracy is complemented by the ability to 
analyze the time course of the disease progression using the explicitly described hazard and survival curves. We also demonstrate the 
ability to compute deciles for survival and probability of survival to a given time. Our primary concern in this article is the introduction 
of a variable representing the existence of metastasis and the effects on the other clinical and gene expression variables. In addition to 
making a quantitative assessment of the impact of metastasis on the prospects for survival, we are able to look at its interactions with 
the other prognostic variables. The estrogen receptor status increase in importance, while the significance of the gene expression vari-
ables used in the combined model diminishes. When considering only the subgroup of patients who experienced metastasis, the covari-
ates in the model are only the clinical variables for estrogen receptor status and tumor grade.
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Introduction
The search for biomarkers or gene expression vari-
ables to improve the accuracy in prognosis is moti-
vated by the difficulty in predicting patient outcome. 
Breast cancer patients with a similar clinical profile 
can experience drastic differences in the course of the 
disease and in outcome. Doctors are intrigued by the 
potential for increased accuracy in prognosis through 
gene expression variables, and researchers expect 
these tools to reveal aspects of the underlying biology. 
Breast cancer is understood to be a highly heteroge-
neous pathology, with the differing courses of the dis-
ease arising from the multiplicity of molecular 
subtypes of the tumors and the distinct genetic pro-
files. Gene expression profiling has already shown 
progress in the classification in molecular subtype 
given in,2–4 although some of these subtypes were 
known independently. Note there is a corresponding 
classification in terms of clinical variables, namely 
the hormone receptor status of the tumor (estrogen 
and progesterone) and whether or not the tumor is 
over-expressing in ErbB2/Her2/neu.2

In the last decade there has been an intensive study 
of many aspects of breast cancer biology through use 
of microarrays to understand variations in gene 
expression. In many cases these have been used as 
biomarkers to assist in prediction of overall survival5 
or response to therapies or specific drugs.6 Gene 
expression has furthermore been used in classifica-
tion of tumors into molecular subtype.2–4 In addition 
gene expression has been used to better understand 
the cancer biology in relation to the clinical variables.7 
These gene expression variables have shown a high 
degree of prognostic power, and they are currently 
being developed for clinical use.8 In this paper we are 
concerned primarily with the seventy gene signature 
of,9 the wound response gene expression variables 
of,10,11 and the molecular subtype correlations of.3,4

Metastasis in cancers forms the most fundamental 
challenge to the survival of cancer patients, particu-
larly in cases such as breast cancer where no vital 
physiological functions are disturbed by the breast 
tumors. The seventy gene signature was formed based 
on gene expression in relation to distant early metas-
tasis and has been shown to be a strong predictor of 
good or poor outcome. A number of other prognostic 
gene signatures have been produced, and Yu et  al12 
made a comparative analysis determining all are 

effective and share a significant percentage of 
pathways. Ramaswamy et  al13 applied gene expres-
sion to understand the difference between metastases 
and primary tumors and discovered a seventy gene 
signature associated with metastasis. Based on simi-
lar profiles found among primary tumors, these 
researchers proposed that metastatic potential is 
encoded in the primary tumor. Other researchers have 
similarly challenged the widely held model that 
metastasis arises from rare subpopulations of cells 
containing heightened levels of genetic alteration.14 
Another research group15 developed a common meta-
static signature, using gene expression datasets across 
several types of cancer in order to identify gene 
expression representative of metastatic risk. Their 
goals of elucidating metastatic pathways, providing 
strong predictors for metastasis, and uncovering fur-
ther avenues of study in the biology of cancer and 
metastasis are shared by many researchers in this 
area. Our own motivation to better understand the 
relation of metastasis to the other clinical and gene 
expression variables is also closely allied.

The development of breast cancer is directly linked 
to the role of estrogen in controlling cell proliferation 
and differentiation, which signals the cell through the 
estrogen receptors. The action of the estrogen recep-
tors is highly complex, including ligand activation 
and having the potential for cross-talk with other sig-
naling pathways.16 Among breast cancer cells, some 
maintain estrogen receptors and responsiveness to 
these signals, while others, which are termed estrogen 
receptor negative, no longer receive these messages. 
The ER negative tumors are thought to either arise 
from mutation in the ER positive tumors or to origi-
nate from a different type of epithelial cell in the 
mammary gland. ER status is an important prognostic 
variable, with ER negative tumors showing more 
invasiveness and higher resistance to treatment. It is 
known that the small percentage of breast tumors of 
the most aggressive category, sometimes called inva-
sive breast cancer (IBC) fall into the category of ER 
and PgR negative, but Her2 positive. Desmedt et al 
demonstrated17 that in the case of ER positive/Her2 
negative tumors proliferation is the main factor deter-
mining survival, while in the ER negative subclass it 
is immune response and tumor invasion. Gruvberger 
et al used gene expression to explore the differences 
in the underlying biology between the ER positive 
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and ER negative tumors,18 finding that remarkably 
different gene expression phenotypes going well 
beyond responsiveness to estrogen. The study of 
Yu et  al among the many prognostic signatures for 
metastasis13 also revealed that the underlying biology 
leading to invasiveness and metastasis is very differ-
ent in the ER positive and ER negative cases.

The current paper analyzes the survival of breast 
cancer patients from a data set given in,1 with atten-
tion to the role of metastasis as a variable and its 
interactions with the other clinical and gene expres-
sion variables. From this investigation we learn more 
about the relation of the gene expression variables, in 
particular the seventy-gene signature of  9 and the CSR 
correlation of 10,11 to the metastasis of breast cancer. 
The clinical variable of estrogen receptor (ER) status 
also figures prominently into the model, forming 
interesting interactions with both the gene expression 
variables and the metastasis variable. In quantifying 
the influence of metastasis on hazard and survival in 
this model, we also quantify aspects of its relations to 
and interactions with other variables. For purposes of 
comparison, we include the model based on the same 
sets of covariates but without the inclusion of 
metastasis. In addition we formulate another model 
considering only the patients whose tumors had 
become metastatic during the course of the study. 
This model further emphasizes the importance of ER 
status in metastatic cancers, and in this case the clini-
cal variables completely eclipse the gene expression 
variables. The conclusions we reach regarding the 
relationship of metastasis with these gene expression 
and clinical variables lead us to interesting issues in 
the underlying biology.

Methods and Models
Here we present the proportional hazard form of the 
hypertabastic model, which will be used to analyze the 
survival time of the breast cancer patients. The hyper-
tabastic distribution function is defined as follows
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The hypertabastic proportional hazard model has a 
hazard function of the form

h t x h t g x( | , ) ( ) ( | )θ θ= 0 � (2)

where h0(t) is the baseline hazard function, given by

h t t csch t t coth t tanh W t0
2 1 2 1( ) ( ) ( ) ( ) .= -  [ ]- -α β β β β

For this paper we will use g x Exp xk
p

k k( | ) .θ θ= ∑ =1  
The hypertabastic survival function

S(t | x, θ) for the proportional hazards model has 
the form

S t x S t g x( | , ) ( ) ( | )θ θ= [ ]0 � (3)

where S0(t) is the baseline survival function, given 
by

S t sech t coth t0 1( ) ( ) / .= - { }α ββ β

See19,20 for other cases such as the accelerated fail-
ure survival model. We also note that this model dis-
plays robustness with respect to departure from 
distribution, as demonstrated in.19–21 Furthermore, the 
results of this paper demonstrate this model works 
effectively with this breast cancer survival data. This 
model is compared with other parametric survival 
models such as Weibull and log-logistic, displaying a 
lower AIC than these other models. The Akaike Infor-
mation Criterion (AIC) is a useful statistical mea-
sure22 for comparing different models.

This model is applied to the 295 patient study from 
the Netherlands Cancer Institute which is presented 
in1 as a validation set for the seventy gene signature. 
All of these patients had stage I or II breast cancer but 
had no previous history of cancer, save non-melanoma 
skin cancer. The study combined both lymph node 
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positive and lymph node negative patients. All of 
these patients had been treated by modified radical 
mastectomy or breast-conserving surgery. Of the 
patients with lymph node positive disease, 120 were 
treated with adjuvant chemotherapy and/or hormonal 
therapy. For more information regarding this study, 
please see.1

Here we discuss further the different variables that 
were included as potential covariates in the model. 
The first class of variables was the clinical variables, 
including the following: estrogen receptor (ER) status 
(O1), tumor grade (O2 and O3), age (O4), diameter 
(O6), and lymph node status (O11 and O12). The pri-
mary gene expression variable we tested was the sev-
enty gene signature (O7) of  9 which selected genes for 
prediction of early distant metastasis. In addition we 
used two wound response gene signature of Chang 
et al,10,11 the wound response signature (O5) and the 
core serum response (CSR) correlation (O9). Finally, 
in the area of gene expression for classification of 
molecular subtype, we considered correlation used for 
validation in1 (OC1), and with centroids for normal 
(OC2), ErbB2+ (OC3), Lumina A (OC4), Lumina B 
(OC5), and Basal (OC6) from.4 However, these clas-
sification variables were only included at the last step, 
after the clinical and other gene expression variables 
were selected. At that point only the classification 
variables whose correlations to the variables already 
selected are low enough were considered. Our most 
important variable, metastasis (O13), is not measur-
able at the outset of the study, but rather over the entire 
course of the study. This variable represents whether 
or not the tumor metastasizes over the course of the 
study. We are most interested to measure its quantita-
tive effect on survival and to investigate its relations 
with and effects on the other variables.

In implementation of the hypertabastic survival 
model to this set of data, we considered the clinical, 
gene expression, and classification variables described 
above. We applied a standard forward selection of 
variables procedure. In addition, since some of the 
variables are highly correlated, we used a procedure 
that would ensure no two of the variables considered 
would have a pairwise correlation of 0.5 or higher. 
The parameters were estimated using a SAS program, 
and these results were checked against the results 
using Mathematica. The SAS programs can be found 
in the Appendix.

Once the parameters had been estimated, these 
values were used in the survival function (3) and 
hazard function (2). Then Mathematica was utilized 
to sketch graphs of the hazard and survival functions 
for the desired cases. Further analysis of the time 
course of these curves and of their derivatives was 
also made using Mathematica.

Use of the hypertabastic model for survival analysis 
provides additional tools and methods beyond those 
available through Cox regression. Beyond the increased 
accuracy provided by the hypertabastic model, it is 
also possible to give explicit functions describing the 
time course of both hazard (2) and survival (3). The 
explicit survival functions can be used to compute 
probabilities of survival to a given time for a patient 
with any profile from the relevant covariates.

Results
In order to help describe and quantify the role of 
metastasis in determining survival, as compared to 
other covariates, we begin with a comparison of 
models. The primary model includes metastasis as a 
covariate, together with all potential covariates 
described above. This model is compared with the 
model with metastasis removed. These models will 
be compared on the basis of standard statistical mea-
sures of accuracy, such as Log Likelihood and Akaike 
Information Criterion (AIC). We are also concerned 
with the relationships between metastasis and the 
other variables. We begin with a measurement of the 
significance (P-value) and hazard ratio of each vari-
able, when considered individually, as presented in 
Table 1. It is then possible to assess the impact of the 
inclusion of metastasis on each individual variable.

For the overall model we make a comparison of 
the hypertabastic model with several other parametric 
models, including Weibull and log-logistic. In Table 2, 
we give -2 Log Likelihood and AIC for each of these 
models. In order to see the role of the covariates, we 
also include -2  Log Likelihood without covariates 
included, as a baseline for each model. Hypertabastic 
is the most accurate of these models, although we see 
that Weibull also fits the data well. The values for Cox 
regression are also included in this table. When com-
paring with the model without metastasis, the hyper-
tabastic also has the least error, and we give the AIC 
for this case as 399.755, as compared to 245.758 
when metastasis is included. Although the value of 
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399.755 is significantly lower than the baseline, the 
inclusion of metastasis achieves another level of 
accuracy. Although this is not unexpected due to the 
nature of the metastasis variable, it does give a quan-
titative measurement of the significance of this vari-
able for survival.

In models with multiple covariates, the P-values 
tend to decrease, and the hazard ratios also tend to 
diminish (move closer to 1), as compared to when 
each variable is considered alone. In effect, such com-
bined models assess relative importance of each cova-
riate in determining hazard and survival. This is 
observed for both the primary model with metastasis 
included, and for the model with metastasis removed. 
In Table 3 we present the parameter estimates, together 
with the corresponding P-values and hazard ratios, 
for the primary model. Here the variables included 
are ER status (O1), seventy-gene signature (O7), CSR 

correlation (O9), and metastasis (O13). Although 
there is some overlap, the model without metastasis 
has a different set of covariates. The gene expression 
variables O7 and O9 are common to both models, 
however the model without metastasis also includes 
correlation to the ErbB2+ centroid (OC3) and the 
variable Age (O4). The hazard ratios for these vari-
ables O4, O7, O9, and OC3 are 0.929139, 3.316102, 
14.305299, and 4.765631, respectively. The P-values 
are 6.89083 E-7, 0.001962, 0.00015235, and 0.0320818, 
respectively. Note that the ER status (O1) is not 
included in the overall model without metastasis, 
although it does have considerable significance when 
considered individually. This change is the most dra-
matic difference between the two models. Also note-
worthy are the dramatic differences in the significance 
of the gene expression variables O7 and O9. We 
treat these issues further in the Discussion section, 
below. We note that the model without metastasis is 
also very interesting, one reason being its inclusion 
of three separate gene expression variables in its 
assessment of hazard and survival. We will treat this 
model in a separate paper, in which we analyze the 
role of each of these variables, and their relative 
importance in directing the time course of hazard 
and survival.

The other dramatic difference that can be observed 
from the above data is the difference, both qualita-
tively and quantitatively, of the metastasis variable 

Table 1. Significance and hazard ratio for each individual variable considered for model.

Estimate Hazard ratio P-value
ER status (O1) -1.24777 0.287144 3.11543 E-8
Tumor gd (O2) -0.297602 0.742597 0.223373 (non)
Tumor gd (O3) -2.00736 0.134343 0.0000917189
Age (O4) -0.0645618 0.937478 1.35288 E-6
Wd sig (O5) 1.45126 4.268489 5.26645 E-9
Diameter (O6) 0.0319241 1.032439 0.00530591
70 gene (O7) 2.14478 8.540162 6.0268 E-8
CSR (O9) 3.81748 45.48943 1.46213 E-9
Lymph N (O10) -0.506088 0.602849 0.0469193
Lymph N (O11) 0.5484777 1.730615 0.0555159 (non)
Validat cor (OC1) -2.24571 0.1058524 4.16234 E-13
Norm cor (OC2) -2.45842 0.0855700 0.0120697
ErbB2 cor (OC3) 3.40243 30.037001 2.99027 E-7
Lumina A cor (OC4) -2.59141 0.0749143 0.0000951379
Lumina B cor (OC5) 4.59724 99.210118 5.75811 E-7
Basal cor (OC6) 2.46997 11.822092 2.13206 E-9
Metastasis (O13) 3.94836 51.850018 1.56643 E-17

Table 2. Comparison of models.

-2 Log 
likelihood

AIC -2 Log  
likelihood  
without  
covariates

Hypertabastic 233.7577462 245.7577462 467.952
Weibull 237.9654446 249.9654446 474.089
Log logistic 484.002 496.002 544.93
Cox  
Regression

612.580 620.580 836.598
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from the other covariates. Both the significance and 
impact of the metastasis will be practically unaffected 
by the inclusion of other covariates, marking a dra-
matic difference with the other variables. Also, if we 
look closely at the data, we observe a curious rela-
tionship between ER status and metastasis as covari-
ates. These covariates have a synergistic relationship 
in which both variables increase in both significance 
and impact when considered together. In Table 4 we 
investigate the role of metastasis on each individual 
variable considered for the model and how its inclu-
sion changes hazard ratios and P-values, as com-
pared to the values of each variable considered 
alone, as given in Table  1. Note, in particular the 
dramatic increase in the P-value of ER status, 
increasing by a factor of 73.731, whereas most other 
significant variables have a decrease in significance. 
The Discussion will treat the relation of metastasis 
with other variables, and in particular ER status, in 
greater detail.

From the above results we note the essential 
difference between the interaction of ER status with 
metastasis, as compared to the interaction of all the 
other variables. ER status (O1) was among the select 
group of molecular subtype variables, which were the 
only significant variables to increase in significance 
(lower P-value) with inclusion of metastasis. This 
increase by a factor of approximately seventy-four is 
highly significant. The other variables which increase 
are the correlations to the ErbB2+, Lumina A, and 
Basal centroids, used for classification into molecular 
subtype. Recall ER status can also be used in deter-
mining molecular subtype, as described above and 
in,2,17,18 thus these variables are closely allied. Note 
also that these variables are highly correlated to ER 
status (O1) so that they could not be used together in 
the model. The ER status variable was used in the 
model because it is the most significant. All the other 
significant variables decrease in significance, from 
one in three to approximately one in two hundred  

Table 3. Parameter estimates for survival model including the metastasis variable.

Parameter Estimate Standard dev. Wald P-value Hazard ratio
a (model) 0.0507995 0.0159258 10.1746 0.00142391 NA
b (model) 0.572736 0.0677112 71.5464 2.7081 E-17 NA
c (O1) -1.06669 0.248749 18.3887 0.0000180127 0.3441458
d (O7) 0.92956 0.430009 4.67305 0.0306395 2.5333942
e (O9) 1.82204 0.844279 4.6574 0.03092 6.1844619
f (O13) 3.91548 0.468247 69.9229 6.16698 E-17 50.1731488

Table 4. Effects of inclusion of metastasis on other variables.

Hazard ratio Relative  
factor (HR)

P-value Relative factor 
(p-value)

ER status (O1) 0.229638 1.25042 4.2239 E-10 73.73086
Tumor gd (O2) 0.661178 1.12314 0.09151 (non) 2.44101
Tumor gd (O3) 0.213329 0.629745 2.6872 E-3 0.3413
Age (O4) 0.975854 0.960675 0.288582 (non) 4.6880 E-6
Wd sig (O5) 3.797337 0.889621 1.9037 E-7 0.027640
Diameter (O6) 1.012337 0.980530 0.31527 (non) 0.016830
70 gene (O7) 4.699095 0.550235 1.0849 E-4 5.5551 E-4
CSR (O9) 40.31244 0.886193 3.0931 E-6 4.7271 E-4
Lymph N (O10) 1.117384 1.85350 0.33480 (non) 0.131182
Lymph N (O11) 0.669444 0.386824 0.16608 (non) 0.334266
Valid cor (OC1) 0.113698 0.881487 3.6131 E-9 1.15201 E-4
Norm cor (OC2) 0.514988 0.979302 0.47136 (non) 0.025606
ErbB2 cor (OC3) 40.328866 1.04460 1.17581 E-7 2.5432
Lum A cor (OC4) 0.0742981 0.995005 4.34725 E-7 218.8462
Lum B cor (OC5) 80.627018 0.961582 2.31512 E-5 0.024872
Basal cor (OC6) 15.621088 1.05130 3.57083 E-10 5.97077
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thousand. The gene expression variables O7 and O9 
decrease in significance by a factor of approximately 
one in two thousand. Furthermore ER status is one of 
the few significant variables for which the hazard is 
magnified rather than diminished. The hazard ratio is 
magnified by a factor of 1.2504 for ER status, and 
metastasis also experiences a similar magnification in 
significance, by a factor of 5.595 when included with 
ER status (O1). This symbiotic relationship between 
the ER status and metastasis variables indicates a 
strong relationship between these variables with a 
significant impact on survival. We note that there is a 
similar relationship for these other variables (OC3, 
OC5, and OC6), all of which are variables for correla-
tion with molecular subtype of the cancer, thus with a 
certain similarity with ER status. Something very 
interesting is happening in the relation between the 
ER status variable and the variable for metastasis, and 
it appears to relate to the differences in invasiveness 
and response to treatment for cancers of different 
molecular subtype.

For our next result we present the survival model 
yielded by restricting our attention to only the 

Table 6. Parameter values for survival model for the set of patients with metastatic tumors.

Parameter Estimate Hazard ratio P-value
ER status (O1) -1.30139 0.272153 4.4149 E-8
Tumor gd (O2) -0.542613 0.581228 0.034662
Tumor gd (O3) -1.39511 0.247806 0.0066607
Age (O4) -0.0262955 0.97405 0.083203 (non)
Wound sig (O5) 1.17835 3.24901 1.14982 E-5
Diameter (O6) 0.008058 1.008058 0.484703 (non)
70 gene (O7) 1.23345 3.43305 0.0017307
CSR cor (O9) 3.09631 22.05656 1.82865 E-4
Lymph N (O10) 0.146498 1.157726 0.423981 (non)
Lymph N (O11) -0.341476 0.710721 0.235619 (non)
Valid cor (OC1) -1.88600 0.15168 7.07901 E-7
Norm cor (OC2) -0.660625 0.516528 0.486901 (non)
ErbB2 cor (OC3) 3.4702 32.14317 9.80925 E-7
Lum A cor (OC4) -2.20300 0.11047 2.54331 E-5
Lum B cor (OC5) 4.11036 60.96866 1.45484 E-4
Basal cor (OC6) 2.39201 10.93545 1.67592 E-7

Table 5. Parameter values for survival model for the set of patients with metastatic tumors.

Parameter Estimate Standard dev. Wald P-value Hazard ratio
a (model) 0.697492 0.0952224 53.6538 2.39122 E-13 NA
b (model) 0.809594 0.109638 54.5275 1.53284 E-13 NA
c (O1) -1.15179 0.242383 22.5811 2.0146 E-6 0.316070
d (O3) -1.04272 0.524916 3.94602 0.0469825 0.352495

metastatic group of patients. This model extends the 
trends observed above, where the gene expression 
variables decline in significance. In fact, in this model 
the ER status has completely eclipsed the gene expres-
sion variables, and the model is based solely on clini-
cal variables, in particular ER status and tumor grade. 
The information in Table 5 gives the parameter esti-
mates for this model, as well as the hazard ratios and 
P-values for all the covariates. See Table 6, particu-
larly in comparison to the values in Tables 1 and 4 of 
the models described above, to see the changes in 
P-value and hazard for each potential covariate. Note 
that while the seventy-gene signature and wound 
healing based gene expression variables decline 
enough in significance so their P-values are on the 
level of standard clinical variables in the original 
model, the other set of gene expression variables 
based on correlation to molecular subtype have not 
declined as much, and the ErbB2+ correlation has 
increased slightly.

The main themes we have observed in this section 
are the dominant significance of metastasis on predic-
tion of survival and the corresponding effects on both 
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clinical and gene expression variables. These themes 
will be continued below in the Discussion. In particu-
lar we work out the time course of the progression of 
hazard and decline in survival, and the influence of 
the covariates, especially metastasis. In addition we 
explore the surprising synergistic interaction between 
ER status and metastasis.

Discussion
We begin with discussion of the importance of metas-
tasis as a variable in determination of the outcome in 
the survival analysis. The magnitude of the impact of 
metastasis is clearly visible in the following graphs in 
Figures  1 through 5  in this section. We begin with 
Figure 1 comparing the baseline survival and hazard 
graphs with the curves representing presence and 
absence of metastasis. Table 7 contains the location 
of the relative extrema for these curves.

As discussed above, metastasis maintains both 
its significance and its impact even when combined 
with other variables. In contrast, the gene expres-
sion variables lose a significant amount of their 
impact on hazard and survival when combined with 
metastasis, as we will be able to observe in the fol-
lowing graphs. Furthermore ER status increases in 

both significance and impact on hazard and survival 
when combined with metastasis. This interaction 
between ER status and metastasis may be the 
most significant change when including metastasis 
as a variable. Its P-value changes P-value from 
(3.11543 E-8) to (4.22393 E-10). More significantly, 
this change is enough to put this variable on the 
same level as the gene expression variables and 
including it as a variable in the model. Furthermore 
its coefficient increases in absolute magnitude, 
rather than decreasing as with almost all of 
the other variables, adjusting hazard ratio from 
Exp(-1.24777) to Exp(-1.47125) and yielding a 
larger impact on both the survival and hazard curves. 
In the analysis of the variables given in the current 
model, ER status proves to have a larger impact on 
the hazard and survival functions, as compared to 
the seventy-gene signature, as we illustrate in the 
graphs in Figure  2 below. Also observable is the 
overwhelming impact of the metastasis variable, 
clearly dividing the eight curves into two groups. 
Note also the dramatic difference in the times and 
magnitudes of the maximum rate of decline in sur-
vival between the metastatic and non-metastatic 
groups, as recorded in Table 8.
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Figure 1. Survival and hazard: metastasis versus baseline.
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In Figure 2 we note the larger impact of ER status. 
Beginning with the solid curve representing a good 
prognosis in the seventy gene signature and a 
negative ER status, if we downgrade the seventy 
gene signature to a poor prognosis but change the 
ER status to positive, the net effect is a slight 
improvement in survival percentage, in the 
dot-dashed curve.

Although the CSR correlation has a diminished 
hazard ratio and a much lower P-value in this model, 
its hazard ratio (6.1845) is still large enough to display 
some impact on survival. Note however that these 
graphs vary over a wide range of CSR correlations, 
while the majority of the data varies within a some-
what smaller range, yielding, in the majority of cases, 
a smaller range of impact than demonstrated in the 
above graphs. We observe this impact in the graphs of 
Figure 3, which is much more dramatic in the case of 

metastasis in the graph on the left. The relative extrema 
for the rates of change are given in Table 9.

Note that in Figure  3 and Table  9 compared to 
Figure 2 and Table 8 we can see that ER status (O1) 
and seventy-gene signature (O7) combine to form an 
impact on survival slightly larger than CSR 
correlation (O9), even for wide variations in this 
correlation. This is further evidence of the increase in 
impact of ER status (O1) and decrease of the gene 
expression variables.

We also explore the effect of CSR correlation as a 
continuous variable and its impact on survival to a 
given time. We allow the CSR correlation to vary, 
staying within the range of values observed in the 
data set, and investigate the effects on survival and 
hazard. In Figure 4 we compare the impact of varying 
CSR correlation on survival to 5 years and 10 years, 
respectively. In both cases we observe a significantly 
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Figure 2. Effect of ER status and seventy gene signature; metastasis and nonmetastasis.
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Figure 5. Survival as a function of time and CSR correlation, with and without metastasis.

Table 7. Survival and hazard for baseline versus metastasis.

Time Velocity
Survival
Only O13
 N o metastasis 16.2801 -0.0039489
  Metastasis 3.74268 -0.10653
Baseline
  Baseline 3.93028 -0.0342083
Hazard
Only O13
 N o metastasis 8.82654 0.00462854
  Metastasis 8.82654 0.23999
Baseline
  Baseline 3.19584 0.0446558

larger impact of CSR correlation when the tumor 
metastasizes. The baseline case in the middle 
refers to the model without metastasis as a covariate, 
as described above. The derivatives are also given, 
and their extrema can be found in Table 10 following 
the graphs.

We finally consider survival as a function of both 
time and CSR correlation, and we observe the graphs 
of these survival functions in Figure 5. The two sur-
faces on the graph represent the cases of non-
metastasis and of metastasis, and the metastasis case 
has a dramatically lower survival, as before.

The above graphs have clearly demonstrated the 
predominance of the metastasis variable in determin-
ing survival. Together with inclusion of this 
variable there was a marked decline in both the sig-
nificance of the gene expression variables and in their 

impact on the hazard and survival functions. Although 
the graphical analysis is needed to work out the time 
course of these effects, the impact of metastasis on 
the gene expression variables is clearly visible from 
the change in hazard ratios and P-values. While 
metastasis remains virtually unchanged throughout, 
the seventy gene signature (O7) changes from a 
hazard ratio of 8.5402 and P-value of 6.0268 E-8 
when considered alone to a hazard ratio of 2.5334 and 
P-value of 0.03064 in the combined model including 
metastasis, approaching the marginal level of 
significance. In a combined model without metastasis 
(O7) is clearly more significant, with hazard ratio of 
3.316102 and P-value of 0.001962. The variable CSR 
correlation (O9) experiences a similar effect. Its orig-
inal values are a hazard ratio of 45.4894 and P-value 
of 1.4621 E-9 when considered alone, diminishing to 

Table 8. Effect of ER status and 70 gene signature on 
maximum decline in survival.

(ER, 70 G) Time Velocity
Non-metastasis
(0,0) 26.6832 -0.00502516
(1,0) 38.9237 -0.00190187
(0,1) 17.3061 -0.0111803
(1,1) 28.2562 -0.00444014
Metastasis
(0,0) 4.24742 -0.104741
(1,0) 6.86842 -0.0502634
(0,1) 2.81301 -0.186635
(1,1) 4.51506 -0.0957247
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profile in the covariates of the model. We apply such 
computation of survival probabilities to produce a 
table of survival percentiles below in Table 11. In this 
table we first compare the cases of non-metastasis 
versus metastasis and notice a dramatic difference in 
the percentiles. Then we further refine our patient 
profiles to look at the effects of low CSR versus high 
CSR in order to view the effects of this variable in 
combination with metastasis.

The important relationship between ER status and 
metastasis that we observed above is a new discovery 
worthy of further investigation. Recall a similar rela-
tionship also held between metastasis and certain 
other variables (ErbB2+, Lumina A, and Basal) repre-
senting classification of the cancer into molecular 
subtype. Molecular subtype, as well as ER status, 
relate to both the invasiveness of the tumor and its 
resistance to treatment. As these aspects of the tumor 
biology play an increasingly critical role when the 
tumor metastasizes, we expect the increase in signifi-
cance of these variables relates to the underlying biol-
ogy of metastasis and molecular subtype. We also 
observed a particularly marked decrease in signifi-
cance, on the order of one in two thousand, for the 
other gene expression variables, namely the seventy 
gene signature (O7) and the wound response variables 
(O5, O9). These variables form the basis of the model 
when metastasis is not included as a variable, and we 
conclude their primary impact on survival is through 
inclusion of numerous pathways directly related to 
the biology of metastasis.

These important themes are extended in the rest of 
the study and borne out by the data. The model pro-
duced to describe the survival for the patients with 
metastatic tumors emphasizes this point. In this case 

Table 10. Effect of continuously varying CSR correlation on survival.

Correlation Velocity Correlation Velocity
5 year survival
Effect of variation of CSR correlation
 N on-Metastasis 1.000 -0.099776 Max -0.0383593
  Metastasis 0.413446 -0.670291 0.413446 -0.670291
  Baseline 1.000 -0.579392 Max -0.25832
10 year survival
Effect of variation of CSR correlation
 N on-metastasis 1.000 -0.275518 Max -0.114466
  Metastasis -0.211656 -0.670291 -0.211656 -0.670291
  Baseline 1.000 -0.744994 Max -0.505593

Table 9. Maximum decline in survival at several levels of 
CSR correlation.

CSR level Time Velocity
Non-metastasis
Min 37.7491 -0.00268891
Median Quiesc 31.2312 -0.00353932
Median Active 25.3324 -0.00558631
Max 18.0805 -0.0103741
Metastasis
Min 5.79509 -0.0655707
Median Quiesc 5.05993 -0.0807048
Median Active 4.02641 -0.113217
Max 2.92622 -0.176982

a hazard ratio of 6.1845 and P-value of 0.03092 when 
included in the combined model with metastasis. 
Again the variable recovers some significance in a 
combined model without significance, with a hazard 
ratio of 14.305299 and P-value of 0.00015235. Our 
forthcoming paper explores the relative importance 
of these gene expression variables in the absence of 
the metastasis variable and the time course of their 
effects on hazard and survival. However, it is clear 
from the above that these gene expression variables 
are entirely unlike the metastasis variable which 
maintains both its hazard ratio and P-value with inclu-
sion of any other variables.

The explicit survival and hazard functions deter-
mined from the hypertabastic model allowed the 
above analysis of the time course of both of these 
functions and their graphical representation. This is a 
large improvement over semi-parametric models, 
such as Cox regression. Furthermore the explicit sur-
vival functions allows for explicit computation of 
survival to any given time for a patient with any given 
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the model is strictly based on clinical variables, and 
the ER status has become the most important variable. 
Many of the other variables are still significant when 
considered individually, and we present the hazard 
ratio and P-value for each in Table 6. This informa-
tion can be used to identify the significant covariates 
in determining survival for a metastatic tumor. 
Furthermore, comparison with Tables 1 and 4 above 
can be used to observe the effect of metastasis on the 

given variable. We observe again how ER status 
increases in significance, while the gene expression 
variables decrease considerably in significance. This 
tells us that a significant part of the power of these 
gene expression variables lies in assessing whether 
or not the cancer will metastasize. Note also that 
while the gene expression variables relating to clas-
sification into molecular subtype (OC2 to OC6) do 
decrease somewhat, they still maintain a higher level 
of significance. Although molecular subtype has con-
siderable importance in determining survival for a 
metastatic tumor, the model tells us that ER status is 
more significant. It is likely a more effective means 
of measuring a number of overlapping properties in 
the tumor biology. Note however that the overall 
model has only two clinical variables: ER status (O1) 
and tumor grade (O3).

Furthermore in Figure 6 we show a graph of the sur-
vival function for each of the four cases: ER status posi-
tive or negative and tumor grade of poorly differentiated 
or not poorly differentiated. Apparently, if either of the 
higher risk categories, poorly differentiated or ER nega-
tive, is in evidence, then survival is low, with a six year 
survival rate in the neighborhood to fifty percent. 
Furthermore, if both risk factors are present, even sur-
vival to three years is near fifty percent. However if nei-
ther of these risk factors are present, then survival rates 
are considerably heightened, though still not nearly as 
good as the non-metastatic cases.

Table 11. Survival percentiles.

Low CSR High CSR
Non-metastasis
0.91 22.8473 31.2267 16.3222
0.92 20.8434 28.3621 14.9627
0.93 18.8235 25.488 13.586
0.94 16.7786 22.5928 12.1851
0.95 14.6959 19.6604 10.7498
0.96 12.5561 16.6667 9.2645
0.97 10.3268 13.5721 7.70237
0.98 7.94331 10.2995 6.00979
0.99 5.23221 6.64427 4.04243
Metastasis
0.1 13.6039 18.13 9.99332
0.2 10.6844 14.00667 7.95417
0.3 8.85251 11.5427 6.65872
0.4 7.46187 9.64425 5.66425
0.5 6.30197 8.0757 4.82545
0.6 5.27127 6.69626 4.07122
0.7 4.30415 5.41715 3.35422
0.8 3.3385 4.1582 2.62728
0.9 2.26843 2.78913 1.80685

Dotting: ER negative

Dashing: poorly differ
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Figure 6. Survival for metastatic patients: variables of ER status and tumor grade.
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It is interesting that when considering only the 
metastatic patients, the model reduces to only clinical 
variables. Although the gene expression variables 
still have some significance if considered individu-
ally, their effects have now been masked by the ER 
status. This presents more evidence that the gene 
expression signatures (O5, O7, and O9) have their 
largest impact on survival through prediction of 
whether or not the tumor will metastasize. For this 
population of patients with metastatic tumors the 
standard clinical variables of ER status and tumor 
grade are shown in this model to be most significant 
in predicting survival. This also further highlights the 
interesting relation between the ER status and exis-
tence of metastasis in the tumor. The underlying biol-
ogy of both metastasis and the role of ER status in 
breast cancers are still being considered, and we 
believe future researchers may find some interesting 
relations between these two.

Conclusions
It is highly significant that in our quest to understand 
metastasis and to find a good model for prognosis of 
survival we have come full circle to a model with 
only clinical variables as covariates, in particular ER 
status (O1) and tumor grade (O3). Note these both 
relate to tumor subtype and the related issue of inva-
siveness. Although the gene expression signatures are 
still significant individually, they have been surpassed 
by ER status and do not appear in the final model. 
For this group of patients with metastatic tumors, the 
ability of the gene signatures to identify metastasis no 
longer plays a role, and the issue of survival is now 
more closely tied to other issues, such as the degree 
of invasiveness and how well the primary tumor and 
metastases respond to therapy.

Note, however, that the combined model with 
metastasis included as a covariate occupies an inter-
mediate position. It is somewhere between the above 
model for metastatic patients in which all covariates 
are clinical variables and the model without metasta-
sis as a covariate, which is dominated by three gene 
expression signatures. In the combined model the 
gene expression signatures retain a certain amount of 
their significance. Nevertheless the ER status has 
surpassed them in significance through its interaction 
with the metastasis variable. Of these two gene 
expression variables, the seventy gene signature (O7) 

and the CSR correlation (O9), their differential 
response to the inclusion of metastasis also has inter-
esting implications for their predictive capacities 
regarding survival for patients with metastatic tumors. 
As CSR correlation (O9) maintains a significant 
hazard ratio in the presence of the variable for metas-
tasis (O13), we project that this core serum response 
signature includes some genes related to progression 
of the metastasis and invasiveness, beyond simply 
the potential for the tumor to metastasize. We also 
see in the graphs of Figures 3 and 4 that CSR still has 
some role beyond metastasis variable it still has sig-
nificance in determining survival. We note, however, 
that in the combined model with the metastasis vari-
able, both O7 and O9 had comparable P-values, 
(0.0306395) and (0.03092), respectively, and that ER 
status much greater significance, with a P-value of 
(0.0000180127).

In addition to a quantitative measurement of metas-
tasis as a variable in the survival model, we also notice 
its strong influence on the other variables in the model. 
Although the metastasis variable is essentially 
unchanged, its influence on the other clinical and gene 
expression variables is strong. As observed above, the 
gene expression variables decrease in significance, 
and we have used this quantitative information to 
explore the extent to which these signatures measure 
other relevant information beyond the potential of the 
tumor to undergo metastasis. Perhaps the most inter-
esting discovery was the increase in significance for 
the clinical variable ER status (O1). All of these points 
raise important and intriguing issues in the underly-
ing biology, both in relation to the gene expression 
signatures and metastasis of the cancer and also in 
relations between the ER status and metastasis. These 
biological relations are partially understood, but there 
remains more to be discovered.

There also remain a number of important points to 
investigate in survival modeling of breast cancer 
patients. Using these same variables, it would be use-
ful to model both time to metastasis and time of sur-
vival beyond metastasis. Furthermore it would be 
good to consider using different sets of parameters, 
or even variables corresponding to different subtypes 
of tumors that are known to exhibit distinct behav-
iors, for instance grouping into ER positive and ER 
negative, or grouping according to the molecular 
subtypes of.4,5
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In the model of metastasis cases the clinical 
variables surpass the importance of the gene expres-
sion variables. This model points to the importance of 
these variables, as compared to gene expression 
variables for prediction in cases when metastasis is 
known to have occurred. In a future work we hope to 
explore further this direction of study, forming a best 
model for the metastasis cases and possibly compar-
ing the behavior across different cancer types. Note 
that it would also be useful to develop an independent 
gene expression variable that predicts outcome across 
the cases of metastatic tumors.
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Appendix
Model, SAS Program
Program for Hypertabastic Proportional Hazard Model, using Log time
Covariates included: ER Status, 70 Gene Signature, CSR Correlation, 
Metastasis

data cancer;
infile ‘C:\Documents and Settings\TENS\My Documents\Survival\Breast-cancer\
Breastcancer_Data_1.csv’ Delimiter=‘,’ DSD Missover;
input id status2 status time timerecu time2 diameter T1_T2o $ lymph PN_3o $
maste $ ERo $ gradeo $ age chemo $

hormon $ stgal $ Nih $ geneo $ WS_all $ Sorlie $ WS3 $ CSR Nihrisk $ 
Erbb;

data cancer; set cancer;
/*proc print; 295 obs;*/
title1 ‘Hypertabastic proportiional hazard model-Log time’; /*fit model 2*/
data cancer; set cancer;
if WS_all=‘Activate’ then WS_orig=1;
if ws_all=‘Quiescen’ then WS_orig=2;
if T1_T2o=‘<=2cm’ then T1_T2=1;
if T1_T2o=‘>2cm’ then T1_T2=2;
IF ERo=‘Positive’ then ER=1;
IF ERo=‘Negative’ then ER=2;
if gradeo=‘Poorly d’ then grade=3;
if gradeo=‘Intermed’ then grade=2;
if gradeo=‘Well dif’ then grade=1;
if geneo=‘Poor’ then gene=1;
if geneo=‘Good’ then gene=2;
if PN_3o=‘pN0’ then PN_3=1;
if PN_3o=‘>=4’ then PN_3=3;
IF PN_3o=‘1–3’ then PN_3=2;
drop T1_T2o ERo geneo gradeo PN_3o;
data cancer; set cancer;
if ws_orig=1 then WS1=1; ELSE WS1=0;
if status2=1 then metas=1; else metas=0;
if gene=1 then gene7=1; else gene7=0;
if ER=1 then ER1=1; ELSE ER1=0;
IF GRADE=1 THEN GRADE3=1; ELSE GRADE3=0;
IF GRADE=2 THEN GRADE2=1; ELSE GRADE2=0;
IF PN_3=2 THEN LYM2=1; ELSE LYM2=0;
IF PN_3=3 THEN LYM3=1; ELSE LYM3=0;
title1 ‘Hypertabastic proportiional hazard model-Log time’;
Proc nlp data=cancer tech=quanew cov=2 vardef=n pcov phes maxiter=250;
max logf;
parms a=0.01, b=0.1, c=0.01, f=0.1, i=0.1, k=0.1;
bounds a>0, b>0;
y=status;
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in1=time**b;
in2=tanh(in1);
in3=a-a*(in1)/in2;
in4=in3/b;
in5=tanh(in4);
in6=exp(c*metas+f*ER1+i*gene7+k*CSR); /*covariates*/
/*likelihood equation*/
s=log(1/cosh(a*(1-in1* 1/tanh(in1))/b)) * in6 + y*log((a*(-1*in1 *
1/tanh(in1)+
time**(2*b)* 1/sinh(in1)**2) * in5) * in6);
logf=s;
*proc phreg data=cancer;
*model time*status (0)=age diameter WS1 ER1 GRADE2 grade3;
*title ‘Cox proportional hazard model’;
*proc gplot;
*plot time*WS1;

*S0T=1/cosh(a1*(1-time**b1*coth )/b1 );
proc lifetest data=cancer plot=(s) method=km/noprint;
time time*status(0);
title1 “KM Survival Curve”;
run;
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