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Abstract
Background: In neonates, the increase in O2-delivery (DO2) by dopamine is offset by a greater increase in O2-consumption (VO2). This 
has been attributed to β3-adrenergic receptors in neonatal brown fat tissue. β3 receptors in the heart have negative inotropic properties. 
We evaluated the effects of SR59230A, a β3-antagonist, on the balance of systemic and myocardial O2-transport in newborn lambs 
treated with dopamine.
Methods: Lambs (2–5 days old, n = 12) were anesthetized and mechanically ventilated. Heart rate (HR) and rectal temperature were 
monitored. VO2 was measured by respiratory mass spectrometry and cardiac output (CO) by a pulmonary artery transonic flowmeter. 
Arterial, jugular bulb venous and coronary sinus blood gases and lactate were measured to calculate DO2, O2 extraction ratio (ERO2), 
myocardial O2 and lactate extraction ratios (mERO2, mERlac). After baseline measurements, lambs were randomized to receive SR59230A 
at 5 mg/kg iv (SRG) or placebo. Both groups received incremental doses of a dopamine infusion (0–5–10–15–20 mcg/kg/min) every 
15 min. Measurements were repeated at the end of each dose.
Results: After SR59230A infusion, CO and HR trended to decrease (P = 0.06), but no significant changes occurred in other parameters. 
Over the incremental doses of dopamine, temperature increased in both groups (P , 0.0001) but to a lesser degree in SRG (P = 0.004). 
CO and HR increased (P  =  0.005 and 0.04) and similarly in both groups (P  .  0.1). DO2 trended to a small increase (P  =  0.08). 
VO2 increased in both groups (P , 0.0001) but to a lesser degree in SRG (P , 0.0001). As a result, ERO2 increased in both groups 
(P , 0.0001), but to a lesser degree in SRG (P , 0.0001). mERO2 was lower in SRG (P = 0.01) with a faster increase (P , 0.0001). 
mERlac was higher in SRG (P = 0.06) with a faster decrease (P = 0.04).
Conclusion: Although SR59230A tends to induce an initial drop in CO, it significantly attenuates the rise in VO2 and hence the imbal-
ance of systemic and myocardial O2 transport induced by dopamine at higher doses. Studies are warranted to examine the effect of 
SR59230A in cases of cardiac dysfunction and increased VO2, observed after cardiac surgery.

Keywords: β3-adrenoreceptors, SR59230A, newborn lambs, oxygen consumption

http://dx.doi.org/10.4137/CMC.S8654
http://www.la-press.com
http://www.la-press.com
http://www.la-press.com
http://www.la-press.com/clinical-medicine-insights-cardiology-journal-j48
mailto:jia.li@albertahealthservices.ca


Gill et al

46	 Clinical Medicine Insights: Cardiology 2012:6

Introduction
Dopamine, a precursor in the endogenous synthesis 
of norepinephrine, is the most commonly used 
medication to provide cardiovascular support in 
critically ill patients with low cardiac output state, via 
the stimulation of β1 and β2 adrenergic receptors.1,2 
Often, these patients have impaired balance of oxygen 
transport and poor tissue perfusion. Therefore, in 
addition to improved cardiovascular state, the major 
goal of therapy in these patients is to improve the 
balance of systemic oxygen transport and tissue 
oxygenation by increasing systemic O2 delivery 
(DO2) relative to changes in systemic O2 consumption 
(VO2). In adult humans and animal experiments, the 
increase in DO2 induced by catecholamines is about 
10-fold of the increase in VO2.

3–5

However, in neonates, in contrast to that observed 
in adults and older children, dopamine worsens 
the balance of systemic oxygen transport by a 
greater increase in VO2 than DO2 as shown after 
cardiopulmonary bypass surgery.6 In neonatal lambs, 
dobutamine, a synthetic analog of dopamine, increases 
VO2 by 7–12 fold compared to older lambs, with a 
similar increase in DO2. The substantial increase 
in VO2 has been attributed to the abundant brown 
adipose tissue in neonates, which contains plentiful 
α, β1 and β3 adrenergic receptors.7,8 Stimulation of 
these receptors by catecholamines leads to non-
shivering thermogenesis and a substantial increase 
in VO2.

7,9,10 It has been shown that selective α1, β1 
or β2-adrenoceptor blockade in newborn lambs does 
not affect the increases in VO2 or DO2 induced by 
dobutamine, but the combined adrenoceptor blockades 
markedly attenuated both VO2 and DO2.

3

β3-adrenergic receptor was discovered in 1970s 
and 1980s from pharmacological studies of rat adipo-
cyte function, and is now known to be richly present 
in brown adipose tissue controlling of thermogen-
esis and energy balance.8,11,12 It has been shown that 
dopamine exerts a thermogenic effect on the brown 
adipose tissue and increases VO2 in rats.10 Selective 
β3-adrenoceptor antagonist, SR59230A,13 has been 
reported to down-regulate uncoupling protein-1 and 
norepinephrine induced cAMP accumulation,13,14 thus 
reduce thermogenesis in brown fat tissue in lambs.15 
In addition, it has been found that β3-adrenergic 
receptors in the heart have negative inotropic 
properties. This has led to research investigating 

potential therapeutic applications to enhance cardiac 
contractility by blocking β3-adrenergic receptors in 
heart failure.16

Therefore, we hypothesized that SR59230A may 
attenuate the increase in VO2 induced by dopamine, 
and maintain the inotropic effect, thus cardiac output 
(CO) and DO2, thereby improving the balance of sys-
temic and myocardial oxygen transport in neonatal 
lambs.

Methods and Materials
Animal preparation
All experiments were conducted in accordance with 
guidelines and by approval of the Animal Care and 
Use Committee (Health Science), University of 
Alberta. Twelve mixed-breed newborn lambs 1 to 
5 days of age weighing 2.5 to 5.0 kg were obtained 
from a local farm. Anesthesia was induced with iso-
flurane (2%–3%). After induction, isoflurane inhala-
tion was ceased, and anesthesia was maintained with 
continuous i.v. infusion of fentanyl (5–10 µg/kg/h), 
midazolam (0.1–0.2  mg/kg/h) and pancuronium 
(0.05–0.1  mg/kg/h). Animals were intubated with a 
cuffed endotracheal tube to prevent any air leaks, and 
ventilated with FiO2 0.3 and volume-cycled ventilation 
(SERVO VENTILATOR 300, Siemens Medical Sys-
tems, Solna, Sweden), a tidal volume of 10 mL/kg, 
rates of 20–30 breaths/min, and PEEP of 4 cm H2O. 
Systemic arterial blood gases were measured (iStat, 
Abbott Laboratories. Abbott Park, IL USA) and 
ventilation was adjusted to maintain pH 7.35–7.45, 
PaO2 100–140 mmHg, and PaCO2 at 35–40 mmHg, 
while base deficits .2 mmol/L were corrected with 
22  mEq/L NaHCO3. Blood that had been collected 
from an adult donor lamb was used for blood transfu-
sion at a rate of 20 to 30 mL/h.

Left femoral arterial, superior vena cava, coronary 
sinus catheters were inserted to monitor pressures, 
blood gases and to administer fluids and medications. 
Heart rate was measured (Hewlett Packard, Palo Alto, 
CA). Maintenance fluids consisted of 5% dextrose-
saline at 10 mL/kg/h. Temperature was monitored by 
a rectal thermometer, and maintained above 37 °C by 
a heating pad and warm blankets, which were kept 
constant during the experimental period. A sternotomy 
was performed and the ductus arteriosus was ligated. 
An 8–10  mm diameter ultrasonic perivascular flow 
probe (Transonics Systems, Ithaca, New York, USA) 
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was placed around the main pulmonary artery to 
continuously measure CO.

VO2 was continuously measured using respira-
tory mass spectrometry (AMIS2000 Innovision A/S, 
Odense, Denmark). This is highly sensitive, accu-
rate and rapid method to allow simultaneous mea-
surements of multiple gas fractions, and has been 
described previously.17 Stroke volume was calculated 
as CO/heart rate. DO2 was calculated as CO times 
arterial oxygen content (CaO2). Oxygen extraction 
ratio (ERO2) was calculated as VO2/DO2. All sys-
temic hemodynamic and oxygen transport variables 
were indexed by weight as appropriate.

Myocardial oxygen and lactate extraction ratios 
(mERO2, mERlac, respectively) were calculated 
using standard equations:

mEO2=(CaO2 - CcsO2)/CaO2

mERlac=(arterial lactate concentration - coronary 
sinus lactate concentration)/ 
arterial lactate concentration

where CcsO2 indicates coronary sinus oxygen 
content.

xperimental protocol
Lambs were randomized into two groups (n=6 each) 
after a period of stabilization and baseline measurements 
of hemodynamics, oxygen transport and central tem-
perature were obtained. Subsequently, the experimental 
(SR group) received an i.v. infusion of SR59230A at 
5mg/kg dissolved firstly in 0.5mL DMSO, and then 
in 10mL saline and an equal volume of the DMSO and 
saline, respectively, over 5 min. After 30 min, incre-
mental dopamine i.v. infusions starting from 5 were 
increased to 10, 15, and 20 µg/kg/min sequentially 
every 15minutes. Measurements were repeated before 
dopamine infusion and at the end of each dose of dop-
amine in both groups. At the end of the study, an over 
dose of phenobarbital was given for euthanasia.

Statistical analysis
Data are expressed as mean±SD. Mixed linear regres-
sion for repeated measures was used to compare the 
variables before and after SR59230A or saline infusion 
between the two groups. It was also used to compare 
the different levels of the variables and their trends of 

changes between groups over the incremental increases 
of dopamine, with analyses of the effects of group (Pgroup) 
and dose (Pdose) and the interaction between dose and 
group (Pgroup*dose). All data analysis was performed using 
SAS statistical software version 9.2 (SAS Institute Inc). 
A P value,0.05indicates a statistical significance.

Results
There were no significant differences in age (mean 
3days old) and weight (4.0±1.0kg vs. 3.7±0.6kg) 
between the SR and Control groups, respectively.

Changes of the variables before  
and after S 59230A/saline infusion  
in the two groups (Table1 and Fig.1)
All hemodynamic and oxygen transport variables were 
not significantly different at baseline between the two 
groups. Thirty minutes following SR59230A infu-
sion, temperature and mean arterial pressure remained 
unchanged and were not different from those of Con-
trol group. Heart rate trended to decrease from 237±33 
beats/min to 202±7 beats/min in SR group (P=0.08). 
CO trended to decrease from 167 ± 31 ml/min/kg to 
123±8mL/min/kg in SR group (P=0.08). Stroke vol-
ume remained similar after SR59230A infusion within 
both groups. DO2, VO2, ERO2, mERO2 and mERlac did 
not change significantly in SR group. There were no sig-
nificant changes in all the variables in Control group.

Changes of the variables over the 
incremental infusion of dopamine  
in the two groups (Table1 and Fig.1)
Over incremental doses of dopamine, temperature 
increased significantly in both groups (Pdose ,0.0001); 
the rate of temperature increase was signifi-
cantly less in SR group compared to Control group 
(Pdose*group ,0.005). There was no significant change 
in mean arterial pressure in either SR or Control group. 
Heart rate significantly increased in both groups 
(Pdose ,0.05) to a similar degree (Pdose*group.0.10). CO 
significantly increased in both groups (Pdose ,0.005) 
to a similar degree (Pdose*group.0.10). There was no 
significant change in stroke volume in both groups. 
DO2 trended to a small increase (Pdose=0.08) due to a 
small but significant decrease in hemoglobin in both 
groups (Pdose= 0.04). VO2 increased significantly in 
both groups (Pdose,0.0001); however, the rate of  VO2 

B3-Adrenoceptor Attenuates Imbalance in Myocardial Oxygen Transport

http://www.la-press.com


Gill et al

48	 Clinical Medicine Insights: Cardiology 2012:6

increase was significantly less in SR group compared to 
Control group (Pdose*group , 0.0001). As a result, ERO2 
increased significantly in both groups (Pdose , 0.0001). 
The rate of overall increase in ERO2 was significantly 
less in SR group (Pdose*group , 0.0001), and it started 
to decrease at the incremental dose of dopamine from 
10 to 20 ug/kg/min. mERO2 did not increase signifi-
cantly in both groups (P . 010). mERO2 was signifi-
cantly lower in SR group (Pgroup = 0.01), with faster 
increase in SR groups compared to Control group 
(P  ,  0.0001). mERlac decreased significantly in 
both groups (P = 0.04). mERlac levels trended to be 

higher (P = 0.08) with faster decrease over the doses 
of dopamine (P = 0.04).

Discussion
This study demonstrates that in newborn lambs, 
SR59230A, a selective β3-adrenoreceptor antagonist, 
significantly attenuated the imbalance in systemic oxy-
gen transport seen with incremental dopamine infusion. 
These increases in VO2 levels were significantly atten-
uated by SR59230A, whilst the increases in DO2 were 
not significantly different between the two groups. As a 
result, the balance of systemic and myocardial oxygen 

Table 1. Mean ± SD values of temperature, hemodynamics, and oxygen transport during the study protocol.

Pre-SR Dopamine dose (μg/kg/min)
0 5 10 15 20

Temperature (°C)
  Control group 37.4 ± 1 37.7 ± 1 38.2 ± 1   38.5 ± 1 38.9 ± 1 39.1 ± 1‡

  SR group 38.1 ± 1 38.6 ± 1 38.9 ± 1   39.1 ± 1 39.3 ± 1 39.3 ± 1‡,§

MAP (mmHg)
  Control group    65 ± 14    61 ± 14    61 ± 14    62 ± 10    62 ± 10    67 ± 10
  SR group    73 ± 16    78 ± 7    75 ± 8    70 ± 6    75 ± 10    73 ± 12
HR (beats/min)
  Control group  223 ± 32  230 ± 28  234 ± 29    227 ± 21  235 ± 22  242 ± 26
  SR group  237 ± 33  202 ± 16†  206 ± 17    205 ± 13  206 ± 15  208 ± 15
Hb (g/dL)
  Control group   8.0 ± 1.1   8.1 ± 1.3   7.8 ± 1.2   7.5 ± 1.0   7.4 ± 1.1   7.4 ± 1.2‡

  SR group   8.1 ± 1.4   8.1 ± 1.2   7.9 ± 0.8   7.6 ± 0.9   7.5 ± 1.0   7.6 ± 1.2‡

CO (mL/min/kg)
  Control group  169 ± 44  158 ± 21  158 ± 34    170 ± 42  178 ± 42  176 ± 55
  SR group  167 ± 31  123 ± 21†  124 ± 24    132 ± 34  137 ± 38  147 ± 44
SV (mL/beat/kg)
  Control group   0.8 ± 0.2   0.7 ± 0.2   0.7 ± 0.2   0.8 ± 0.2   0.8 ± 0.2   0.7 ± 0.2
  SR group   0.7 ± 0.2   0.6 ± 0.1   0.6 ± 0.2   0.7 ± 0.2   0.7 ± 0.2   0.7 ± 0.2
DO2 (mL/min/kg)
  Control group    73 ± 21    70 ± 19    66 ± 17    67 ± 12    68 ± 16    67 ± 18
  SR group    73 ± 19    54 ± 13    51 ± 6    56 ± 13    59 ± 13    64 ± 16
VO2 (mL/min/kg)
  Control group   11 ± 2.7   11 ± 1.3   11 ± 1.9     12 ± 1.6   13 ± 1.1   14 ± 1.3‡

  SR group   12 ± 1.4   11 ± 1.9   11 ± 1.9     11 ± 1.7   12 ± 1.8   12 ± 1.9‡,§

ERO2
  Control group 0.16 ± 0.03 0.16 ± 0.03 0.17 ± 0.04 0.219 ± 0.03 0.20 ± 0.05 0.23 ± 0.07‡

  SR group 0.18 ± 0.06 0.20 ± 0.06 0.22 ± 0.05   0.21 ± 0.08 0.20 ± 0.06 0.19 ± 0.06‡,§

mERO2
  Control group 0.61 ± 0.19 0.61 ± 0.10 0.65 ± 0.12   0.63 ± 0.09 0.67 ± 0.05 0.69 ± 0.06
  SR group 0.54 ± 0.19 0.55 ± 0.09 0.57 ± 0.06   0.60 ± 0.08 0.64 ± 0.08 0.67 ± 0.09§

mERlac
  Control group 0.07 ± 0.10 0.13 ± 0.19 0.14 ± 0.09   0.04 ± 0.17 0.04 ± 0.22 0.01 ± 0.27
  SR group 0.10 ± 0.31 0.22 ± 0.27 0.22 ± 0.16   0.10 ± 0.10 0.11 ± 0.20 0.07 ± 0.18§

Notes: †P = 0.08 compared to Pre-SR values; ‡Pdose , 0.05 for the change over incremental doses of dopamine; §Pgroup*dose , 0.05 for the interaction 
between group and dose of dopamine, indicating the difference in the rate of change over incremental doses of dopamine between the two groups.
Abbreviations: MAP, mean arterial pressure; HR, heart rate; CO, cardiac output; SV, stroke volume; DO2, oxygen delivery; VO2, oxygen consumption; 
ERO2, oxygen extraction ratio.
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transport was improved, as indicated by the attenuated 
increase in ERO2, lower mERO2 and higher mERlac.

The goal of dopamine and other catecholamine 
therapy is to improve the balance of systemic oxy-
gen transport by a greater increase in DO2 relative to 
changes in VO2. Both circulatory and metabolic stimu-
lating effects by catecholamines share the same adren-
ergic signaling mechanisms, mainly, β1 and β2 and 
α-adrenergic receptors. If the circulatory responses 
to adrenergic stimulation are reduced, or the meta-
bolic response enhanced, the beneficial effects of cat-
echolamines might be abrogated. Such is the case in 
neonatal subjects particularly those with myocardial 
injury and increased VO2 as seen after cardiopulmo-
nary bypass surgery.6 It has been shown that α, β1, 
β2-adrenergic antagonists fail to improve the balance 
of oxygen transport, due to ineffective reduction of 
VO2 when each selectively used, or attenuation of both 
VO2 and DO2 to a similar degree when combined.3

β3-adrenoreceptors also have both circulatory 
and metabolic effects, but distinctly different from 
other adrenergic receptors. In terms of metabolic 

effect, β3-adrenergic receptor are richly present in 
brown adipose tissue.9 Brown adipose tissue gener-
ates heat following stimulation of α-, β1-, particu-
larly β3-adrenoreceptors by the sympathetic nervous 
system.7 It plays an essential role in non-shivering 
thermogenesis, hence VO2, in newborn humans and 
some in larger mammals including lambs. The ability 
to specifically activate or reduce energy expenditure 
via β3-adrenoreceptor manipulation is of much inter-
est for the thermoregulation in newborns. Using the 
β3-adrenergic agonist Zeneca D7114 increased body 
temperature in moderately hypothermic Caesarean 
section-delivered lambs.13 Selective and potent 
β3-adrenoreceptor antagonist SR59230A has been 
shown to down-regulate uncoupling protein-1 and nor-
epinephrine induced cAMP accumulation, thus reduc-
ing thermogenesis in brown adipose tissue in animal 
experiments including sheep models.13–15 Our find-
ings on the systemic effects of the attenuated rises in 
central body temperature and VO2 in newborn lambs 
treated with SR59230A prior to dopamine infusion 
are consistent with previous findings at tissue and 
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extraction ratio (O2) prior to and following S59230A infusion with incremental doses of dopamine. Control group received placebo of saline.
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molecular levels.13–15 The improved balance of systemic 
oxygen transport may, at least partly, contribute the 
improved myocardial oxygen transport as indicated by 
the lower mERO2 and higher mERlac in lambs treated 
with SR59230A be attributed, at least partly, to the 
improved balance of systemic oxygen transport.

Nonetheless, the specific cardiac effect of 
SR59230A should also be accounted for. Compared to 
brown adipose tissue, β3-adrenoreceptors in the heart 
have been less extensively studied, but have gained 
increasing interest in recent years. It has been reported 
that β3-adrenoreceptor stimulation exerts a profound 
dose-dependent negative inotropic effect in ventricles 
with decreased myocardial contractility in humans 
and other species.18–20 Hence, it is suggested that 
β3-adrenoreceptors serves as a “brake” during sympa-
thetic overstimulation to antagonize β1-adrenoreceptors 
and β2-adrenoreceptors in the heart.20,21 In addition, 
β3-adrenoreceptor stimulation also exerts positive 
chronotropic effects, probably resulted from reflex 
mechanisms rather than from a direct stimulation of 
cardiac b3-adrenoceptors.22,23 It might be extrapolated 
that β3-adrenoreceptor antagonist may increase or 
maintain the inotropic effect of dopamine, thus myo-
cardial contractility, but at the same time reduce the 
heart rate. As shown in our data, following SR59230A 
infusion, there was an immediate reduction in heart 
rate, but stroke volume was maintained. As a result, 
CO and DO2 decreased. Nonetheless, during incremen-
tal doses of dopamine infusion, the changes in heart 
rate, CO and stroke volume were not significantly dif-
ferent between the two groups. The lower heart rate 
and CO, thus reduced myocardial workload, might be 
attributable to the better balance of myocardial oxy-
gen transport. It is important to note that, despite an 
initial reduction in heart rate and CO, the greater and 
continuous reduction in VO2 by SR59230A attenuated 
the imbalance of systemic oxygen transport at higher 
doses of dopamine infusion as indicated by the attenu-
ated increase in ERO2.

Limitations
There are several limitations in our study. First, stroke 
volume was used to reflect cardiac contractility. The 
changes in myocardial contractility in the experiment 
may be more accurately assessed with direct mea-
surement utilizing techniques such as tissue Doppler 
by echocardiography24 or conductance catheter.25 

Secondly, myocardial lactate extraction ratio reflects 
the overall balance of the complex production and 
consumption of lactate by myocardium. A high lactate 
extraction may indicate less lactate production or more 
lactate consumption, or both. The exact mechanism 
can only be shown by direct examination of myocar-
dial metabolism. Nonetheless, based on the lower myo-
cardial oxygen extraction ratio in lambs treated with 
SR59230A, the less lactate production may be likely 
the case in our study. Thirdly, we did not directly assess 
the regional changes in oxygen consumption in brown 
fat tissue. Therefore, the relationship between VO2 and 
brown fat tissue remains speculative in our study. Forth, 
this is a pilot study in healthy newborn lambs using 
only one dose of SR59230A. A dose response study in 
newborn lambs with myocardial injury and increased 
VO2, such as newborn subjects following cardiopulmo-
nary bypass may provide more detailed and relevant 
information about the effects on SR59230A on VO2 and 
myocardial contractility, thus CO and DO2.

Conclusion
Although β3-adrenoceptor antagonist SR59230A 
tends to induce an initial drop in heart rate and CO, 
it significantly attenuates the increase in VO2 and 
hence the imbalance of systemic and myocardial oxy-
gen transport induced by dopamine at higher doses. 
Further studies are warranted to examine the dose 
response effect of SR59230A in subjects with myo-
cardial injury and increased VO2 such as those after 
cardiopulmonary bypass surgery.

List of Abbreviations
CO, cardiac output; DO2, systemic O2 delivery; ERO2, 
oxygen extraction ratio; mERO2, myocardial oxygen 
extraction ratio; mERlac, myocardial lactate extrac-
tion ratio; VO2, systemic O2 consumption.
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